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Chapter 1

Introduction

1.1 History and motivation

The subject of this dissertation is the interplay between regularity properties
and definability in the real number continuum. By “regularity properties”, we
are referring to certain desirable properties of sets of real numbers, something
that makes them well-behaved, conforming to our intuition, or easy to study;
by “definability”, we are referring to the logical description that determines the
composition of such sets, given in some specified formal or informal language.

Real numbers are ubiquitous in nearly all areas of science and mathematics.
They are indispensable for calculations involving the physical world, and we use
them to describe reality and to model our three-dimensional Euclidean space.

Although real numbers were known since antiquity, their exact nature was
not clearly understood and their use was limited to concrete cases, such as the
number 7 in geometry. The first use of the concept of a real number in its full
and unbridled form was the development of calculus in the late 17th century,
which required an abstract treatment of convergent sequences and limit processes
rather than individual numbers. Even then, the precise nature of these numbers
was left undefined, and it was not until the late 19th century that the real number
continuum was given a proper mathematical definition and recognized as a unique
and extremely important concept.

As 19th century mathematics progressed and its methods became more ad-
vanced, increasingly complex and counter-intuitive aspects of the continuum were
being discovered. It became commonplace for mathematicians to construct ob-
jects that were highly irregular, paradoxical or otherwise bizarre. In this light,
regularity properties provided a counterweight, a way of saying when a certain
object was not too unnatural. At the turn of the century, three particular proper-
ties were isolated, and in the decades that followed the study of these properties
would become crucial in the search for structure in the real number continuum.
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The first such property arose from the need for a more rigorous definition
of the integral. As the formerly used Riemann integral did not suffice to deal
with the complexity of late 19th century analysis, Henri Lebesgue, in his thesis
[Leb02] from 1902, introduced the Lebesgue integral which is still widely in use
today. His definition depended crucially on what we now call Lebesgue measure, a
mathematical concept capturing the intuition of “size” or “volume” of an object.
Accordingly, a set is called Lebesgue measurable if it admits such a notion of size.

The second property was isolated by René-Louis Baire [Bai99] in his study of
topological properties of the continuum. With the notions of open and closed sets
having already been established as central to analysis and topology, Baire looked
at sets which are “almost” open, that is, open except for a (in a topologically
precise sense) negligible component. Such sets are now said to have the property
of Baire.

The last notion of regularity came out of foundational concerns. After Georg
Cantor establishing that the set of real numbers was uncountable in 1874, a
considerable amount of effort was devoted to trying to prove the Continuum
Hypothesis, the statement that any uncountable set has at least the cardinality
of the continuum. One approach involved perfect sets, i.e., sets of reals that are
closed and contain no isolated points, which always have the cardinality of the
continuum. If one could prove that every uncountable subset of the continuum
contains a perfect set, then one would have established the Continuum Hypothesis
at least within the realm of the real numbers. This dichotomy (which, of course,
no one was able to prove) became known as the perfect set property.

Not long after these three properties were isolated, counterexamples were
produced. The earliest example was due to Giuseppe Vitali [Vit05] in 1905, who
constructed an object that could not be Lebesgue measurable or have the property
of Baire (the Vitali set). Shortly afterwards, Felix Bernstein [Ber08] produced
an object which, additionally, did not satisfy the perfect set property either (the
Bernstein set). Other, more involved constructions were soon discovered, some
of them leading to outright bizarre results such as the Banach-Tarski paradox,
which draws crucially on the existence of non-measurable sets.

Of course, it was becoming clear that all such proofs were non-constructive,
in the sense that they did not provide a concrete example of the irregular object
whose existence they proved. Rather, this existence was established indirectly,
using an evocation of the Axiom of Choice, a fundamental principle of set the-
ory. It was, in part, due to these paradoxical consequences that this axiom was
considered problematic and viewed with a great deal of skepticism at the time.

But while for some mathematicians it was the Axiom of Choice that was the
main culprit, with the existence of irregularities and the corresponding paradoxes
providing sufficient evidence for the eviction of this particular axiom from the
domain of mathematics, others preferred to focus on the definability of subsets
of the continuum, to make precise what “non-constructive” or “non-definable”



1.1. History and motivation 3

meant, and to pay attention to the definable sets while admitting that non-
definable ones existed, too. A clear case for definability was provided by Emile
Borel, who defined a natural algebra of sets, the Borel sets, as those obtained from
the open ones using the operations of countable union, countable intersection and
complementation. Each Borel set comes along with a description, a definition, a
recipe for its construction, so to say. Thus, Borel sets are quite the opposite of
the non-constructive objects given to us by an abstract principle like the Axiom
of Choice. Indeed, as was already implicit in the original definitions, all Borel sets
are Lebesgue measurable and satisfy the property of Baire. In 1916, it was proved
by Felix Hausdorff [Haul6] and independently by Pavel Aleksandrov [Alel6] that
all Borel sets satisfy the perfect set property as well. This was a satisfactory
situation as it meant that irregularities, even if they did exist, would not show
up on the level of the Borel sets. Since the Borel algebra is closed under certain
set-theoretic operations, one might attempt to squeeze all mathematical practice
into the realm of Borel sets, thus avoiding any anomalies or irregularities.

But while the Borel algebra is fairly rich, there are natural mathematical
operations that transcend its boundaries. This was first noticed by Mikhail Suslin
in 1917, who, while studying [Leb02], found that Lebesgue had made a remarkable
mistake: he had claimed that the projection of a Borel set (in a higher dimension)
was itself Borel. Suslin constructed a counterexample to Lebesgue’s claim, and,
motivated by this discovery, introduced the class of analytic sets as those obtained
from Borel sets by the operation of projection. As the analytic sets were still
easily definable but lay beyond the Borel level, Suslin proceeded to investigate
their properties, particularly in relation to their regularity. In [Susl17] he was
able to prove that all analytic sets are Lebesgue measurable, have the property of
Baire and the perfect set property. So no irregularity could occur on the analytic
level, either.

As the class of analytic sets is not closed under complements, one may con-
sider, as a separate definability class, the co-analytic sets, i.e., those sets whose
complement is analytic. Suslin’s result implied that co-analytic sets are also
Lebesgue measurable and have the property of Baire, although no such conclu-
sion could be drawn regarding the perfect set property. Of course, there is no
reason to stop here, either, and if one considers the projections of co-analytic
sets one gets to a strictly higher definability level, the 25 sets in contemporary
terminology. The sets whose complement is a 25 set are called H%, and the pro-
jections of IT} sets lead to an even higher definability level, the Eé sets, etc. In
this fashion one obtains the projective hierarchy, and a set is called projective if
it appears at some finite level in it, i.e., if it is X} or IT} for some n.

The projective hierarchy was understood to be a very natural measure of
definability, and the investigation of it led to a distinct area of mathematics
now called descriptive set theory (the study of “descriptions”, or “definitions”, of
sets). The next challenge was to show that the projective sets satisfied all the
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regularity properties. However, efforts in this direction already grounded on the
first level beyond Suslin’s result: it was impossible to determine whether all E%
sets were Lebesgue measurable or had the property of Baire, and whether all co-
analytic sets satisfied the perfect set property. The obstacles encountered in this
problem were so severe that some mathematicians were prompted to speculate
on its potential “unsolvability”. Nikolai Luzin, an early proponent of descriptive
set theory, described the state of affairs in 1925 thus:

“The theory of analytic sets presents a perfect harmony: any ana-
lytic set is either countable or of the cardinality of the continuum;
an analytic set is never a set of the third category [satisfies the Baire
property] ... finally, an analytic set is always measurable.

There remains but one significant gap: one does not know whether
every complementary analytic (that is, the complement of an analytic)
uncountable set has the cardinality of the continuum.

The efforts that I exerted on the resolution of this question led me
to the following totally unexpected discovery: there exists a family
... consisting of effective [definable] sets, such that one does not know
and one will never know whether every set from this family, if un-
countable, has the cardinality of the continuum, nor whether it is of

the third category, nor whether it is measurable. ... This is the family
of the projective sets of Mr. H. Lebesgue. It remains but to recognize
the nature of this new development.” [Luz25, p 1572]

At the time, people were not yet aware of the “incompleteness phenomenon”
in mathematics, so it is unlikely that Luzin had any rigorous notion in mind
when saying “one will never know”. Nevertheless, his predictions turned out
to be correct, and the next step towards a clarification of this problem came
in 1938 from Kurt Godel’s foundational work. By then, the axiomatization of
mathematics using ZFC (Zermelo-Fraenkel with Choice) in first order logic had
become standard and Godel’s incompleteness theorem had already been proved.
In [G6d38], Godel defined the constructible universe L, a so-called “inner model”,
a “sub-universe” within the universe of all sets, which was itself a model of all
the axioms of ZFC as well as additional axioms, most notably the Continuum
Hypothesis. In [G5d38] Godel announced that in L there is a 35 non-Lebesgue-
measurable set of reals and a co-analytic set without the perfect set property (a
¥} set without the property of Baire can be derived from the same proof). In
meta-mathematical terms, it meant that these assertions were consistent with the
axioms of set theory, i.e., one would never be able to prove that all 3 sets (and
therefore, all projective sets) are Lebesgue measurable and satisfy the property
of Baire, nor that all co-analytic sets have the perfect set property, at least,
assuming only the basic axioms of set theory. So at least one half of Luzin’s
conjecture turned out to be correct.
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Was it, perhaps, possible to prove the opposite statement, namely that there
are irregularities on some given level of the projective hierarchy? That this could
not be done, either, was shown by a celebrated result of Robert Solovay, but had to
wait until 1970. Using a then recently discovered method called forcing, Solovay
[Sol70] constructed a model of set theory in which all projective sets were Lebesgue
measurable, had the property of Baire and the perfect set property. Thus, if one
interprets Luzin’s “one will never know” as “it is not provable from ZFC”, then
this is indeed correct: the regularity of all projective sets is undecidable by the
fundamental axioms of set theory.

An even more exciting consequence of [Sol70] was the existence of a model
of ZF (without Choice) in which every subset of the continuum was Lebesgue
measurable, had the property of Baire and the perfect set property. This meant
that the original use of the Axiom of Choice in constructing counterexamples
to regularity properties was perfectly justified, as it would simply have been
impossible to construct such counterexamples without it.

Using the method of forcing, models of set theory could be extended to pro-
duce larger models, in which the truth of a certain mathematical statements could
be controlled to some degree. While the forcing used to construct the Solovay
model was rather strong, requiring an inaccessible cardinal to work properly and
yielding an extension very much larger than Godel’s constructible universe L,
this was not the case for the X3 level. To obtain a model where all X} sets were
measurable, it sufficed to use a relatively mild extension. In fact, a characteriza-
tion result was proved in [Sol70] stating that all X} sets are Lebesgue measurable
if and only if the set-theoretic universe is at least as large as a certain forcing
extension of L (for a precise statement, see Theorem 1.3.9). In other words, there
was a minimal way to extend L in order to obtain a model in which every 33
set was Lebesgue measurable. A similar characterization was shown for the Baire
property. With this at hand, one could have direct control over the truth of the
statements “all 33 sets are Lebesgue measurable” and “all Xj sets satisfy the
Baire property” in different models of set theory.

Until the 1980s, the Lebesgue measure and Baire property were considered
virtually analogous, and results proved for one could be translated to yield the
same result for the other. The first change to this was brought on by Saharon
Shelah’s [She84|, which showed that the Baire property of all projective sets
could also be established by a forcing not requiring an inaccessible cardinal to
begin with, whereas this was not true for Lebesgue measure. In terms of consis-
tency strength, the statement “all projective sets are Lebesgue measurable” was
stronger than the statement “all projective sets satisfy the property of Baire”.
Shortly afterwards, Jean Raisonnier and Jacques Stern [RS85], and independently
Tomek Bartoszytiski [Bar84], uncovered an asymmetry already inherent at the 33
level —namely, if all 3 sets are Lebesgue measurable then all X3 sets satisfy the
property of Baire. The converse implication, on the other hand, does not hold
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(by [Tho88]). Here, too, measurability turned out to be stronger than the Baire
property.

By this time, the concept of a “regularity property” had been extended far
beyond the three classical cases we have been discussing so far. For one, the Baire
property could be generalized to other topological spaces, and even to partial
orders in general. A number of statements in infinitary combinatorics gave rise
to natural notions of regularity, from which the Ramsey property is probably the
most well-known. Even the perfect set property turned out to be one in a line
of similar “dichotomy-style” properties. In each case, the same pattern emerged:
with the Axiom of Choice one can construct counterexamples, but this axiom is
provably necessary; all Borel and analytic sets are regular; there are 33 or even
co-analytic counterexamples in L, but not if sufficient forcing over L has been
done, etc.

One of the more interesting aspects of these properties is their asymmetry,
and the low levels of the projective hierarchy are very well suited to study it.
Just like the asymmetry between Lebesgue measure and the Baire property, a
similar phenomenon tends to appear with other notions of regularity. Thus,
the hypothesis that, say, all 33 or all co-analytic sets are regular in one sense
may directly imply that the analogous hypothesis concerning another notion of
regularity holds. In other cases, this direct implication is (consistently) false.
For proving such results, a characterization theorem relating regularity to some
forcing-theoretic statement, like the one proved by Solovay in [Sol70], is always
very useful. Research in this direction has been done by Haim Judah, Saharon
Shelah, Jorg Brendle, Benedikt Lowe and Lorenz Halbeisen among others (see
[IS89, Tho88, BL99, BHL05, BL11]), and a general theorem unifying many kinds
of regularity properties was proved by Daisuke Ikegami in [IkelOa, Ikel0b].

All the questions studied in this dissertation concern this basic relationship
between regularity and definability, which has been established throughout the
course of the 20th century. Of particular importance are the asymmetry, the
implications and non-implications between the various notions of regularity and
the characterization of it using transcendence over L. Another, relatively distinct,
interest of ours is the study of special kinds of irreqular objects. The Vitali set
and the Bernstein set were already mentioned as counterexamples to regularity;
another one would be a non-principal ultrafilter on the natural numbers, which,
if considered from a topological point of view, gives rise to a set that is both non-
measurable and doesn’t satisfy the Baire property. Thus, there are no analytic
non-principal ultrafilters, and there are no ) non-principal ultrafilters in models
where all 33 sets are measurable or have the Baire property; and in the Solovay
model, there are no non-principal ultrafilters at all. In a similar way, one can look
at other objects (whose existence is usually established by the Axiom of Choice)
from the point of view of descriptive set theory.
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Before concluding this historical account, we should mention the role of large
cardinals in the study of the real number continuum. Large cardinal axioms
are additions to the standard set theoretic axioms postulating the existence of
certain very large objects. Such postulates cannot be proved, but are generally
considered natural enough to be taken up alongside the standard axioms. In the
last few decades of the 20th century, much effort has been exerted into providing
a connection between large cardinal axioms and the regularity of sets in the
projective hierarchy. From Solovay’s original result it already follows that if there
exists a measurable cardinal, then all 33 sets are Lebesgue measurable and satisfy
the Baire property, and this proof can easily be adapted to show that, under
this assumption, all regularity properties are satisfied on the Xj level. Further
results followed, attempting to use ever stronger assumption in order to derive
the regularity of sets higher up in the projective hierarchy. The culmination of
this effort was the result of Donald A. Martin and John Steel [MS89] showing that
if there are infinitely many Woodin cardinals then all projective sets are regular
(via the so-called axiom of Projective Determinacy).

In spite of the beautiful structure provided by large cardinals, there is one
substantial drawback: they blur the distinction between the different notions of
regularity, by treating them all in the same way, putting them all in one basket, so
to say. For instance, the fact that Lebesgue measure is, in various ways, stronger
than the Baire property, becomes completely concealed if one considers models
with large cardinals, and the same applies to other properties. Characterization
theorems, which seem highly informative as such, become redundant if sufficiently
large cardinals are assumed to exist. In this dissertation we will focus on the
individuality of each regularity property, and on subtle ways to make the property
hold without necessarily affecting other regularity properties. As a result, we shall
not be assuming the existence of any large cardinals (with the exception of an
inaccessible when proving something about the Solovay model), and most of the
set-theoretic models making their appearance here are going to be relatively mild
extensions of L obtained by an iteration of proper forcing, and will all lie within
the realm of ZFC in terms of consistency strength.

1.2 Preliminaries

1.2.1 Set theory

Our basic axiomatic framework is ZFC, the Zermelo-Frankel axioms of set theory
together with the Axiom of Choice.

We will not assume any additional axioms, e.g., large cardinal axioms, with
the exception of a few times when proving theorems about the Solovay model; the
Axiom of Choice will have to be dropped in a few instances when investigating
consequences of determinacy.
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We will assume complete familiarity with notions of naive set theory, such as
the formalization of ordered pairs, relations, functions etc. as sets, as well as the
formalization of natural numbers as von Neumann ordinals, and the definitions
of the rational and real numbers as derived from the natural ones. We will also
assume familiarity with ordinals, cardinals and concepts involving these, such as
successor/limit ordinal, successor/limit cardinal, cofinality, regular and singular
cardinals, and elementary properties of ordinal and cardinal arithmetic.

Moreover, we will assume some knowledge of elementary topology, in partic-
ular the concepts open, closed, dense, nowhere dense and compact, as well as
notions of convergence, continuity and limits.

Basic logical tools and concepts will also be assumed, such as the syntax and
semantics of first order logic and its application in the formalization of set theory.
In particular, (class) models of set theory and truth of formulas in such models
via relativization will be assumed as known.

Our notation mostly follows standard set theoretic convention, as found in
textbooks such as [Jec03] and [Kan03]. As finite and infinite sequences play a
prominent role, we briefly review the corresponding notation. If X is any set, X“
denotes the set of all functions from w to X and X<“ = (], ., X™ denotes the set
of finite sequences of elements from X. The length of a finite sequences s € X <*
is denoted by |s|. For s € X< and n < |s|, s[n refers to the initial segment
of s consisting of n elements; likewise for f[n if f € X“. For two sequences
s,t € X<¥ st is the concatenation of s with t; likewise for s~ f if f € X“. One
convention follows: if f € X* and we write “s C f”, then this is assumed to
imply that s € X<¥, i.e., s is an initial segment of f, rather than some arbitrary
subset. In most of our applications, X will be w or 2 = {0, 1}.

Other shorthand notation that we will often use is “V*°” and “3*°” to abbre-
viate “for all but finitely many” and “there are infinitely many”, respectively.

1.2.2 Real numbers

In mathematics, the set of real numbers R is usually defined from the rational
numbers using Dedekind cuts, equivalence classes of Cauchy sequences, or some
such method. However, this object is somewhat cumbersome for foundational
investigations, and in set theory it is usually preferable to work with simpler
objects, which share all the essential logical, topological and structural properties
of R but are more straightforward to study and easier to manipulate.

The most frequent incarnation of the real numbers in set theory is w®, the set
of functions from w to w. If, for every s € w<¥, we define [s] := {z € w* | s C z}
to be the set of all functions extending s, then the collection {[s] | s € w<“}
forms a topology base for w“, and the resulting topological space is called the
Baire space. Clearly w® has cardinality 2% and shares many other properties
inherent to the real numbers. For example, it has a countable base of open sets,
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and each x € w“ can be approximated by a sequence of open neighbourhoods
{[s] | s € z}. A metric, consistent with the topology, can be defined on w*,
by d(z,y) := 1/2" for the least n such that xz(n) # y(n) and d(x,y) = 0 if
x = y. Convergence in the Baire space can be conveniently formulated as follows:
lim, o 2, =z iff Vs C 2V*n (s C z,). Following common practice, we shall call
elements of w* “real numbers” or simply “reals”. In this context, we can define
the rationals as those x € w® which are eventually 0. It is clear that every real is
a limit of a countable sequence of rationals. The Baire space can be shown to be
homeomorphic to the set of irrational numbers R \ Q (in the standard sense).

In complete analogy, we define the Cantor space 2* to be the set of functions
from w to 2. The topology, metric, limit etc. are all defined similarly. This space
is homeomorphic to Cantor’s standard “% set”. Likewise, we can define n* for
any n € w or even | [, n; for any sequence of natural numbers n;.

Another incarnation of the real numbers is [w]* = {z C w | |z| = w}, the
set of all infinite subsets of w. The space [w]* can either be identified with the
Cantor space via characteristic functions, or with a subset of w® via increasing
enumerations. In either case, it gives rise to the same notion of a topology on
[w]“.

Many-dimensional real number spaces are defined in a standard way, with
(w*)™ equipped with the product topology.

More information about basic topological and structural properties of the

Baire and Cantor spaces can be found in classical textbooks such as [Kec95] and
[Mos80].

1.2.3 Trees

The word “tree” in set theory can refer to many things. In descriptive set theory,
however, a tree on a set X is a subset of X<“ closed under initial segments.
If T is a tree then [T] denotes the set of all branches through T, defined as
T) :={f € XY |Vn(xln € T)}. If X = w then [T] is a subset of the Baire
space. It is easy to see that every set [T is topologically closed (contains all
its limit points) and, conversely, any closed set C' C w“ is of the form [T] for
some tree T'; thus there is a one-to-one correspondence between trees on w and
closed subsets of w”. More generally, if for an arbitrary set A C w* we define
Ty :={xIn | z € A,n € w} then the operation A — [T4] is the topological
closure of A. The same thing can be said of X = 2 and the Cantor space.

The following notation and terminology is used in the context of trees:

e For t € T, the set of immediate successors of t is defined as

Sucer(t) :=={se€T | In(t™ (n) =s)}.

e Anodet € T is called splitting if |Succr(t)| > 1 and non-splitting otherwise.
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e The stem of T is the longest ¢t € T such that all s C t, s # t are non-
splitting.

e Fort €T, T 1tis the sub-tree {s €T |sCtortC s}

It is not hard to verify that [T] is compact (in the topological sense) if and
only if T is everywhere finitely branching, i.e., for every ¢t € T, |Succr(t)| < w.
In particular, the Cantor space, and any space of the form n* or [ [, n;, where the
n; are finite, is compact, whereas the Baire space is not.

Trees can also be defined in n dimensions. An n-dimensional tree on Xy x - - - X
X,,—1 can interchangeably be viewed either as a subset of (Xgx---x X, _1)<“, or as
a subset of {(to,...,tn—1) | t; € X7 and |ty| = -+ = |t,—1|}, pointwisely closed
under initial segments. For such an n-dimensional tree T, the set of branches
through T is a subset of X§ x --- x X¥ ;. As before, in the n-dimensional Baire
space a set C' C (w®)" is closed if and only if there is an n-dimensional tree T
such that C' = [T]; the same applies for the Cantor space.

There are some specific trees that will be of importance.

Definition 1.2.1.

1. A tree T on w (or 2) is called a perfect tree if every node t € T has an
extension s D t, s € T, which is splitting.

2. A tree T on w is called a super-perfect tree, or a Miller tree, if every node
t €T has an extension s D t, s € T which is infinitely branching, i.e., such
that |Sucer(s)| = w.

3. A tree T on w is called a Laver tree if for every s € T longer than the stem
of T, s is infinitely branching.

In topology, a perfect set is a set C' which is closed and contains no isolated
points. It is easy to verify that in the Baire and Cantor spaces, [T] is a perfect
set if and only if T is a perfect tree. Perfect sets have cardinality 2% since the set
of branches through the corresponding perfect tree can be put into a one-to-one
correspondence with 2.

1.2.4 Descriptive set theory

Classical descriptive set theory is the study of definable sets of reals, primarily the
Borel and the projective hierarchy stemming from the work of Borel, Lebesgue,
Luzin and Suslin in the early 20th century. We now give a systematic account
of the main definitions. For convenience of the exposition, we will work with the
Baire space w*, but all definitions and results apply also to the Cantor space, as
well as to the n-dimensional versions of the Baire and Cantor spaces.

The collection of the Borel sets B is defined to be the smallest collection of
sets of reals satisfying the following properties:
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1. every open set is in B,
2. if B € B then (w¥\ B) € B, and
3. if B; € B for every i € w, then |J, B; € B.

In other words, B is the og-algebra generated by the open sets, and every Borel set
is recursively built up from the open sets using the operations of complementation
and countable union (or intersection). A more detailed look at the Borel sets
allows us to define the Borel hierarchy, a stratification of the Borel algebra, by
induction on o < Ny.

Definition 1.2.2. For each a < Ny, the classes X°, TI? and A? are defined by
induction using the following rules:

1. a set AC w” isin XY if and only if it is open,
2. a set A is in IIY if and only if its complement w* \ A is in X2,

3. fora > 1, aset Aisin X2 if and only if A =
for B < «a, and

A, where each A,, € H%

new

4. a set A is in AL if and only if it is in both X° and TI..

All these terms are typically used as adjectives, and we say things like “a set
is 227 or “Ais a X set”.

It can be shown that this hierarchy is proper, in the sense that for every «
there exists a set A which is TI? but not X2. It is clear that a set B is Borel if
and only if it is X2 or TI? for some o < Ny, and the least o for which this is the
case is called the Borel rank of B. Sets low in the hierarchy also have classical
names: 3 sets are called F, (countable unions of closed sets) and IIJ sets are
called G5 (countable intersections of open sets).

As mentioned in the introduction, the Borel algebra is not closed under the
natural operation of projection.

Definition 1.2.3.

1. Let A C (w*)? be a two-dimensional set of reals. The projection of A (onto
the first coordinate) is

plA] == {z [y € w* ((z,y) € A)}.

2. A set A C w* is called analytic if it is the projection of some Borel set
B C (w¥)?, and co-analytic if its complement is analytic.
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In [Susl7], Suslin showed that there are analytic sets which are not Borel,
that A is analytic if and only if it is the projection of a closed set, and that the
Borel sets are precisely those that are both analytic and co-analytic. Iterating the
operation of projection and complementation, the projective hierarchy is obtained.

Definition 1.2.4. For each n € w, the classes X, TI. and Al are defined by
induction using the following rules:

1. A is X1 if and only if it is analytic,

2. A is II if and only if w* \ A is B},

8. Ais X, if and only if A= p[A'] for some II}, set A, and
4. Ais AL if and only if it is both X} and TI..

Notice that the precise number of dimensions in which the sets and their
projections are defined is not relevant, since any (w*)" is homeomorphic to w®.
What matters is that if a set is in (w*”)™ then its projection is defined in (w*)"~!.
Just as the Borel hierarchy, the projective hierarchy is proper, i.e., for every n
there is an A which is IT} but not X}. A set is called projective if it is X! or IT!
for some n.

So far, the Borel and projective hierarchies were presented from a purely topo-
logical point of view, but there is a straightforward connection to logic. Consider
the language of second order number theory consisting of formulas with terms
for natural numbers (first-order objects) as well as real numbers (second-order
objects), and having first-order quantifiers 3° V° and second-order quantifiers
31 V!, We use the notation N? |= ¢ to say that the formula ¢ in the language
of second-order number theory is true in the standard model. Formulas can use
real numbers r € w* as parameters, in which case we will write ¢(r) to denote
the fact that r appears in ¢. A classification of formulas in this language can be
defined according to the number of alternating natural number and real number
quantifiers. Precisely:

Definition 1.2.5.

1. (a) ¢ is X5, or 113, if it is quantifier-free,
(b) ¢ is X0, if it is of the form Ik b where ¢ is 1T,
(c) ¢ is TIY if it is of the form —p where 1 is X0,
(d) ¢ is A if it is both X0 and 112,
(e) & is arithmetical if it is X0 or II2 for some n.

2. (a) ¢ is X} if it is of the form 3z p where ¢ is arithmetical (equivalently,
quantifier-free),
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(b) & is 1L if it is of the form —) where v is ¥},

(c) ¢ is L., if it is of the form Iz 1p where ¢ is 11},
(d) ¢ is AL if it is both X} and TI},

(e) & is projective if it is ¥} or IT. for some n.

So a formula is 39 iff it is of the form F%kVOk; ... Q%k, ¢, and TIC iff it is of the
form Vo3, ... Q°k, ¢, where ¢ is quantifier-free. Likewise, it is X! iff it is of the
form Haoviz, ... Q%,¢, and II! iff it is of the form Vizg3'z; ... Q'x,¢, where
¢ is arithmetical (equivalently, quantifier-free). The classification of formulas

allows us to classify sets definable in second-order number theory according to
the complexity of the formula defining it.

Definition 1.2.6.
1. A set ACw® is Xt (I1%) if it can be written as
A={rew’ | N |= ¢(x)}
where ¢ is X1 (I11) and free of parameters.
2. A set A Cw¥ is Xt (r) (ITY) if it can be written as
A={rew” N |k ¢(z,)}
where ¢ is X! (1)) and contains a real parameter r.

As natural number quantifiers correspond to countable unions and intersec-
tions whereas real quantifiers correspond to the operation of projection, one can
show that the “boldface” hierarchy defined by purely topological means, corre-
sponds to the “lightface” hierarchy defined using logic, assuming that real pa-
rameters are allowed in the defining formula.

Fact 1.2.7. A set A Cw” is X' (ITY) iff A is X (r) (II' (r)) for some r € w*.

For a more detailed introduction to descriptive set theory, we refer the reader
to classical textbooks such as [Kec95] and [Mos80].

1.2.5 Constructibility

In 1938, Godel introduced the constructible universe L, an inner model of set
theory defined similarly to the cumulative hierarchy V' but using the definable
power set operation rather than the full power set operation at successor steps of
the construction.
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Definition 1.2.8. Let X be any set. A subset Y C X is (first order) definable
over X if there exists a first-order formula ¢ such that for every x € X we have

v €Y iff X E o, 2, ..., 2),

where zo, ...,z € X. Here, “X |= ¢” refers to the coded version of ¢ and the
satisfaction relation = with respect to the set model (X, €). Since the satisfaction
relation for such set models is definable in ZFC, the predicate “being definable over

X7 is itself definable. Let Def(X) :={Y C X | Y is definable over X}.
Definition 1.2.9. For all ordinals o, define L, by induction as follows:
o [y:=a,
o Lo :=Def(L,),
o Ly:=U,\La for limit .

Let L :=J,coq La be the proper class of all sets in this hierarchy. This is called
the constructible universe, and sets in L are called constructible.

By [G6d38], L is a model of set theory which, additionally, satisfies the Gener-
alized Continuum Hypothesis (GCH) and many other mathematical statements.
A definable version of the Axiom of Choice holds in L, i.e., there is a definable
well-order of the entire universe of constructible sets, which we shall denote by
<r. It is defined recursively, by ordering each elements of L, according to the
formula defining it and the ordering of the parameters used in the definition,
which come from some Lg for § < a. We also denote by < the restriction of
the well-order to an initial segment of the L, so <;=J,comq <fa-

The constructible universe L is the smallest inner model of set theory, in the
sense that if M is any other proper class model, then L. C M. The statement “all
sets are constructible”, typically abbreviated by “V = L”, is absolute between
L and every other model, hence L itself is a model of the statement “V = L”.
Here we will not present all known facts about L and refer to textbooks such as
[Jec03, Kan03, Dev84] for further details. However, we are particularly interested
in questions concerning definability.

Fact 1.2.10 (Godel).

1. There is a sentence © (containing sufficiently much of ZF+V = L to insure
absoluteness of all the relevant definitions) such that for any set model M,
if M = © then M is isomorphic to Ls for some limit ordinal 0.

2. There is a formula x(x,y) such that if x,y € Ls then Ls = x(z,y) iff
T <rs Y.
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If § is a countable limit ordinal then Ls is countable and the structure (Ls, €)
is isomorphic to (w, F) for a well-founded relation £ on w. Conversely, if we are
given a well-founded relation E on w, and we know that (w, F) = ©, then by Fact
1.2.10 (w, E') must be isomorphic to some (Ls, €), and in that case we denote the
transitive collapse of (w, E') onto (Ls, €) by 7.

Fact 1.2.11 (Gédel). In L, the canonical well-ordering of the reals (i.e., the set
{(z,9) | 2,y € w* and v <p, y}) is a Ay set.

Proof. First note that, by virtue of the definition of the well-ordering, for any
x,y € w¥ N Ly we know that x <, y iff v <, y iff Ls = x(z,y). Therefore, for
any z,y € w, we may write x <p y iff 30 < Ny (z,y € Ls and Ls = x(z,y)),
which, in turn, may be written as follows: there exists £ C w X w such that

1. E is well-founded,
2. (w,F) =06, and
3. In3Im (n = mg(x) and m = 7g(y) and (w, E) | x(n,m)).

Note that E can be considered a real number, so “there exists E” corresponds to
a second order quantifier 3*. Moreover, the statement “F is well-founded” is IT},
whereas statements 2 and 3 are arithmetical (see e.g. [Kan03, Proposition 13.8]).
It follows that 2 <r y is equivalent to a X} statement.

To see that it is also II, apply the same trick to the statement V& < ¥, (z,y €
Ls = Ls = x(z,y)). =

This proof is paradigmatic for proving that in L, definitions by induction
on a well-ordering of the reals can usually be modified to produce sets of low
complexity. In particular, we will use this method many times for constructing
33, Al or IT; counterexamples to regularity properties in L.

If a is any set, we may define L[a] analogously to L but replacing definability
by a first-order formula in the clause “L,.; := Def(L,)” by definability with the
parameter a. The hierarchy generated is L,[a], and both the individual levels
and the entire class L[a] share most properties with L. In our setting, a will most
often be a real number.

1.2.6 Absoluteness

To say that a formulas ¢ is absolute between V' and some model M is to say that
M | ¢ if and only if V = ¢. We are specifically interested in formulas ¢ in
second-order number theory, as these are used to classify sets of reals.

Fact 1.2.12 (Analytic absoluteness). Let M be any model (countable or other-
wise) of set theory. Every X1 (hence 113 ) formula is absolute between M and
V.
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As aresult, 3} formulas are upwards absolute and IT} formulas are downwards
absolute between any M and V', but not the other way around.

Fact 1.2.13 (Shoenfield absoluteness). Let M be a model such that wy C M (in
particular, M cannot be countable). Every X3 (hence 1) formula is absolute
between M and V.

As a result, ¥} formulas are upwards absolute and IT} formulas are downwards
absolute between any M with w; € M and V, but not the other way around.

Analytic absoluteness will most often be used in a context where M is some
countable elementary submodel of a sufficiently large structure. Shoenfield abso-
luteness will typically be used between V' and L, or some L[r] for r € w®.

Absoluteness of sentences involving Borel sets is particularly interesting. Note
that every Borel set comes together with a description of its own construction
using the basic operations. Therefore, Borel sets can be coded by reals in an
effective manner (see [Jec03, p 504-507] for details). Such reals are called Borel
codes, and if ¢ € w" is such a Borel code, let B. denote the Borel set encoded by c.
If a model M contains the code c of a Borel set, then it can interpret the set BM.
This is not the same set as B, as M has less reals than V', but, for all practical
purposes, it is the same Borel set, i.e., it is how a different model interprets the
same definition. Most simple operations involving Borel sets, if considered as
operations on the codes rather than the sets themselves, are absolute.

Fact 1.2.14. The statements “x € B.”, “B. = @”, “B. C By”, “B. =w"“ \ By”,
“B.= BsUB.,”, “B. = B4NB,” etc. are all analytic or co-analytic, and therefore
absolute between V' and any model M containing c,d,e and x.

Shoenfield absoluteness is intimately connected with tree representation of X}
sets.

Fact 1.2.15 (Shoenfield).

1. If Ais 3X(r) then there exists a tree T on wxw; (i.e., T C w<* xw¥), such
that T € Lir], and such that for all x, v € A iff 3h € ¢ s.t. (x,h) € [T]
iff 3h € w¢ ¥n ((xn,hin) € [T)).

2. If Ais S3(r) and YT =Ry, then A =, _y,

and whose Borel codes are contained in Llr].

B,,, where B, are Borel sets,

Both facts, especially the second, will be used numerous times in the analysis
of ; sets.
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1.2.7 Forcing

In 1964, Paul Cohen [Coh63, Coh64] discovered the method of forcing by which
models of set theory could be extended to larger models in a controlled manner,
by adding so-called generic objects. This could be viewed as the counterpart to
Godel’s method of inner models.

As we cannot reproduce the entire method of forcing here, we refer the readers
to textbooks such as [Kun80] and [Bel85]. The main principle of forcing is the
use of a partial order (P, <) contained in some ground model M of ZFC, and a
“generic” object G C IP outside M which can be adjoined to form a larger model
of ZFC, M[G]. The combinatorial properties of the partial order P determine
which additional statements are true in M[G]. Elements p € P are called forcing
conditions or simply conditions, and ¢ < p is interpreted as “q is stronger than
p”, “q contains more information than p”, or “q extends p”. Although M does
not contain the objects in M[G], it contains names 7T for such objects, which
are interpreted by an object 7¢ € M[G]. In a syntactic way, the forcing relation
I is then defined which, in M, decides the truth-value of statements in M[G].
Specifically, the Forcing theorem states the following two things:

1. if M E“p Ik ¢(7)” and p € G then M[G] | ¢(7¢), and

2. if M|[G] = ¢(x) then there is a p € G and a name 7 such that 7o = x and
M Ep I (7).

We will assume familiarity with the technical aspects of forcing, in particular
the concepts compatible, dense, predense, dense/predense below p, antichain and
P-generic filter, as well as the technical definition of names and (some) formaliza-
tion of the forcing relation I; all these can be found in the textbooks mentioned
above and in other literature. A forcing P is said to have the countable chain
condition, or c.c.c., if every maximal antichain is at most countable.

Although, formally, adjoining a P-generic filter G is only possible if M is a set-
sized transitive model, it is common for set theorists to talk of generic extensions
V[G] of the universe V. This is understood as follows: prior to the adjoining
of GG, one thinks of V' as the universe of all sets (so a generic G cannot exist).
However, when we adjoin GG we take a “step out” of V, and look at it from the
point of view of some larger (unspecified) universe, in which V' is a set-sized model
and a P-generic object G over V exists. Classical textbooks on forcing show how
such an argument can be formalized without being nonsensical (in fact, there are
several possible approaches to formalization—see [Kun80, Chapter VII §9]). We
shall not be concerned with these issues and will take the liberty to extend the
universe V' to a larger one V[G] whenever convenient.

Iterations of forcing will be used throughout this dissertation. Intuitively,
after extending a model M to M[Gy] by adding a P-generic G, the process can
be repeated and a P-generic G; can be added to M [Gy] producing the larger model
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M[Gy][G1]; that, in turn, can be extended to M |[Go|[G1][G2], etc. An iteration of
P of length « is the result of repeating this process for « steps. However, in order
to specify what happens at limit stages of such an iteration, the formal approach
is somewhat different: a forcing partial order P, is defined directly in the ground
model M in such a way that adding a P,-generic filter G to M once amounts
to adding o many P-generic filters Gg for < «, in sequence. Iterations can
have finite support or countable support, depending on how the construction at
limit stages is defined. In most of our application an intuitive understanding of
iterations will suffice, although in Chapter 5 some of the more technical aspects
of iterations will be relevant. For a detailed introduction on forcing iterations, see
[Kun80, Chapter VIII §5], and for applications of it in the study of the continuum,
see [BJ95, Chapters 5, 6 and 7).

If a forcing partial order P has the countable chain condition (c.c.c.) then it
preserves Ny, i.e., NiM[G] = XM An iteration of P with finite support does so,
too. For partial orders without the c.c.c., preservation of N; is established by
alternative methods. The main modern device for this is the notion of proper
forcing, which we now introduce. It is a crucial concept which we will be used a
lot in our work.

In discussions of proper forcing, it is customary to consider generic extensions
V[G] of the universe V. On the other hand, M typically denotes a countable
elementary submodel of some Hy, where Hy is the collection of all sets hereditarily
of cardinality < 6, and 0 is a sufficiently large cardinal, meaning that H,y contains
all information necessary for the argument we are currently interested in. The
precise value of 0 is left unspecified, but usually it is sufficient for € to be larger
than 2/”l. The model M can be seen as a miniature version of V, containing all
the essential logical information relevant for the current argument, while being
itself only countable.

If G is a P-generic filter over V', we denote by M|[G] the set of all G-interpre-
tations of names 7 which lie in M. This set M[G] might, or might not, be a
generic extension of M. This leads to the following sequence of definitions:

Definition 1.2.16. Let G be P-generic over V.

1. We call G (M, P)-generic if M[G] is a generic extension of M. Formally,
this means that G D N M # & for every dense set D € M.

2. A condition p € P is called an (M,P)-master condition if p I- ‘G is (M, P)-
generic”, where G is the canonical name for the generic filter (over V).

3. A forcing P is called proper if for every countable M < Hgy and every
p € PN M, there exists a ¢ < p which is a (M,IP)-master condition.

The reference to M and P will often be dropped when clear from the context.
Note that in order for p IF GNDNM # & to be true, it is sufficient that (DN M)
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be predense below p. Therefore, an equivalent definition of properness is the
following: for every countable M < Hy and every p € PN M, there exists a ¢ < p
such that for every dense D € M, (D N M) is predense below g.

Every c.c.c. forcing is proper, and every proper forcing preserves N;. More-
over, this is preserved in iterations of proper forcing notions with countable sup-
port.

We refer the reader to [Abrl0] for a detailed introduction on proper forcing
and its applications.

Below we give the definitions of some standard forcing partial orders. We will
need this list for reference in subsequent chapters.

Definition 1.2.17.

1. Cohen forcing, denoted by C, consists of conditions s € w<* ordered by
t<siff sCt.

2. Random forcing, denoted by B, consist of Borel (or closed) sets of positive
Lebesgue measure (see Definition 1.3.1), ordered by B < C iff B C C.

3. Hechler forcing, denoted by D, consists of conditions (s, f) € w< X w* such
that s C f, ordered by (', f') < (s, f) iff s Cs" and Vn (f(n) < f'(n)).

4. Sacks forcing, denoted by S, consists of perfect trees T C 2<%, ordered by
inclusion (i.e. S <T iff SCT).

5. Miller forcing, denoted by M, consists of super-perfect (Miller) trees T" C
w<¥ ordered by inclusion (see Definition 1.2.1).

6. Laver forcing, denoted by 1L, consists of Laver trees T C w<“ ordered by
inclusion (see Definition 1.2.1).

7. Mathias forcing, denoted by R, consists of conditions (s, A) C [w]<* X [w]¥
such that max(s) < min(A), ordered by (s',A") < (s,A) iff s C s and
A CA and s \sCA.

All the forcing partial orders mentioned above add a generic real xg, canon-
ically derived from the generic filter G. For Cohen forcing, we can define x¢ :=
U{s | s € G}, and for SSM and L: zg := J{stem(T) | T € G}. For D,
ze = U{s | (s, f) € G for some f}, and similarly for R. For random forcing B,
the generic real is the unique real such that {zg} = ({B | B € G}. In all cases,
the generic filter G' can be reconstructed from z¢; thus V[G] = V[zg]. We will
often talk about P-generic reals rather than P-generic filters in our applications
of forcing.

All forcings in Definition 1.2.17 are proper, and C, B and D are c.c.c. whereas
the others are not.
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Lastly, we introduce a very different kind of forcing, the Lévy collapse used
to build the Solovay model.

Definition 1.2.18. Let k be an inaccessible cardinal, and let Col(w, <k) be the
partial order of finite functions p such that

1. dom(p) C Kk X w,
2. if (a,n) € dom(p) then p(a,n) < «.

From a Col(w, <k)-generic filter G one can obtain a function fg: Kk X w — K
defined by fo = |JG, and for every a < &, a function fg, : w — a defined
by fea(n) == fo(a,n). Standard genericity arguments show that each fg, is
a surjection; thus, in the generic extension by Col(w, <k), k is collapsed onto
N;. The Solovay model is defined as an inner model of the Col(w, <k)-generic
extension V[G].

Definition 1.2.19.

1. A set A is definable from a sequence of ordinals if there is an s € Ord”,
i.e., a countable sequence of ordinals, and a formula ¢, such that

r€A = p(s,x).

2. HOD® is the class of all sets hereditarily definable from a sequence of or-
dinals, i.e., the class of all A such that every set in the transitive closure of
A is definable from a sequence of ordinals.

3. By the Solovay model we refer to HOD“ defined within V[G], where V' is
a model with an inaccessible cardinal k and V[G] the Col(w, <k)-generic
extension.

HOD is an inner model satisfying ZF + DC (Axiom of Dependent Choices),
though, in general, not the full Axiom of Choice. Also, it is easy to see that every
projective set is definable from a sequence of ordinals.

The following fundamental property of the Lévy collapse is instrumental for
proving that sets of reals in the Solovay model satisfy many nice properties.

Lemma 1.2.20 (Solovay). Let k be an inaccessible cardinal in V and V|[G] be
the Col(w, <k)-generic extension. For every formula o, there is a formula @ such
that for s € Ord” and x € w*:

VIGI | ¢(s,2) == Visllz] = ¢(s,2).
Proof. See e.g. [Jec03, Lemma 26.17] or [Kan03, Lemma 11.12]. O

As soon as one proves that, in V[G], all sets of reals definable from a sequence
of ordinals are “nice” in some certain way, the following two results are immedi-
ately obtained: Con(ZFC+“all projective sets are ‘nice’ ”) and Con(ZF + DC+“all
sets are ‘nice’ 7).
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1.2.8 Determinacy

Suppose two players, I and II, are playing a game picking integers x;, y; in turns,
and continue doing this w-many times:

I: Zo T )
IT: Yo n Yo

After infinitely many moves, a real z := (xq, yo, 1,1, - . . ) is produced. Given
a pre-determined “pay-off” set A C w®, player I wins this game if z € A, otherwise
IT does. Despite this unrealistic scenario, such so-called nfinite, two-person games
of perfect information are mathematically well-defined and play a crucial role
in descriptive set theory. We let G(A) stand for the game as described above
with the winning condition for player I determined by the set A. The following
sequence of definitions explains the importance of infinite games in the study of
the continuum.

Definition 1.2.21.

1. A strategy for player I is a function o : w<* — w, the intended interpreta-
tion of which is that o(p) determines the integer x; for player I to move, in

the game where the moves played so far have been p = (xo, Yo, - - -, Ti—1, Yi—1)-
A strategy for player II is a function T : W< — w with the analogous in-
terpretation.

2. If y = (Yo, v1,...) is a real, then o xy denotes the result of the game in
which I follows strateqy o and II plays the sequence of integers given by vy,
and similarly for x x T where x is the sequence of integers played by 1.

3. In a fized game G(A), o is a winning strategy for player I if for all y € w®,
oxy € A, and 7 is a winning strategy for player Il if for all x € w®,
rxT ¢ A

4. The game G(A) is determined if player I or player II has a winning strategy.
A set A C w” is determined if the game G(A) is determined.

It is easy to show that open and closed sets A are determined—this is known
as the Gale-Stewart theorem and is due to [GS53]. A much more difficult result
is the theorem of Donald A. Martin [Mar75] showing that all Borel sets A are
determined. The following axiom has been proposed in [MS62].

Definition 1.2.22. The Axiom of Determinacy, AD, is the statement that all
sets of reals A C w¥ are determined.

AD contradicts the Axiom of Choice, since one can use the well-ordering of
the reals to construct a non-determined set. However, AD is still often considered
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as an alternative to AC, and the system ZF + AD is consistent assuming the
existence of infinitely many Woodin cardinals with a measurable cardinal above
them, by results of Hugh Woodin. Unlike full AD, the following weaker axiom is
not contradictory with ZFC.

Definition 1.2.23. The Axiom of Projective Determinacy, PD, is the statement
that all projective sets of reals A C w* are determined.

By the result of Martin and Steel [MS89], PD is true assuming that there are
infinitely many Woodin cardinals.

Another variation of the Axiom of Determinacy involves the possibility for
players I and II to chose real numbers rather then integers. Let A C (R)“ be the
pay-off set, and let Gg(A) be the corresponding game with real moves. Here we
write R following custom, but this typically refers to the Baire or Cantor space.
The concepts of a strategy, winning strategy and determinacy can be defined
analogously.

Definition 1.2.24. The Axiom of Real Determinacy, ADg, is the statement that
every set A C (R)“ is determined (i.e., every game Gg(A) is determined).

ADg is stronger than AD, and its consistency can be deduced from an assump-
tion slightly stronger than the existence of infinitely many Woodin cardinals (see
[Kan03, Theorem 23.19)).

1.2.9 Cardinal invariants

Cardinal invariants (sometimes called cardinal coefficients) are cardinal numbers
that have a combinatorial definition but may have different values in different
models of set theory. We will only be interested in cardinal invariants of the
continuum. The most famous cardinal invariant (if it may be called such) is
the cardinality of the continuum itself, 2%. The other invariants £ are typically
defined as the least cardinality of a set of reals with a certain property, and usually
have value Xy < € < 2% Although this dissertation is primarily about questions
of definability, certain cardinal invariants will play a crucial role too, so we will
give the most important definitions. A detailed introduction can be found e.g. in
[Bla10].

Definition 1.2.25.

1. Letz,y € w*. We say that y dominates x, notation x <* y, if V*°n (z(n) <

y(n)).

2. Let x,y € [w]¥. We say that y splits x if both x Ny and x \ y are infinite.
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Definition 1.2.26.

1. b, the bounding number, is the least cardinality of a set A C w* such that
there is no real y which dominates every real in A.

2. 0, the dominating number, is the least cardinality of a set A C w® such that
every real x is dominated by some real in A.

3. t, the reaping number, is the least cardinality of a set A C w* such that
there is no real y which splits every real in A.

4. s, the splitting number, is the least cardinality of a set A C w* such that
every real x is split by some real in A.

The next set of invariants concerns o-ideals on the reals.

Definition 1.2.27. Let I be a o-ideal on w*, i.e., an I C P (w¥) such that
1. if A€l and B C A then B € 1,
2. if A, €1 forn € w, then |, An € 1.

By convention, singletons {x} are assumed to be in the ideal I but the entire space
w¥ is not. For each such ideal I we define the following cardinal invariants:

1. cov([I), the covering number of I, is the least size k of a family { A, | o < K}
of sets in I such that |, , Ao = w®.

a<k

2. add(I), the additivity number of I, is the least size k of a family {A, | @ <
k} of sets in I such that |, ,. Ao & 1.

a<k

3. non(I), the uniformity number of I, is the least cardinality of a set A C w*
such that A ¢ I.

4. cof(I), the cofinality number of I, is the least size k of a family {A. | o < K}
of sets in I such that VA € I 3a < k (A C A,).

It is easy to see that the inequalities X; < add([), add(/) < non([), add(l) <
cov(I), non(I) < cof(I), cov(I) < cof(I) and cof(I) < 2% are provable in ZFC,
as represented in the following diagram (where “—” represents “<”).

non(7)
/ \
Ny —add(]) cof (I) —= 9o

\ /’
cov([l)
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The next cardinal invariants involve the space [w]* of infinite subsets of w.

For a,b € [w]*, a C* b denotes the statement “a is a subset of b modulo a finite
set”, ie., |a\ b < w.

Definition 1.2.28.

1. A set A C [w]“ has the finite intersection property (f.i.p.) if for every
ag,...,a; € A, mf:o a; is infinite. A real b € [w]* is a pseudo-intersection
of A if b C* a for all a € A. Clearly, if A has a pseudo-intersection
then it also has the f.i.p., but the converse need not be true. The pseudo-
intersection number p is the smallest size of a set A C [w]¥ with the f.i.p.
but without a pseudo-intersection.

2. A tower is a collection A C [w]|* ordered by reverse almost-inclusion O

(i.e., A ={an | @ < K} such that if o« < B then ag C* a,) but which does
not have a pseudo-intersection. The tower number t is the smallest size of
a tower.

3. A collection D C [w]* is dense (in [w]¥) if Va € [w]* b C a such that
b € D; it is open if whenever b € D and b’ C* b, then also b’ € D. The
distributivity number b is the least cardinality k of a set {D, | o < K} of
open dense sets D, such that ﬂoK,€ D, =.

4. A collection A C [w]“ is almost disjoint (a.d.) if a Nb is finite for every
a,b € A. It is maximal almost disjoint (mad) if it is infinite, almost disjoint
and mazimal with regard to that property. The almost disjointness number
a is the least size of a mad family.

S,
5/ \b/
\b/

!

b

X

Figure 1.1: Van Douwen’s diagram
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It is not hard to see that each of the cardinal invariants we have so far defined
must at least be uncountable. Also, if the Continuum Hypothesis holds then all
cardinal invariants have value 2%, so they are really only interesting in models of
—CH. It is consistent for each invariant to be larger than Xy, and in the absence of
CH, a statement involving a cardinal invariant, such as “b > X;” or “b < 0”7, tells
us something about the structure of the continuum and can be a useful axiom in
applications of set theory.

Figure 1.2: Cichoni’s diagram

Figures 1.1 and 1.2, known as the van Douwen diagram and Cichon’s diagram,
respectively, show all known ZFC-provable inequalities between the cardinal in-
variants we have defined, as well as those that involve the meager and Lebesgue
null ideals M and N (see Definition 1.3.1).

In these diagrams, all inequalities except p < t have been proven to be con-
sistently strict, i.e., for every such pair €, [ there is a model in which € < [.

1.3 Regularity properties

1.3.1 Definitions

We begin by giving a precise definition of the three classical regularity properties
(adapted to the Baire and Cantor spaces rather than the original R).

Definition 1.3.1. Lebesque measurability is defined together with a measure func-
tion pu mapping subsets of w* or 2¥ to the interval [0, 1].

o If s € w™ is a finite sequence with |s| = n, then pu([s]) = [\ 507r- If
we are dealing with s € 2<% then the definition is simply p([s]) := 5=. Note
that this is set up so that the size of the whole space is 1.

e Following a standard measure-theoretic construction, p can be extended to
all Borel sets, by induction on the operations of negation and countable
UNLON.
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e A Borel set B is called Lebesgue null if u(B) = 0, and an arbitrary set A
is called Lebesgue null if A C B for some Borel set B with p(B) = 0, in
which case we define p(A) := 0.

e Finally, a set A is called Lebesgue measurable if there exists a Borel set
B such that (A\ B) U (B \ A) is Lebesgue null, in which case we define

p(A) = p(B).

The last two lines provide an extension of the notion of a Lebesgue null set
and a Lebesgue measurable set beyond the Borel sets on which it was originally
defined. We let NV denote the o-ideal of Lebesgue null sets.

Definition 1.3.2. The property of Baire is topological in nature.

e Recall that in a topological space, a set A is nowhere dense if for every basic
open set O there is a basic open subset U C O such that UNA =@. A
set A is meager (also called of first category) if it is the countable union of
nowhere dense sets.

o A set A Cw¥ or2¥ satisfies the property of Baire if there is an open set O
such that (A\ O)U (O \ A) is meager.

The o-ideal of meager sets is denoted by M.

Definition 1.3.3. A set A C w® or 2¥ satisfies the perfect set property if it is
either countable or there exists a perfect set P such that P C A.

There is a multitude of other notions that could adequately be described
“regularity properties”, appearing in the most diverse fields of mathematics. It
would be impossible to give a complete list, so we will only introduce the more
well-known ones, with a special emphasis on those that will play a role in this
dissertation.

Our first definition is loosely related to the property of Baire and was first
introduced by Edward Marczewski® in 1935 ([Szp35]).

Definition 1.3.4. A set A C w® or 2* is Marczewski measurable (sometimes
called a Marczewski set, or having property (s)) if for every perfect set P there
1s a perfect subset Q C P such that Q CAorQNA=a.

The above can clearly be expressed using perfect trees 1" and the set of their
branches [T, and in this setting Marczewski measurability is related to Sacks
forcing S (see Definition 1.2.17). We also obtain the properties M-Marczewski
measurable and IL-Marczewski measurable if we replace perfect trees by super-
perfect (Miller) and Laver trees, respectively (M and L standing for the Miller
and Laver forcing partial orders).

! Before 1940, Marczewski’s surname was Szpilrajn; thus, in his pre-1940 publications he is
cited with that name.
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The above definition can be generalized to an arbitrary collection X of sets of
reals. Thus we can call a set A C w* X-Marczewski measurable if VP € X4Q € X
st. @ C Pand Q C Aor QN A= g, although some additional requirements on
X may be necessary for this to be a good notion of regularity (otherwise it may
fail for very simple, e.g. closed, sets). This notion was previously investigated by
the author in [Kho09], where it was called the Marczewski-Burstin algebra, and
a similar notion was used by Daisuke Ikegami in [Ikel0a]. We will return to this
in Chapter 2.

The next property is motivated by infinitary combinatorics. A classical theo-
rem of Frank P. Ramsey [Ram29] says the following: for any partition of [w]? (the
set of two-element subsets of w) into disjoint sets A and B, there is an infinite set
H C w such that [H]? is either completely contained in A or completely contained
in B (such an H is called a homogeneous set). This easily extends to any natural
number n in place of 2, and the interesting question concerns [w]“. This gives
rise to the following definition.

Definition 1.3.5. A set A C [w]¥ satisfies the Ramsey property if and only if
there exists an x € [w]¥ such that [z]* C A or [z]*NA=@.

Another, less well-known, though close relative of the Ramsey property is the
following:

Definition 1.3.6. A set A C [w]|* satisfies the doughnut property if and only if
there exist x,y € [w]” such that y\ x is infinite and such that {z |t C 2 Cy} C A
or{z|lzCzCytnNA=2a.

The perfect set property has many relatives too, specifically if we replace
perfect trees by different kind of trees.

Definition 1.3.7.

1. A set A C w” is called K,-regular if either there is a real x that dominates
alla € A (see Definition 1.2.25), or there is a super-perfect tree T' such that
[T C A.

2. A tree T on w is called a Spinas tree (due to [Spi94]) if it is super-perfect
with the additional requirement that for every w-splitting node t € T, if 1
and sy extend t and are both w-splitting, then |si| = |ss|; in other words,
the next splitting nodes are all a fixed distance away from t.

A set A C w¥ is called a dominating set if for every x € w® there exists
a € A such that x <* a. A is u-regular if it is either not a dominating set
or there is a Spinas tree T" with [T] C A.
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3. If x and f are two reals, we say that x strongly dominates f if V*°n (x(n +
1) > f(z(n))). A set A C w* is called strongly dominating if Vf € w* Jz €
A s.t. x strongly dominates f. A C w® is called Laver-regular, or {-regular,
iof 1t is either not strongly dominating or there is a Laver tree T such that

[T] C A.

These can be understood as certain dichotomies, saying of a set A C w* that
it is either “small” in some particular sense, or else contains a certain “large” kind
of object. Their isolation is due to [Kec77], [Spi94] and [GRSS95], respectively.

Finally, rather than thinking about regularity we can think about special ir-
regular objects, for example, those defined as the maximal possible sets satisfying
a certain property. Consider non-principal ultrafilters U on w. By an identifica-
tion of [w]” with the Baire or Cantor space, one can easily show that an ultrafilter
is not Lebesgue-measurable and does not have the property of Baire. Likewise,
one can easily show that an object explicitly derived from U does not have the
Ramsey or the doughnut property. So, an ultrafilter can be seen as a special
kind of irreqular object. In other words, the property of not being an ultrafilter
is considered a notion of regularity. Another object with a similar attitude is a
mad family (see Definition 1.2.28).

1.3.2 Regularity of projective sets

All the properties defined above can be violated assuming the Axiom of Choice.
On the other hand, all are true for analytic sets. This is due to Suslin [Susl7]
for the three classical properties; Marczewski [Szp35] for Marczewski measurabil-
ity; Silver [Sil70] for the Ramsey property; and Kechris [Kec77, Theorem 4 (i)],
Spinas [Spi94, Theorem 1.4] and Goldstern, Repicky, Shelah and Spinas [GRSS95,
Lemma 2.3] for the three dichotomy-style properties, respectively. Furthermore,
there are no analytic ultrafilters (folklore), and no analytic mad families by a
result of Adrian Mathias [Mat77, Corollary 4.7]. Other properties we mentioned
(doughnut, M- and L-Marczewski measurability), as well as many we have not,
also hold on the analytic level. The Baire property, Lebesgue measure, Ramsey,
doughnut and all Marczewski-style properties are satisfied by co-analytic sets too,
by virtue of the symmetry between the regularity of sets and their complements.

If we wish to continue up the projective hierarchy, we immediately face un-
decidability issues. Recall that A C w*“ is a Bernstein set if neither A nor its
complement contains a perfect set. The Bernstein set is a counterexample to vir-
tually every regularity property, most certainly the ones we have defined above
(although this does not apply to irregular objects, i.e., a Bernstein set is not
necessarily an ultrafilter or a mad family).

Fact 1.3.8 (Godel). In L, there is a Ay Bernstein set.
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Proof. Let {P, | @ < Wy} enumerate all perfect sets in L, and by induction on
a < Wy produce two sets A = {a, | @« < N1} and B = {b, | & < ¥;} as follows: if
{ag | B < a} and {bg | B < a} have already been defined, let a, be the <-least
real in P, \ ({ag | 6 < a}U{bs | B < a}), and then let b, be the < -least real
in P,\ ({ag | B < a}U{bsg | B < a}). Both operations are possible because
|Pa| =N but a < N;.

Clearly AN B = @ and both sets contain at least one point from every P,, so
both A and B are Bernstein sets. To see that A (and B) is 33, we use the same
trick as in the proof of Fact 1.2.11. Notice that if a, € Ls for some countable
limit ordinal ¢, then the initial segments {ag | § < a} and {bs | 5 < a} are also
in Ls. Moreover, picking the < -least element can be expressed within Ls using
an absolute formula defining the initial segment of the well-ordering < (see Fact
1.2.10). Therefore the definition of A is absolute between L and some Ls for a
sufficiently large limit ordinal. Then, for every x € w*“, we may write x € A iff
30 < Ny (x € Ls and Ls = x € A), which, in turn, may be written as follows:
there exists £ C w X w such that

1. E is well-founded,
2. (w,E) =06, and
3. In(z = 7g(n) and (w, ) En € n;'[A]).

As in the proof of Fact 1.2.11, the above statement is 33.

To see that A (and B) is also ITj, apply the same trick to the statement ¥ <
Nl(I'GL(;—)L(;):JJEA). L]

So, in L, the statement “all Aj sets are regular” fails for all notions of regu-
larity (to prove that there are no Aj ultrafilters requires a separate, though not
more difficult, proof; for mad families, see Section 5.1).

We mentioned Solovay’s characterization theorem for Xj sets in the introduc-
tion, a significant result linking regularity of 25 sets with a statement regarding
forcing over L. We are now in a position to state it precisely (see Section 1.2.7
for relevant definitions).

Theorem 1.3.9 (Solovay).

1. All 25 sets are Lebesque measurable if and only if for every r, {zx € w* | x
is mot random-generic over L|r|} has measure zero.

2. All ©} sets satisfy the Baire property if and only if for every r, {x € w* | ©
is not Cohen-generic over L[r|} is meager.

We will give a proof of this theorem in a more general setting, see Corollary
2.3.8. A similar characterization holds for A} sets, due to [IS89, Theorem 3.1].
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Theorem 1.3.10 (Judah-Shelah).

1. All A} sets are Lebesgue measurable if and only if for every r, there ewists
a random-generic real over L[r].

2. All A} sets satisfy the Baire property if and only if for every r, there exists
a Cohen-generic real over Lr].

Other properties have their own characterization theorems. We list a few of
the more important ones.

Theorem 1.3.11 (Brendle-Lowe).
1. The following are equivalent:

(a) all X5 sets are Marczewski measurable,
(b) all A} sets are Marczewski measurable,

(c) for every r, there exists a real not in L[r].
2. The following are equivalent:

(a) all X5 sets are M-Marczewski measurable,
(b) all A} sets are M-Marczewski measurable,

(c) for every r, there exists a real y which is unbounded over Llr], i.e.,
such that no real x € L[r] dominates y.

3. The following are equivalent:

(a) all X5 sets are L-Marczewski measurable,
(b) all A} sets are L-Marczewski measurable,

(c) for every r, there exists a real y which is dominating over Llr].
Proof. See Theorems 7.1, 6.1 and 4.1 from [BL99], respectively. ]

Theorem 1.3.12 (Kechris; Spinas; Brendle-Lowe). The following are equivalent:

~

all 3 are K,-regular,
all TI} are K,-regular,
all 2% are u-reqular,
all II} are u-regular,

all 3 are Laver-regular,

SR

for every r, there exists a real y which is dominating over Lir].
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Proof. For the equivalence between 1, 2 and 6, see [Kec77, Section 4], [[ho88,
Theorem 1.1] and [IS89, Theorem 3.2]; for 3, 4 and 6, see [Spi94, Theorem 4.2]
and [BHS95, Theorem 2.1]; and for 5 and 6, see [BL99, Proposition 4.2]. O

We have deliberately left the perfect set property to the end, because, from
the properties we have mentioned so far, it is the only one that has large cardinal
strength already on the H} level.

Theorem 1.3.13 (Mansfield; Solovay; Specker). The following are equivalent:
1. all 25 sets satisfy the perfect set property,

2. all TI} sets satisfy the perfect set property,
3. Vr € w (RFT < ny).

In this theorem, the direction from 3 to 1 follows from a more general result,
usually called the Mansfield-Solovay theorem, interesting in its own right.

Theorem 1.3.14 (Mansfield; Solovay). If A is a X} set then either A C L or A
contains a perfect set.

Proof. This is due to [Man70] as well as Solovay’s main work [Sol70]. For an easy
proof, see [Jec03, Theorem 25.23]. O

The Mansfield-Solovay theorem can also be relativized to a real r, i.e., every
Y1 (r) set is either in L[r] or contains a perfect set, and in this form it is clear how
the implication 3 = 1 from Theorem 1.3.13 is obtained. The direction 2 = 3,
originally due to Specker [Spe57], is remarkable because of the following fact:

Fact 1.3.15. IfVr € w® (Nf[r] < Ny) then XY is an inaccessible cardinal in L.

Proof. Tt is clear that the cardinal R} remains regular in L, so assume, towards
contradiction, that it is not a limit cardinal there (which is sufficient since L
satisfies GCH). Let « be an ordinal such that, in L, it is a cardinal and L E=“RY =
a™”. Since o < Xy in V, there is a real r which codes a. But then L[r] =“a is

countable” and so L[r] E“RY = at = R contradicting the assumption. [

Finally, we should mention that for irregular objects, a characterization the-
orem is often missing. The following questions are open:

Question 1.3.16.

1. Is there a statement involving “transcendence over L7 equivalent to the
statement “there are no X ultrafilters”?

2. Is there a statement involving “transcendence over L7 equivalent to the
statement “there are no 33 mad families”?
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Another object, closely related to mad families, seems even more mysterious.
Call two functions z,y € w* eventually different if ¥>°n (f(n) # g(n)). Then
A C w¥ is called a mazimal eventually different (m.e.d.) family if all z,y € A
are eventually different and A is maximal with respect to that property. Unlike
mad families, there is no analogue of Mathias’ theorem saying that there are no
analytic m.e.d. families. More surprisingly, even the following basic question
remains open:

Question 1.3.17. Does there exist a closed m.e.d. family A C w*?

1.3.3 The strength of projective regularity hypotheses

A large part of this dissertation is concerned with the strength of hypotheses
involving the regularity of sets (low) in the projective hieararchy. Let Rec be
a placeholder for some particular regularity property, let I' denote a projective
pointclass (such as analytic, X3, etc), and let I'(Rec) abbreviate the statement “all
sets in I satisfy property REG”. As is now clear, the statements X3 (Rec), Al(Req),
and in some cases IT}(ReG) are independent of ZFC. Therefore, it makes sense to
consider such a statement as an additional hypothesis and see how strong it is,
in the sense of implying other such hypotheses or being itself a consequence of a
similar hypothesis.

For example, by [RS85] and [Bar84], X;(Lebesgue) implies 33(Baire), while
the converse is false. Likewise, “A}(Lebesgue) = Aj(Baire)” and “Aj(Baire) =
Aj(Lebesgue)” are both false. In [IS89] it is shown that X}(Baire) implies
3 /TI; (K -regularity) and X3(Ramsey) implies X /TI; (K,-regularity), whereas
both converses are false. Other work dealing with similar questions includes
[Tho88, BL99, Hal03, BHLO5, BL11, Ikel0a).

If we have a characterization theorem, we gain some control over the truth
of the statements X3(Rec) and A}(REeG) in various models, using the method
of iterated forcing briefly described in Section 1.2.7. All the characterization
theorems we mentioned have the following form: Aj(Rec) holds if and only if for
every r, there exist a certain type of transcendent real over the ground model
L[r]; and X3(Rec) holds if and only if for every r, there exist many transcendent
reals of this type over the ground model L[r] (where “many” is defined using
some ideal closely related to the transcendence property). Therefore, if we find a
forcing P which adds this specific type of reals to the ground model and extend L
using an Nj-iteration of P (with finite support if P is c.c.c. or countable support
when PP is proper but non-c.c.c.), we obtain a model in which Aj(Rec) holds.
Likewise, if we find another forcing P which adds many reals of the required
type to the ground model, then a forcing iteration of length N; will yield a model
where X}(Req) is true. Conversely, if we know of a forcing Q that it does not add
such reals (neither in a one-step extension nor in the iteration), then an iteration
(or in some cases a product) of Q will yield a model in which A}(Req) is false;



1.3.  Regularity properties 33

similarly for 32(Rec) and “not adding many such reals”.

Now suppose we are dealing with two properties, REG; and ReGy, each of them
related to reals of type 1 and type 2, respectively, via characterization theorems.
How can we compare the strength of hypotheses involving these two properties?
If we can prove that the existence of type 1 reals leads to the existence of type 2
reals, then we have proved Aj(Rec;) = Aj(ReGy). On the other hand, if we can
find a forcing P which adds reals of type 1 but not of type 2, then we can produce
amodel of Aj(ReG;)+-A}(ReGy). The same can be done on the X level and the
existence of “many” reals. Thus, in the presence of characterization theorems,
comparing the strength of regularity hypothesis for 33 and Aj sets boils down
to proving something about adding or not adding specific types of reals.

Example 1.3.18.

1. It is well-known that random forcing does not add Cohen reals, and Cohen
forcing does not add random reals. Therefore, using the equivalence in The-
orem 1.3.10, in the random model (i.e., product of random forcing over L)
Aj(Lebesgue) holds but Aj(Baire) fails, whereas in the Cohen model (iter-
ation /product of Cohen forcing over L), Aj(Baire) holds and A}(Lebesgue)
fails. So (consistently) there are no implications between these two state-
ments.

2. By parts 2 and 3 of Theorem 1.3.11, L-measurability is connected to domi-
nating reals and M-measurability to unbounded reals (i.e., reals that are not
dominated by a real from the ground model). As a dominating real is, by
definition, unbounded, we have (in ZFC) the implication X3(IL) = X3(M).
Conversely, it is known that Miller forcing adds unbounded reals but not
dominating reals. Therefore, the Miller model (iteration of Miller forcing)
is a witness of 33(M) A 33 (L).

Note that there is a “strongest possible” and a “weakest possible” hypothesis
in this context. The strongest hypothesis is the statement “Vr (Nf[r] < Ny)7. As
this implies that w® N L[r] is countable for every r, any other “transcendence”
over L[r] can be deduced by a diagonal argument. Indeed, this statement implies
33 (Req) for nearly all known notions of regularity, and it is the only hypothesis
of this kind that can not be obtained by any forcing iteration starting from L (as
it has the consistency strength of an inaccessible cardinal). We have seen this to
be equivalent to Hi(perfect set property), and there are other natural statements
equivalent to it, for example Eé(Baire property in the dominating topology), see
[BL99, Theorem 5.11].

On the other hand, X3(S) (where S abbreviates Marczewski-measurability,
due to its relation to Sacks forcing) is the weakest possible hypothesis, since by
1 of Theorem 1.3.11 it is equivalent to the statement Vr (w* N L[r] # w*) which
will certainly hold in any (non-trivial) forcing extension.
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All other hypotheses of the form 33(Rec), Aj(Rec) and IT}(Rec) are located
somewhere in between these two extreme cases, and can be seen as asserting that
the set-theoretic universe is larger than L in some specific sense.

There is a close relationship between these types of questions and cardinal
invariants of the continuum. Suppose we have the two properties Rec; and REG,,
connected to type 1 and type 2 “transcending” reals via a characterization theo-
rem. Define the cardinal invariants

o t := least size of A C w* such that there are no type 1 reals over A, and

e t, := least size of A C w* such that there are no type 2 reals over A.
Then the following can be said:

1. £ >N, = A}(Recy) and €& > N; = Al(Recy) (provably in ZFC).

2. If & < ¢, is provable in ZFC, then, most likely, the same proof will show
that A}(Rec;) = A}(ReGy).

3. If it is consistent that €; < €5, then, most likely, the same model will show
that Al(Recy) A AL(Reqy).

Here, point 1 is a straightforward ZFC-theorem, but 2 and 3 are not. In 2, the idea
is the following: if ¢, < &, is provable in ZFC, then most likely, the proof involves
showing that, for any A C w®, if there is a type 1 transcendent real over A or over
a closely related set A’, then there is a type 2 transcendent real over A. This is
also a proof of Aj(ReG;) = A5(REG,), substituting L[r] in place of the sets A and
A’. Point 3 is even more vague: the idea there is that if €; < £, is consistent and if
the proof uses an iterated forcing argument, then, most likely, it involves a forcing
P which adds reals of type 2 (in order to make €, large) but does not add reals of
type 1 (in order to keep ¢, small). Then an iteration of this forcing will show that
A}(ReGy) # Al(Rec;). However, there may be other methods of proving that
£, < £, is consistent, and those will not necessarily lead to the same conclusion.
Points 2 and 3 cannot be turned into precise ZFC-theorems since the converse of
point 1 does not hold: for example, in any N;-iteration there will still be just ¥,
many reals so all cardinal invariants will have value X;, whereas A}(Rec) may
hold due to the characterization theorem. The same will also be true in any model
of CH with a measurable cardinal. So the concepts of cardinality and regularity
are inherently different.

Nevertheless, the above insight is very useful because it allows us to apply
results from the (much more well-researched) field of cardinal invariants to ques-
tions of regularity. For example, part of Cichon’s diagram can be translated to a
diagram involving regularity hypotheses, as represented in Figure 1.3. Here, note
that b and 9 correspond to LL- and M-Marczewski measurability, respectively, the
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Aj(Leb.) = ev. diff.

” ” | A;(S)

(L)
A(L)

L

vr (R < Ry) = =} (Leb.) = X} (Baire) = A (Baire) =>

Figure 1.3: Cichon’s diagram for regularity hypotheses.

covering numbers of the null and the meager ideals correspond to Lebesgue mea-
surability and the Baire property on the Aj level, and the additivity numbers
of these ideals to the same properties on the X level. The bottom left and top
right corners show the strongest and the weakest hypotheses, respectively. The
statement “ev. diff.” abbreviates Vr 3z (z is eventually different from all reals in
L[r]) and has been included for completeness, with the relationship to non(M)
due to [BJ95, Theorem 2.4.7]. It is currently unknown whether this statement is
equivalent to some natural regularity hypothesis, see Example 2.5.6 (4) for more
about this. Likewise, it is not clear whether a regularity hypothesis can be put
in the places left empty in the diagram.

H Regularity hypothesis \ Transcendence over L[r] \ Cardinal invariant H

Vr (Nf[r] < Ny) “co-countable” set of new reals | N;

3.5 (Lebesgue) measure-one set of random reals | add(N)
Aj(Lebesgue) random reals cov(N)

3, (Baire) co-meager set of Cohen reals add(M)

A (Baire) Cohen reals cov(M)

? eventually different reals non(M)

Al(L) / 25(L) dominating reals b

Al(M) / Z3(M) unbounded reals 0

Al(S) / 25(S) new reals 2o

Table 1.1: Correspondence between regularity, transcendence and cardinal invari-
ants.

Each implication in Figure 1.3 follows from the same argument that proves the
corresponding cardinal inequality. Moreover, there are (consistently) no other im-
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plications between the properties in this diagram, and this fact, too, is witnessed
by the same model that witnesses the strict cardinal inequality. The connection
between cardinal invariants and regularity statements in general will become more
apparent in Sections 2.3 when we introduce quasi-generic reals.

1.4 Summary of results

All results in this dissertation are related to the questions described above. In
Chapter 2, we present a systematic treatment of regularity properties, in a frame-
work that is heavily influenced by the methods of forcing. This allows us to extract
common features out of many proofs involving regularity and forcing, and to gen-
eralize known results. A similar enterprise was already undertaken by Daisuke
Tkegami in [Tkel0a, TkelOb], and part of this chapter can be seen as an extension
of his approach to a more general framework. Although many theorems are stated
in a new way, the methods and proofs used there were, for the most part, known
prior to our work. The main purpose here is the unification of ideas and methods
from different areas, and the making precise of various intuitions, heuristics and
unpublished results in this field. Many interesting questions are isolated in this
process which seem worthy of further study. Furthermore, many results of this
chapter will be used for reference in subsequent chapters.

In Chapter 3, we investigate a recently isolated partition property on the
second level of the projective hierarchy. We prove a number of results about
implications and non-implications between this and other regularity properties.
The most interesting result is:

Theorem 3.5.3. It is consistent that X3(ii — m) holds whereas both Aj(M) and
Aj(doughnut) fail.

The proof involves a combinatorially involved forcing notion, one among the
many so-called creature forcings of Saharon Shelah. As this type of forcing does
not fit the framework of Chapter 2, special proofs are required for many results
in this chapter.

In Chapter 4, we turn our attention to Hausdorff gaps, a classical object first
constructed by Felix Hausdorff in 1936 in [Hau36]. In [Tod96, Theorem 1}, Stevo
Todorc¢evi¢ proved that such objects do not exist on the analytic level, suggesting
that Hausdorff gaps are irregular objects, i.e., that the lack of such gaps can be
considered a regularity hypothesis. Our main results are the following:

Corollary 4.3.10. The following are equivalent:
1. there is no (X}, -)-Hausdorff gap,

2. there is no (X3, X3)-Hausdorff gap,
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3. there is no (I1}, -)-Hausdorff gap,
4. there is no (II7, I11)-Hausdorff gap,
5. (RHT < ny).

Corollary 4.4.3. Con(ZFC+ “there are no projective Hausdorff gaps”) and
Con(ZF + DC+ “there are no Hausdorff gaps”).

Corollary 4.5.4. ADg implies that there are no Hausdorff gaps.

In Chapter 5, we consider mad families from the descriptive-theoretic point of
view. We define a new cardinal invariant, the Borel-almost-disjointness number
ap, which is related to the existence of ¥, mad families in a similar way as
the additivity/covering numbers of M and A are related to 3;/Aj(Baire) and
35 /Al(Lebesgue). The main result in this chapter is that ag < b is consistent.
More precisely, we prove the following:

Theorem 5.3.3 In the Rq-iteration of Hechler forcing (with finite support) start-
ing from a model of CH, b = Ny while ag = N;.

With a minimal modification in the proof of this theorem, we obtain the
consistency of b > N+ “there is a X5 mad family”, answering a question posed
by Friedman and Zdomskyy in [FZ10, Question 16]. Likewise, we obtain the
consistency of X3(IL)+ “there is a 33 mad family”.






Chapter 2

Idealized regularity

Since the developments of forcing in the 1960s and Solovay’s celebrated result
[Sol70] establishing the consistency of “ZF + DC+ all sets of reals are Lebesgue
measurable, have the property of Baire and the perfect set property”, it grad-
ually became commonplace to associate regularity properties with a notion of
forcing. Random forcing was specifically designed by Solovay to prove the mea-
surability result, Cohen forcing is naturally related to the Baire property, and
we have already seen in Section 1.3.3 that Marczewski-style properties can be
viewed in a forcing context. Frequently, a regularity property is isolated because
of its significance for the combinatorics of certain forcings, and conversely, un-
derstanding a regularity property usually greatly benefits from finding a forcing
that corresponds to it.

At first, one might have the hope that all regularity properties can be for-
mulated in terms of forcing. Unfortunately, this seems over-ambitious and in
subsequent chapters we will consider properties that do not seem to fall into this
category. Nevertheless, a large number of regularity properties can be directly
formulated as properties of a certain forcing, and it turns out that the framework
of idealized forcing introduced by Jindtich Zapletal is very well suited for this
purpose. The goal of this chapter is to develop a systematic theory of regularity
properties in this framework.

An important inspiration for this chapter is the work of Daisuke Tkegami in
[Ikel0a, Ike10b], who considered a wide class of forcing notions called strongly ar-
boreal forcings and showed that many regularity properties can be stated directly
in terms of a forcing from this class. In Section 2.3 we pay special credit to these
results and generalize the main theorem of [TkelOa].

It should be noted that despite the novel framework, most proofs in this
chapter are not really new, but variations on, or generalizations of, arguments
found in various other sources, such as the original result of Solovay, the work of
Zapletal and Tkegami, and folklore results. In Sections 2.5 we present a slightly
different point of view, raising interesting questions suitable for further research.

39
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2.1 Idealized forcing

An ideal on w* is a set [ C Z(w*) which is closed under subsets (if B € I and
A C B then A € I) and unions (if A,B € I then AU B € I). By standard
convention, we also assume that all singletons {z} are in the ideal and that the
whole space w® is not. A o-ideal is an ideal that is additionally closed under
countable unions. For convenience we will usually talk of the Baire space when
giving definitions, proving theorems etc., but in most cases this can easily be
adapted to the Cantor space, the space [w]“, or any other incarnation of the real
numbers. Sets that lie in the ideal I will be called I-small and those that do not
will be called I-positive, following standard practice.

In [Zap04] and [Zap08], Jindfich Zapletal developed an extensi