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Chapter 1 Introdution
Games have been used in many areas of mathematis, espeially mathematiallogi as well as theoretial omputer siene. It was the Polish shool of math-ematiians who onneted in�nite games with analysis (e.g., Lebesgue measura-bility) and topology (e.g., the Baire property) and obtained many results. In thisthesis, we give several results on games in set theory and logi or obtained byappliation of games.1.1 OutlineIn this thesis, we disuss the following topis. All the de�nitions and the notionsgiven in this outline an be found in the later setions of this hapter.In Chapter 2, entitled `Games and Regularity Properties', we haraterizealmost all the known regularity properties for sets of reals via the Baire propertyfor some topologial spaes and use Banah-Mazur games to prove the generalequivalene theorems between regularity properties, foring absoluteness, and thetransendene properties over some anonial inner models. With the help ofthese equivalene results, we answer some open questions from set theory of thereals. Almost all the results in this hapter are ontained in my paper [35℄.In Chapter 3, entitled `Games themselves', we ompare the Axiom of RealDeterminay (ADR) and the Axiom of Real Blakwell Determinay (Bl-ADR).We show that the onsisteny strength of Bl-ADR is stritly greater than that ofthe Axiom of Determinay (AD) in x 3.1 and that Bl-ADR implies almost all theknown regularity properties for every set of reals in x 3.2. In x 3.3, we disuss thepossibility of the equivalene between ADR and Bl-ADR under ZF+DC. In x 3.4,we disuss the possibility of the equionsisteny between ADR and Bl-ADR. Theresults in x 3.1 are joint work with David de Kloet and Benedikt L�owe [36℄. Theresults in x 3.2, x 3.3, and x 3.4 are joint work with Hugh Woodin.In Chapter 4, entitled `Games and Large Cardinals', we work on the onne-tion between the determinay of Gale-Stewart games and large ardinals. We1



2 Chapter 1. Introdutioninvestigate the upper bound of the onsisteny strength of the existene of al-ternating hains with length !, whih are essential objets to prove projetivedeterminay from Woodin ardinals. This is joint work with Ralf Shindler.In Chapter 5, entitled `Wadge reduibility for the real line', we study theWadge reduibility for the real line. Unlike the Wadge order for the Baire spae,the Wadge order for the real line annot be haraterized by in�nite games. Weshow that the Wadge Lemma for the real line fails and the Wadge order for thereal line is ill-founded and we investigate more properties of the Wadge order forthe real line. All the results in this hapter are joint work with Philipp Shlihtand Hisao Tanaka.In Chapter 6, entitled `Fixed-Point Logi and Produt Closure', we de�nea produt onstrution of an event model and a Kripke model and disuss theprodut losure of modal �xed point logis. We show that PDL, the modal �-alulus, and the ontinuous fragment of the modal �-alulus are produt losed.Most of the results are joint work with Johan van Benthem [12℄.In the remaining setions of this hapter, we give the mathematial bak-ground and results used in this thesis.1.2 Choie priniplesWe use the following two types of hoie priniples in this thesis.The �rst one is the family of the Choie Priniples ACX(Y ). Let X; Y benonempty sets. The Choie Priniple ACX(Y ) states that for any family fAx jx 2 Xg of nonempty subsets of Y , there is a funtion f : X ! Y suh thatf(x) 2 Ax for every x 2 X. The Axiom of Choie AC states that ACX(Y ) holdsfor all nonempty sets X and Y . The following is easy to see:Remark 1.2.1. Let X; Y1; Y2 be nonempty sets and suppose there is a surjetionfrom Y2 to Y1. Then ACX(Y2) implies ACX(Y1).Furthermore, we onsider the Dependent Choie Priniples DCX . Let X be anonempty set. The Dependent Choie Priniple DCX states that for any relationR on X (i.e., R � X � X), if (8x 2 X) (9y 2 X) (x; y) 2 R, then there is afuntion f : ! ! X suh that �f(n); f(n+ 1)� 2 R for every n 2 !. The Axiomof Dependent Choie DC states that DCX holds for every nonempty set X.Throughout this thesis, we work in ZF + AC!(R), where ZF is the axiomsystem of Zermelo-Fraenkel set theory. When we need more hoie priniples, weexpliitly mention them (espeially at the beginning of eah hapter).1.3 TreesTrees are basi objets in mathematial logi, espeially desriptive set theory andreursion theory. We �x some notation and introdue de�nitions about trees.



D. Ikegami, Games in Set Theory and Logi 3If f is a funtion from X to Y and A is a subset of X, then f�A denotesthe restrition of f to A, i.e., f�A = f(a; f(a)) j a 2 Ag. For a relation Rbetween X and Y (i.e., R � X � Y ), dom(R) = fx 2 X j (9y) (x; y) 2 Rg andran(R) = fy 2 Y j (9x) (x; y) 2 Rg.Given a nonempty set X, <!X denotes the set of all �nite sequenes of ele-ments in X and a nonempty subset T of <!X is a tree on X if it is losed underinitial segments, i.e., if s is in T and t is a subsequene of s (i.e., t = s�n forsome n), then t is in T . For a �nite sequene t of elements in X, lh(t) denotesthe length of t.By nodes, we mean elements of trees. For a tree T on X, two nodes s; t ofT are inompatible (denoted by s?t) if there is an n in dom(s) \ dom(t) suhthat s(n) 6= t(n). Note that s; t are inompatible if and only if there is no u in Tsuh that s; t � u. For a node t of T and an element x of X, t_hxi denotes theone-step extension of t with x, i.e., t_hxi = t [ f(lh(t); x)g.A tree T on X is alled perfet if for any node s in T , there are two nodest1; t2 of T suh that s � ti for i = 1; 2 and t1?t2. For a tree T on X, [T ℄ denotesthe set of all in�nite paths through [T ℄, i.e., [T ℄ = fx 2 !X j (8n 2 !) x�n 2 Tg.For a tree T on X and a node t in T , t is alled splitting in T if there are x and yin X suh that x 6= y and both t_hxi and t_hyi are in T . For a tree T , the stemof T (denoted by stem(T )) is the minimal splitting node in T if it exists.If T is a tree on X and X is of the form Y �Z, then we often identify a node sof T with the pair (t1; t2) where ti = (s(0)i; : : : s(n� 1)i) for i = 1; 2, n = dom(s),and s(j) = (s(j)1; s(j)2) for j < n. The same identi�ation will be applied inase X is of the form Y1 � : : :� Ym for a �nite natural number m � 1.1.4 General topologyTopologial spaes are fundamental objets in mathematis. Throughout thisthesis, we assume the basi theory of topologial spaes whih an be found in,e.g., [49℄. We mainly use the following three types of topologial spaes:The spaes !X. Let X be a nonempty set. The set !X is the set of all !-sequenes of elements in X and we topologize it via the produt topology whereX is always regarded as the disrete spae. Hene for eah �nite sequene s ofelements in X, the set [s℄ = fx 2 !X j x � sg (i.e., the set of all !-sequenes ofelements in X extending s) is a basi open set in this topology and any open setis a union of basi open sets of this form.Our main interest is when X = 2 (i.e., f0; 1g) or !. The spae !2 is alledthe Cantor spae and the spae !! is alled the Baire spae.One of the speial properties of this type of topologial spaes is that losedsets have a tree representation: A subset A of !X is losed if and only if thereis a tree T on X suh that A = [T ℄. Also, there is a one-to-one orrespondene



4 Chapter 1. Introdutionbetween perfet subsets of !X and perfet trees on X, where a subset A of !X isperfet if it is losed and it has no isolated points: A subset A of !X is perfet ifand only if there is a perfet tree T on X suh that A = [T ℄.A subset A of the Baire spae or the Cantor spae has the perfet set propertyif either it is ountable or it ontains a perfet set. It is easy to see that for anyperfet set C, there is a bijetion between C and the Cantor spae. Hene sets Awith the perfet set property satisfy Cantor's Continuum Hypothesis (CH), i.e.,either A is ountable or there is a bijetion between A and the Cantor spae. Forthis reason, it is interesting to see what kind of sets have the perfet set property.We disuss this in x 1.11.The spaes St(P). Stone spaes are fundamental topologial spaes not onlyin mathematial logi but also in general mathematis. We give basi de�nitionsand the basi properties of Stone spaes of partial orders in our ontext.Let P and Q be partial orders. A map i : P ! Q is alled a dense embeddingif it satis�es the following:� i preserves the order, i.e., if p1 � p2 in P, then i(p1) � i(p2) in Q ,� i preserves the inompatibility, i.e., given two elements p1; p2 of P, if thereis no p in P with p � p1 and p � p2, then there is no q in Q with q � i(p1)and q � i(p2), and� the image of i is dense, i.e., for any q in Q there is a p in P suh thati(p) � q.Dense embeddings are important in forings in the sense that if there is a denseembedding from P to Q , then foring with P and foring with Q are essentiallythe same. (See x 1.9 about foring.)It is well known that if P is a partial order, then there is a omplete Booleanalgebra B and a dense embedding i from P to B . Moreover, the pair (B ; i) isunique up to isomorphism in the sense that if there are two suh pairs (B 1 ; i1)and (B 2 ; i2), then there is an isomorphism i between B 1 and B 2 as ompleteBoolean algebras suh that i Æ i1 = i2. We all suh a pair (B ; i) a ompletion ofP and write (BP; iP) for (B ; i).Let P be a partial order. A nonempty subset u of P is a �lter on P if it isupward losed (i.e., if p 2 u and p � q, then q is also in u) and any two elementsof u have an extension in u (i.e., if p and q are in u, then there is an r in u suhthat r � p and r � q). A �lter u on P is an ultra�lter if u 6= P and u is maximalwith respet to inlusions (i.e., if v is a �lter ontaining u, then v = u or v = P).We now de�ne Stone spaes of partial orders. Given a partial order P, the setSt(P) is the olletion of all ultra�lters on BP. For eah b 2 BP, we de�ne the setOb = fu 2 St(P) j u 3 bg and the Stone spae of P (also denoted by St(P)) is thetopology on the set St(P) generated by the set fOb j b 2 BPg.



D. Ikegami, Games in Set Theory and Logi 5For example, if P is the pair (<!!;�), i.e., the set of all �nite sequenesof natural numbers ordered by reverse inlusion, then the Stone spae of P ishomeomorphi to the Cantor spae !2.There are two advantages for taking ultra�lters on BP rather than on P itselfas a de�nition of the Stone spae of P: The �rst one is that it has several nieproperties as topologial spaes (e.g., it is a ompat Hausdor� zero-dimensionalspae). The seond is that it does not depend on the representation of P, i.e., ifthere is a dense embedding from P to Q , then St(P) and St(Q) are homeomorphi.The real line R. We use R to denote the set of all real numbers exept inChapter 2, where we use it for Mathias foring (we use R for Mathias foringbeause it is losely related to the Ramsey property). As usual, the topology ofthe real line is generated by open intervals (a; b) = fx 2 R j a < x < bg fora; b 2 R.1.5 Borel sets, projetive sets, and de�nabilityin the seond-order arithmetisLet X be a topologial spae. Starting from open sets (or losed sets), we formthe two hierarhies of sets of subsets of X. One is alled the Borel hierarhy andthe other is alled the projetive hierarhy:De�nition 1.5.1. Let X be a topologial spae. The Borel hierarhy of X��0�;�0�;�0� j 1 � � < !1� is de�ned as follows:Case 1: � = 1.By �01, we mean the set of all open subsets of X and �01 denotes the set ofall losed subsets of X. The set of all lopen subsets of X is denoted by �01.Case 2: � > 1.By �0� , we mean the set of all ountable unions of sets in S�<��0�, and �0�denotes the set of all ountable intersetions of sets in S�<��0�. The intersetionof �0� and �0� is denoted by �0� .Elements of �0�;�0� and �0� are alled �0� sets, �0� sets and �0� sets respe-tively. We set B = S�<!1 �0� and elements of B are alled Borel sets.It is immediate that �0� = �0� \�0� for eah 1 � � < !1. By indution on �,it is easy to show that �0� = fX n A j A 2 �0�g for eah 1 � � < !1. With thehelp of AC!(R), it is easy to show that !1 is a regular ardinal and hene thatthe set of all the Borel sets B is losed under omplements and ountable unionsand it ontains the empty set. Suh a family of subsets of X is alled a �-algebraon X. Note that the set of all the Borel subsets of X is the smallest �-algebraon X ontaining all the open sets.



6 Chapter 1. IntrodutionTheorem 1.5.2 (Lebesgue). Let X be the Cantor spae, the Baire spae, or thereal line. Then the following strit inlusions hold for eah 1 � � < !1:�0� (( �0��0� (( �0�+1Proof. See, e.g., [45, Theorem 22.4℄.De�nition 1.5.3. Let X be a topologial spae. The projetive hierarhy of X��1n;�1n;�1n j 1 � n < !� is de�ned as follows:Case 1: n = 1.By �11, we mean the set of all subsets A of X suh that there is a losed subsetC of X � !! suh that A is the �rst projetion of C, i.e., A = dom(C), whereX � !! is topologized as the produt spae of X and !!. The set of all subsetsA of X whose omplements are in �11 is denoted �11. The intersetion between�11 and �11 is denoted �11.Case 2: n > 1.By �1n, we mean the set of all subsets A of X suh that there is a subset C ofX � !! in �1n�1 suh that A is the �rst projetion of C. The set of all subsets Aof X whose omplements are in �1n is denoted �1n. The intersetion between �1nand �1n is denoted �1n.Elements of �1n;�1n, and �1n are alled �1n sets, �1n sets and �1n sets respe-tively. Sets in �1n for some n are alled projetive sets.Elements of �11 are also alled analyti sets, and o-analyti sets are the sameas �11 sets. It is immediate that �1n = �1n\�1n for eah n and that �1n = fX nA jA 2 �1ng for eah n.Theorem 1.5.4 (Suslin). Let X be the Cantor spae, the Baire spae, or thereal line. Then B = �11.Proof. See, e.g., [45, Theorem 14.11℄.Theorem 1.5.5 (Lusin). Let X be the Cantor spae, the Baire spae, or the realline. Then the following strit inlusions hold for eah 1 � n < !:�1n (( �1n�1n (( �1n+1



D. Ikegami, Games in Set Theory and Logi 7In partiular, every Borel set is a �11 set and there is a �11 set whih is not aBorel set.1Proof. See, e.g., [45, Theorem 37.7℄.De�nable sets in the seond-order arithmeti are related to �0n sets, �0n sets,�1n sets, and �1n sets in the Baire spae. By the seond-order struture, wemean the two-sorted struture A2 = (!; !!; app;+; �;=; 0; 1), where app is thefuntion from !!�! to ! suh that app(x; n) = x(n) and +; �;= are summation,multipliation, and equality on the natural numbers. By �0n-formulas, we meanthe formulas in the language of the seond-order struture of the form(90x1) (80x2) : : : (Qnxn) �;where 90; 80 are the existential quanti�er and the universal quanti�er for naturalnumbers respetively, Qn is 80 if n is even and 90 if n is odd, xi (1 � i � n) arevariables for natural numbers, and � is a quanti�er-free formula. By �0n-formulas,we mean the formulas in the language of the seond-order struture of the form(80x1) (90x2) : : : (Qnxn) �;where Qn is 90 if n is even and 80 if n is odd, xi (1 � i � n) are variables fornatural numbers, and � is a quanti�er-free formula. By arithmetial formulas, wemean �0n-formulas or �0n-formulas for some natural number n. By �1n-formulas,we mean the formulas in the language of the seond-order struture of the form(91x1) (81x2) : : : (Qnxn) �;where 91; 81 are the universal quanti�er and the existential quanti�er for elementsin the Baire spae respetively, Qn is 81 if n is even and 91 if n is odd, xi (1 �i � n) are variables for elements in the Baire spae, and � is an arithmetialformula. By �1n-formulas, we mean the formulas in the language of the seond-order struture of the form(81x1) (91x2) : : : (Qnxn) �;where Qn is 91 if n is even and 81 if n is odd, xi (1 � i � n) are variables forelements in the Baire spae, and � is an arithmetial formula. Let n be a naturalnumber with n � 1, A be a subset of the Baire spae and a be an element ofthe Baire spae. We say A is a �0n(a) set if there is a �0n-formula � suh thatA = fx j A2 � �(x; a)g. One an de�ne �0n(a) sets, �1n(a) sets, and �1n(a) sets inthe same way. We also use �0n(a);�0n(a);�1n(a), and �1n(a) to denote the set ofall �0n(a) sets, �0n(a) sets, �1n(a) sets, and �1n(a) sets respetively.1The last statement is due to Suslin [82℄.



8 Chapter 1. IntrodutionTheorem 1.5.6. Let n be a natural number with n � 1. Then�0n = [a2!! �0n(a); �0n = [a2!!�0n(a);�1n = [a2!! �1n(a); �1n = [a2!!�1n(a):Proof. See, e.g., [66, 8B.5 & 8B.15℄.1.6 Gale-Stewart gamesIn this setion, we introdue Gale-Stewart games, whih are in�nite games withperfet information.In 1913, Ernst Zermelo [93℄ investigated �nite games with perfet informationas a formalization of the game of hess and proved the determinay of these games.In 1953, Gale and Stewart [27℄ developed the general theory of in�nite games,so-alled Gale-Stewart games, whih are two-player zero-sum in�nite games withperfet information. The theory of Gale-Stewart games has been investigatedby many logiians and now it is one of the main topis in set theory and it hasonnetions with other topis in set theory as well as model theory and omputersiene.Let us start with the de�nition of Gale-Stewart games.De�nition 1.6.1 (Gale-Stewart games). Let X be a nonempty set and A be asubset of !X. The Gale-Stewart game GX(A) is played by two players, player Iand player II. They play elements of X !-many times in turn, i.e., player I startswith hoosing an element x0 of X, then player II responds with x1 2 X, thenplayer I moves with x2 2 X and player II hooses x3 and so on. After ! moves,they have produed an !-sequene x = hxn j n 2 !i 2 !X. Player I wins if x isin A and player II wins if x is not in A.This game is an in�nite zero-sum game with perfet information beause oneof the players always wins and when one player wins, the other loses, and beauseboth players know what they have previously played and they an deide the nextmove onsidering their previous moves.We are interested in whether one of the players has a winning strategy inthe game GX(A), i.e., whether one of the players has a way to play this gamesuh that no matter her opponent moves, she will always win this game. Let usformulate the notion of winning strategies.De�nition 1.6.2. A strategy for player I is a funtion � : XEven ! X, whereXEven is the set of �nite sequenes of elements in X with even length. A strategyfor player II is a funtion � : XOdd ! X, where XOdd is the set of �nite sequenesof elements in X with odd length. Given a strategy � for player I and a strategy



D. Ikegami, Games in Set Theory and Logi 9� for player II, one an produe the run � � � of the game GX(A) aording to� and � by letting player I follow � and player II follow � , more preisely, therun � � � of the game GX(A) is a unique !-sequene of elements in X with thefollowing property: For any natural number n,(� � �)(n) = ��;��(� � �)�n�;where for a �nite sequene s of elements in X, ��;� (s) = �(s) if the length of sis even and ��;� (s) = �(s) if the length of s is odd. A strategy � for player I iswinning in the game GX(A) if for any strategy � for player II, � � � is in A. Astrategy � for player II is winning in the game GX(A) if for any strategy � forplayer I, � � � is not in A. A subset A of !X is determined if one of the playershas a winning strategy in the game GX(A).Hene we are interested in what kind of sets A are determined. Let us listsome results onerning this question. Reall from x 1.4 that the topology of !Xis given by the produt topology where eah oordinate (i.e., X) is seen as thedisrete spae.Theorem 1.6.3 (Gale and Stewart). (AC) Let X be a nonempty set.1. Any losed subset of !X and any open subset of !X are determined. If Xis well-ordered, one does not need AC.2. There is a subset of !! whih is not determined.Proof. See, e.g., [37, Lemma 33.1, Lemma 33.17℄.Theorem 1.6.4 (Martin). (AC) Let X be a nonempty set. Then every Borelsubset of !X is determined.Proof. See, e.g., [45, Theorem 20.5℄.Theorem 1.6.5 (Davis; G�odel and Addison). ZFC annot prove that every �11subset of the Baire spae is determined.Proof. The statement follows from the ombination of the following two results:The �rst is that if every �11 subset of the Baire spae is determined, then every�11 subset of the Baire spae has the perfet set property and the seond one isthat ZFC annot prove that every �11 subset of the Baire spae has the perfet setproperty. The �rst result is due to Davis [23℄ and the seond result was announedby G�odel [28℄ and the details of the proof given by Addison [1℄. For the proofs,see, e.g., [66, p. 224 & 225℄ and [37, Corollary 25.37℄.Gale-Stewart games are general enough that they an be used to simulateseveral kinds of in�nite games in mathematis (e.g., Banah-Mazur games; forthe de�nition of Banah-Mazur games, see x 1.8). In partiular, the determinay



10 Chapter 1. Introdutionof Gale-Stewart games implies that of several other kinds of games. From this,one an prove several properties of sets of reals assuming the determinay ofGale-Stewart games suh as Lebesgue measurability, the Baire property (for thede�nition, see x 1.8), and the perfet set property (for the de�nition, see x 1.4).Myielski and Steinhaus [68℄ introdued the Axiom of Determinay (AD),whih states that every subset of the Baire spae is determined, and investigatedthe onsequenes of this axiom. They proved that AD implies that every set ofreals is Lebesgue measurable and that every subset of the Baire spae has theBaire property and the perfet set property where eah of these statements on-tradits the Axiom of Choie. Beside suh properties for sets of reals, AD suppliesa beautiful strutural theory. Moreover, models of AD have been investigated fora long time and they are essential for the researh on inner models with largeardinals (for inner models, see x 1.11). In this way, the study of AD has beenone of the entral topis in set theory despite the fat that AD ontradits AC.One an de�ne ADX for a nonempty set X as follows: Every subset of !X isdetermined. Let us list some known observations on ADX :Proposition 1.6.6.1. Let X; Y be nonempty sets and assume that there is an injetion from Xto Y . Then ADY implies ADX . In partiular, ADR implies AD! = AD.2. The axioms AD!1 and ADP(R) are inonsistent.Proof. The �rst statement is a folklore and it is easy. For the seond statement,the inonsisteny of AD!1 is due to Myielski [67℄ and that of ADP(R) followsfrom the inonsisteny of AD!1, the fat that there is an injetion from !1 intoP(R), and the �rst item of this proposition. (One an send a ountable ordinal� to the set of all reals x suh that (!; x) is isomorphi to (�;2) and this is aninjetion from !1 into P(R).)We investigate AD and ADR further in Chapter 3.1.7 Pointlasses, parametrization, and Reur-sion TheoremAs with Borel sets, one often looks at the properties of a lass of sets of reals ratherthose of a set of reals. Suh lasses are alled pointlasses. In this setion, weintrodue basi properties for pointlasses. When we are talking about \reals",we mean elements of the Cantor spae !2 and we use R to denote the Cantorspae.A pointlass is the union of sets of subsets of !m � Rn for natural numbersm � 0; n � 1. If � is a pointlass, � is alled a boldfae pointlass if it is losed



D. Ikegami, Games in Set Theory and Logi 11under ontinuous preimages, i.e., for natural numbers m1; m2 � 0 and n1; n2 � 1,a ontinuous funtion f : !m1�Rn1 ! !m2�Rn2 , and a subset A 2 � of !m2�Rn2 ,f�1(A) is also in �. Closure under reursive preimages is similarly de�ned withreursive funtions.A pointlass � is !-parametrized if for all natural numbers m � 0 and n � 1there is a subset Gm;n of !m+1�Rn in � suh that for any subset A of !m�Rn in�, there is a natural number e suh that A = Gm;ne = f(x; y) j (e; x; y) 2 Gm;ng.The following lemma is useful: Let � be a pointlass and x be a real. Then thepointlass �(x) is the set of all sets A suh that there is a set C 2 � suh thatA = Cx where Cx = fy 2 R j (y; x) 2 Cg. Set � = Sx2R �(x).Lemma 1.7.1. Suppose � is an !-parametrized pointlass whih is losed underreursive preimages. Then for eah natural number n � 1, there is a set Gn �R � Rn in � suh that the following hold:1. For eah n � 1, Gn is universal for subsets of Rn in �, i.e., for any subsetA 2 �, there is a real x suh that A = Gnx,2. For A � Rn in �, there is a reursive real x suh that A = Gnx, and3. For all natural numbers n;m � 1, there is a reursive funtion Sn;m : R �Rn ! R suh that for any real a, x 2 Rn , and y 2 Rm , Gm+n(a; x; y) ()Gm(Sn;m(a; x); y).Proof. See [66, 3H.1℄.We �x some notions for projetions. For natural numbers m � 0 and n � 1and a subset A of !�!m�Rn , let 9!A = f(x; y) 2 !m�Rn j (9e 2 !) (e; x; y) 2Ag and 8!A = f(x; y) 2 !m � Rn j (8e 2 !) (e; x; y) 2 Ag. The sets 9RA and8RA are de�ned in the similar way. A pointlass � is losed under 9! if for anyA in �, 9!A is in �. Closure under 8!; 9R, and 8R is de�ned in the similar way.De�nition 1.7.2. A pointlass � is a Spetor pointlass if it satis�es the following:1. It ontains all the �01 sets and it is losed under reursive substitutions,�nite intersetions and unions, 9!, and 8!,2. It is !-parametrized,3. It has the substitution property, and4. It has the prewellordering property.For the de�nition the substitution property and the basi theory of �-reursivefuntions, see [66, 3D & 3G℄. For the de�nition of prewellordering property, see[66, 4B℄. Typial examples of Spetor pointlasses are �11 and �12. Assuming thedeterminay of all the projetive sets, one an prove that �12n+1 and �12n+2 arealso Spetor pointlasses for eah natural number n.We use the following general form of Kleene's Reursion Theorem for Spetorpointlasses in Chapter 3:



12 Chapter 1. IntrodutionTheorem 1.7.3 (Reursion Theorem). (Kleene) Let � be a Spetor pointlassand suppose f : R�R ! R is �-reursive on its domain. Then there exists a �xedreal a� suh that for all reals x, if f(a�; x) is de�ned, then f(a�; x) = fa�g(x),where fa�g is the �-reursive funtion on its domain oded by a�.Proof. See [66, 7A.2℄.1.8 The Baire property and Banah-Mazur gamesIn this setion, we introdue the Baire property and Banah-Mazur games anddisuss the onnetion between them. In the Sottish Caf�e \Kawiarnia Szzkoka"in Lw�ow, Polish mathematiians in the Lw�ow Shool of Mathematis would oftenmeet and spend their afternoons disussing mathematial problems in 1920s and1930s. Their disussions produed the famous book so-alled \the Sottish bookof problems". In this book (see [63℄), Mazur desribed in�nite games nowadaysalled Banah-Mazur games and onjetured their onnetion to the Baire prop-erty. The onjeture was on�rmed by Banah in 1935 and the statement wasgeneralized to arbitrary topologial spae by Oxtoby [69℄ in 1957.We start with the de�nition of the Baire property:De�nition 1.8.1. Let X be a topologial spae and A be a subset of X.1. We say A is nowhere dense if the interior of the losure of A is empty.2. We say A is meager if it is a ountable union of nowhere dense sets.3. We say A is omeager if the omplement of A is meager.4. We say A has the Baire property if there is an open subset U of X suhthat the symmetri di�erene between A and U (i.e., �(AnU)[ (U nA)�, denotedby A4U) is meager.Nowhere dense sets and meager sets are small in the sense of topology, e.g.,on the Baire spae, the Cantor spae and the real line, any singleton is nowheredense and any ountable set is meager. Sets with the Baire property an beapproximated by open sets modulo suh small sets. But if some nonempty openset was meager, this property would not make sense. To avoid that problem, weintrodue a property for topologial spaes: A topologial spae X is alled aBaire spae if any nonempty open subset of X is not meager.2 All the topologialspaes that appear in this thesis will be Baire spaes.If X is a topologial spae, many subsets of X have the Baire property inX: Trivially every open set has the Baire property, also every losed set has theBaire property (if we take U to be the interior of the given losed set A, thensymmetri di�erene between A and U is A n U and it is nowhere dense by the2Note that being a Baire spae is di�erent from being the Baire spae !!. Being a Bairespae is a property for topologial spaes while the Baire spae is one partiular topologialspae.



D. Ikegami, Games in Set Theory and Logi 13de�nition of interior, hene meager). From this, we an onlude that the set ofsubsets of X with the Baire property is losed under omplements. Moreover,sine the set of meager sets is losed under ountable unions, the set of subsetswith Baire property is also losed under ountable unions and hene every Borelsubset of X has the Baire property.It is natural to ask whether the onverse is true for the Baire spae, i.e., if asubset of the Baire spae has the Baire property, then is it Borel? The answer is`No'. In 1923, Lusin and Sierpinski [57℄ proved that every �11 set of reals has theBaire property and there is a �11 set of reals whih is not Borel by Theorem 1.5.5.So one ould ask, \How far an we go?" Atually, in the onstrutible universeL, there is a �12 set of reals without the Baire property.3 On the other hand,starting with a model of ZFC, one an onstrut a model of ZFC extending thegiven model suh that every �12 set has the Baire property. Hene the statementthat every �12 set of reals has the Baire property is independent from ZFC. Thenone ould naturally ask the following: When is it true and when is it not? Wedisuss this question in Chapter 2. Next, we introdue Banah-Mazur games,whih haraterize meagerness of topologial spaes:De�nition 1.8.2 (Banah-Mazur games). Let X be a topologial spae and A bea subset of X. The Banah-Mazur game of A, denoted by G��(A) (or G��(A;X)),is de�ned as follows: Players I and II hoose alternatively nonempty open sets Vn(n 2 !) with V0 � V1 � V2 � V3 � : : : in ! moves,I V0 V2 : : :II V1 V3 : : :Player II wins this run of the game if Tn2! Vn \ A = ;.The notions of strategies and winning strategies are de�ned in the same wayas for Gale-Stewart games in x 1.6.Theorem 1.8.3 (Banah and Mazur, Oxtoby). Let X be a topologial spaeand A be a subset of X. Then A is meager if and only if player II has a winningstrategy in the game G��(A).Proof. See, e.g., [45, Theorem 8.33℄.One an haraterize when a subset A of X has the Baire property in X interms of Banah-Mazur games: Let UA be the union of all open sets U in X suhthat U n A is meager in X. Then A has the Baire property if and only if the3Although G�odel [28℄ announed the similar result for Lebesgue measurability in 1938 andseemed to know about this result at that time, it seems to have been �rst made expliit in [67,p. 216℄ (f. [44, p. 169℄).



14 Chapter 1. Introdutionset A n UA is meager, hene if and only if player II has a winning strategy in theBanah-Mazur game G��(A n UA).It is natural to ask whether one ould haraterize when player I has a winningstrategy in Banah-Mazur games in terms of topology. The answer is: If X is aompletely metrizable topologial spae, then player I has a winning strategy inG��(A) if and only if there is a nonempty open subset U of X suh that U nA ismeager in U , where U is equipped with the relative topology of X in this ase.(But this haraterization is not true if X is a general topologial spae. Forthe proof, see, e.g., [45, Theorem 8.33℄.) It follows from this result that player Iannot have a winning strategy in the Banah-Mazur game G��(A n UA). Henewe an onlude that a subset A of X has the Baire property if and only if theBanah-Mazur game G��(A n UA) is determined, i.e., either player I or II has awinning strategy in this game. Now we have redued the problem of the Baireproperty of a given set to the problem of determinay of Banah-Mazur games.This is how the Polish shool of mathematis found out the following: Assumeevery Banah-Mazur game in the Baire spae is determined, then every set ofreals has the Baire property.We also use a variant of Banah-Mazur games so-alled the unfolded Banah-Mazur games:De�nition 1.8.4 (The unfolded Banah-Mazur games). Let X be a topologialspae and F be a subset of X � !!. De�ne the unfolded Banah-Mazur gameG��u (F ) (or G��u (F;X)) as follows:I V0; y0 V2; y1 : : :II V1 V3 : : :Players I and II hoose V0; V1; : : : as in the Banah-Mazur game, but additionallyI plays a natural number yn in her nth move. Let y = hyn j n 2 !i. Player IIwins if �Tn2! Vn � fyg� \ F = ;.We have the same kind of haraterization theorem as Banah-Mazur games:Theorem 1.8.5 (Folklore). Let X be a topologial spae and F be a subset ofX � !!. Let A = 9RF .1. If A is meager in X, then player II has a winning strategy in the gameG��u (F ).2. Suppose that F is of the form (f � id)�1(C), where f : X ! !! is aontinuous funtion, f � id: X � !! ! !! � !! is de�ned by (f � id) (x; y) =(f(x); y), and C is a subset of !! � !!. Then if player II has a winning strategyin the game G��u (F ), then A is meager in X.



D. Ikegami, Games in Set Theory and Logi 15Proof. We show the �rst item. By Theorem 1.8.3, if A is meager, then playerII has a winning strategy � in the game G��(A;X). But � an be viewed as awinning strategy for player II in the game G��u (F ) by ignoring I's moves of yns.Next we show the seond item. The point is that given a winning strategy �for player II in the game G��u (F ), she an modify � so that in her nth move, shean deide the nth digit of f(x) by the ontinuity of f . The rest of the argumentis the same as in [45, Theorem 21.5℄.Using Theorem 1.8.5, one an haraterize when player I has a winning strat-egy in the game G��u (F ) as well: Player I has a winning strategy in the gameG��u (F ) if and only if there is a nonempty open set U in X suh that U n A ismeager in U . As before, it follows from this fat that a subset A of X has theBaire property if and only if the game G��u (F 0) is determined, where F 0 is a subsetof X � !! with 9RF 0 = A n UA and UA is the same as in the paragraphs afterTheorem 1.8.3.The advantage of the unfolded Banah-Mazur games over Banah-Mazur gamesis that one an redue the omplexity of the payo� sets (from A to F in the abovede�nition). If A is a �11 set in the Baire spae, then AnUA is also �11, hene thereis a losed subset F of !! � !! suh that 9RF = A n UA. Sine there is no dif-ferene between playing basi open sets and playing open sets for Banah-Mazurgames and the unfolded ones and basi open sets in the Baire spae are easilyoded by natural numbers, one an simulate the unfolded Banah-Mazur gamesby Gale-Stewart games in a simple way. By the �rst item of Theorem 1.6.3, allthe losed Banah-Mazur games and the unfolded ones are determined. Henewe an onlude that every �11 set of reals has the Baire property.41.9 ForingWhile Zermelo-Fraenkel set theory with the axiom of hoie (ZFC), whih is aset-theoreti axiomatization for the foundation of mathematis, is a very goodbasis for most of mathematial pratie, some mathematial questions remainundetermined by ZFC and one suh typial question is whether the ContinuumHypothesis (CH) is true or not. In 1963, Cohen introdued foring to provethat CH does not follow from ZFC and sine then, foring has been one of themost important basi tools in set theory. Starting from a model of ZFC (alledthe \ground model"), Cohen produed an extension of the given model (alleda \generi extension") whih is a model of ZFC and the negation of CH. Thistehnique is so general that one an de�ne a generi extension for eah partialorder in the given ground model, and one an hange the truth-value of manymathematial statements between ground models and their generi extensionswhih yield the onsisteny and the independene of those statements from ZFC.4This is not the original proof of Lusin. It is due to Solovay (f. [44, Exerise 27.14℄).



16 Chapter 1. IntrodutionIn Chapter 2 and Chapter 3, we assume the basi theory of foring whih anbe found in, e.g., [52, x 7, 8℄. Let us �x the notation onerning foring and listthe partial orders we will use in this thesis.The Universe is the lass of all sets and it is denoted by V . Let M be a modelof ZF, P be a partial order belonging to M , and G be a P-generi �lter over M .By M [G℄, we mean the generi extension of M via G. For a P-name � in M , �Gdenotes the interpretation of � via G. For a set x, �x denotes the standard P-namefor x, i.e., �xG = x for any �lter G.The following is the list of partial orders we will use:Cohen foring. The partial order is (<!!;�) denoted by C where � is reverseinlusion on �nite sequenes of natural numbers. Given a model M of ZF anda C -generi �lter G over M , set xG = Sfp 2 C j p 2 Gg. By the generiity ofG, xG is a funtion from ! to itself (i.e., an element of the Baire spae). Suhobjets are alled Cohen reals over M . Also one an reonstrut G from xG andC as follows: G = fp 2 C j p � xGg. Hene there is a anonial one-to-oneorrespondene between C -generi �lters over M and Cohen reals over M . Weoften identify these two objets.Random foring Elements of the partial order are Borel sets in the Bairespae (or in the real line) with positive Lebesgue measure ordered by inlusionand it is denoted by B . Given a model M of ZF+AC!(R) and a B -generi �lterG over M , the set TfBM [G℄ j B 2 Gg is a singleton fxGg, where BM [G℄ is theinterpretation of B in M [G℄ via Borel odes for B in M .5 Suh reals xG are alledrandom reals over M . As with Cohen reals, one an reover G from xG and Mas follows: G = fB 2 B j xG 2 BM [G℄g. Hene there is a anonial one-to-oneorrespondene between B -generi �lters over M and random reals over M . Weoften identify these two objets.Hehler foring. Elements of the partial order are pairs (n; f) where n is anatural number and f is a funtion from ! to itself and it is denoted by D . Given(n; f) and (m; g) in D , (n; f) � (m; g) if n � m, f�m = g�m and f(k) � g(k)for any k � m. Given a model M of ZF and a D -generi �lter G over M ,xG = Sff�n j (n; f) 2 Gg is a funtion from ! to itself by the generiity of G.Suh reals xG are alled Hehler reals over M . One an reover G from xG andM as follows: G = f(n; f) 2 D j xG � f�n and (8k � n) f(k) � xG(k)g. Henethere is a anonial one-to-one orrespondene between D -generi �lters over Mand Hehler reals over M . We often identify these two objets.5For the de�nition and the basi properties of Borel odes, see x 1.13.



D. Ikegami, Games in Set Theory and Logi 17Mathias foring. Elements of the partial order are pairs (s; A) where s is a�nite set of natural numbers and A is an in�nite set of natural numbers suh thatmax(s) < min(A) and the foring is denoted R.6 Given (s; A) and (t; B) in R,(s; A) � (t; B) if s \ (n + 1) = t, A � B and s n t � B, where n = max t. Givena model M of ZF and a R-generi �lter over M , xG = Sfs j (9A) (s; A) 2 Ggis an in�nite set of natural numbers by the generiity of G. Suh reals are alledMathias reals over M . One an reonstrut G from xG and M as follows: G =f(s; A) 2 R j s � xG and xG � s [ Ag. Hene there is a anonial one-to-oneorrespondene between R-generi �lters over M and Mathias reals over M . Weoften identify these two objets.Saks foring. Elements of the partial order are perfet trees on 2 ordered byinlusion and it is denoted by S. Given a model M of ZF and an S-generi �lterG over M , xG = Sfstem(T ) j S 2 Gg is a funtion from ! to 2 by the generiityof G. Suh reals are alled Saks reals over M . One an reover G from xG andM as follows: G = fS 2 S j xG 2 [S℄g. Hene there is a anonial one-to-oneonnetion between S-generi �lters over M and Saks reals over M . We oftenidentify these two objets.Silver foring. Elements of the partial order are uniform perfet trees on 2ordered by inlusion and it is denoted by V, where a perfet tree T on 2 isuniform if for any s and t in T with the same length and i = 0; 1, s_hii 2 T ifand only if t_hii 2 T . Given a model M of ZF and a V-generi �lter G over M ,one an de�ne xG in the same way as Saks reals and suh reals are alled Silverreals over M . There is a anonial one-to-one orrespondene between V-generi�lters over M and Silver reals over M as in Saks foring. We often identify thesetwo objets.Miller foring. Elements of the partial order are superperfet trees on ! or-dered by inlusion and it is denoted by M , where a tree T on ! is superperfet if forany node t of T , there is an extension u of t in T suh that fn 2 ! j u_hni 2 Tg isin�nite. Given a model M of ZF and a M -generi �lter G over M , one an de�nexG in the same way as Saks reals and suh reals are alled Miller reals over M .There is a anonial one-to-one orrespondene between M -generi �lters over Mand Miller reals over M as in Saks foring. We often identify these two objets.Laver foring. Elements of the partial order are trees T on ! suh that foreah node t � stem(T ) of T , the set fn 2 ! j t_hni 2 Tg is in�nite and theyare ordered by inlusion. The partial order is denoted by L. Given a model Mof ZF and a L-generi �lter G over M , one an de�ne xG in the same way as6We use this notation only in Chapter 2 where we do not use R either for the real line, theBaire spae or the Cantor spae. Hene there will be no onfusion for this notation.



18 Chapter 1. IntrodutionSaks reals and suh reals are alled Laver reals over M . There is a anonialone-to-one orrespondene between L-generi �lters over M and Laver reals overM as in Saks foring. We often identify these two objets.Eventually di�erent foring. Elements of the partial order are pairs (s; F )where s is a �nite sequene of natural numbers and F is a �nite set of funtionsfrom ! to itself and it is denoted by E . Given (s; F ) and (t; F 0) in E , (s; F ) �(t; F 0) if s � t, F 0 � F and (8f 2 F 0) �8n 2 dom(s n t)� s(n) 6= f(n). Given amodel M of ZF and a E -generi �lter G over M , xG = Sfs j (9F ) (s; F ) 2 Ggis a funtion from ! to itself by the generiity of G. Suh reals are alled E -generi reals over M and one an reonstrut G from xG and M as follows:G = f(s; F ) 2 E j s � xG and (8f 2 F ) �8n � dom(s)� xG(n) 6= f(n)g. Henethere is a anonial one-to-one orrespondene between E -generi �lters over Mand E -generi reals over M . We often identify these two objets.Next, we introdue useful lasses of forings that we use in Chapter 2. LetP be a partial order. For p and q in P, p and q are ompatible (denoted by pjjq)if there is an r in P suh that r � p and r � q. They are alled inompatible(denoted by p?q) if they are not ompatible. A subset A of P is an antihain ifany two di�erent elements of A are inompatible. A subset D of P is dense if forany p in P there is a d in D suh that d � p. Let D be a subset of P and p be anelement of P. The set D is predense below p if for any q � p in P there is a d inD suh that q and d are ompatible.For a regular ardinal �, H� denotes the set of all sets a suh that jTC(a)j < �,where TC(a) denotes the transitive losure of a, i.e., the smallest set b ontaininga and whih is transitive, i.e., (8x 2 b) x � b.The ountable hain ondition (). A partial order P has the ountablehain ondition (or P is ) if every antihain of P is ountable. Sine theinvention of foring,  forings have been fundamental partial orders and theyenjoy many nie properties, e.g., they preserve ardinalities, i.e., given a partial order P and a P-generi �lter G over V , for any ordinal �, � is a ardinalin V if and only if it is a ardinal in V [G℄. In partiular, !V1 = !V [G℄1 . Typialexamples of  forings are Cohen foring, random foring, Hehler foring, andeventually di�erent foring. Mathias foring, Saks foring, Silver foring, Millerforing, and Laver foring are not .Proper forings. A partial order P is proper if for any suÆiently large regularardinal � (e.g., � � 2jPj) and any ountable elementary substruture X of H�with P 2 X, and any p in P\X, there is a q � p in P suh that q is (X;P)-generi,i.e., for any dense set D of P in X, D \X is predense below q. Proper foringswere introdued by Shelah and they are also fundamental in modern set theory.They are a generalization of  forings (i.e., every  foring is proper) and



D. Ikegami, Games in Set Theory and Logi 19they enjoy several properties  forings satisfy, e.g., for a proper foring P, aP-generi �lter G over V , and any ountable set of ordinals A in V [G℄, there isa ountable set of ordinals B in V suh that A � B. In partiular, !V1 = !V [G℄1 .All the examples of forings listed above are proper.1.10 Large ardinalsLarge ardinals are ardinals with ertain transendene properties over ardinalssmaller than them. Many suh properties are the analogies of the ones ! has over�nite numbers. For the basis and bakground for large ardinals, we refer thereader to [44℄. Let us list the large ardinals (or the large ardinal properties) wewill use in this thesis:Inaessible ardinals. Inaessible ardinals are the least and the oldest largeardinals. An unountable ardinal � is inaessible if it is regular, i.e., for anyordinal � < � and any funtion f : � ! �, f is bounded, i.e., there is a � < �suh that ran(f) � �, and it is strong limit, i.e., for any � < �, 2� < �. If � isinaessible, then V� is a model of ZFC. Hene the existene of an inaessibleardinal implies the onsisteny of ZFC and by G�odel's Inompleteness Theorem,the onsisteny of ZFC+\There is an inaessible ardinal" is stritly strongerthan that of ZFC.Sharps. Let X be a set. By X#, we mean the omplete theory of L(X) in thelanguage (2; fngn2!; fdaga2TC(X)) with some speial properties, where n is theonstant for the n-th indisernible for L(X) and da is the onstant for a 2 TC(X).For the details, see, e.g., [22℄. The existene of X# is equivalent to the existene ofa losed unbounded proper lass of indisernibles for L(X) with some properties.Also it is equivalent to the existene of an elementary embedding j from L(X) toitself whose ritial point is above the rank of X. (Here the ritial point of j isthe least ordinal � suh that j(�) > �.) We say every real has a sharp if for anyreal x, x# exists. We say every set has a sharp if for any set X, X# exists.Measurable ardinals. Measurable ardinals are one of the most fundamentallarge ardinals. An unountable ardinal � is a measurable ardinal if there is anelementary embedding from V to a transitive proper lass whose ritial point is�. There is a �rst-order haraterization of measurable ardinals: An unountableardinal � is measurable if and only if there is a non-trivial �-omplete ultra�lteron �; here a �lter is non-trivial if it is not prinipal and it is �-omplete if itis losed under intersetions with <� many sets. It is easy to see that if � is ameasurable ardinal, then for any set X 2 V�, X# exists.



20 Chapter 1. IntrodutionStrong ardinals. Most large ardinals stronger than measurable ardinalsassert the existene of elementary embeddings from V to a transitive lass Mwith ertain properties. The more M is lose to V , the stronger the large ardinalproperty is. Strong ardinals are one of the natural strengthening of measurableardinals in this sense. Let � be an ordinal. An unountable ardinal � is �-strongif there is an elementary embedding j from V to M suh that M is transitive,the ritial point of j is �, and V� � M . An unountable ardinal � is strongif it is �-strong for any ordinal �. It is immediate that any �-strong ardinal ismeasurable. If � is (�+ 2)-strong, then there are unboundedly many measurableardinals below �.Woodin ardinals. Woodin ardinals were introdued when Shelah and Woodintried to deide the optimal upper bound for the onsisteny strength of the sat-uration of the nonstationary ideal on !1 and they are tightly onneted to thedeterminay of projetive sets in Gale-Stewart games. Let � < Æ be ordinals andA be a subset of VÆ. An unountable ardinal � < Æ is �-A-strong if there isan elementary embedding j from V to a transitive lass M suh that � is theritial point of j, V� � M , and A \ V� = j(A) \ V�. An unountable ardinal� is <Æ-A-strong if it is �-A-strong for every � < Æ. An inaessible ardinal Æis Woodin if it is a limit of <Æ-A-strong ardinals for any subset A of VÆ. If Æ isWoodin, then VÆ satis�es \There is a proper lass of strong ardinals".1.11 Inner models and inner model theoryInner models are transitive proper lass models of ZF. The study of inner modeltheory is about anonial inner models with large ardinals. The G�odel's Con-strutible Universe L is the most basi anonial inner model. It always existsin ZF and it is the least inner model of ZFC. G�odel introdued L to prove theonsisteny of AC, CH, and moreover the Generalized Continuum Hypothesis(GCH) with ZF. Beside this fat, L has many interesting properties, e.g., in L,there is a �12 set of reals without the Baire property and whih is not Lebesguemeasurable, and there is a �11 set of reals without the perfet set property. Asat the end of x 1.8, every �11 set of reals has the Baire property. Also every �11set of reals is Lebesgue measurable and has the perfet set property. Hene theabove fats about L show that �11 sets of reals are the limit for proving the aboveregularity properties in ZFC.One an relativize the onstrution of L to any set in the following two ways:For a set A, L[A℄ denotes the least inner model suh that A \ L[A℄ 2 L[A℄ andL(A) denotes the least inner model ontaining A as an element. The model L[A℄ isalways a model of ZFC and A might not belong to L[A℄ in general (e.g., L[R℄ = Land R does not belong to L in general) while L(A) might not be a model of AC(e.g., if there are !-many Woodin ardinals and a measurable ardinal above all



D. Ikegami, Games in Set Theory and Logi 21of them, then AC fails in L(R)). For a set of ordinals A, L[A℄ = L(A).Let us list the basi properties of L we use later:Lemma 1.11.1 (G�odel).1. The relation f(x; a) 2 !! � !! j x 2 L[a℄g is a �12 set of reals.2. For any real a, L[a℄ � \There is a �12(a) wellordering of the reals".Proof. See, e.g., [66, Theorem 8F.7, 8F.23, 8F.24℄.Core models are anonial inner models with the following speial properties:�rst they are �ne strutural (onstruted with Jensen's J� Hierarhy), seond,they are foring invariant (they are absolute between ground models and theirforing extensions), and lastly they are lose to V , e.g., they have overing prop-erties or weak overing. If 0# does not exist, L is the basi ore model. Unlikemany anonial inner models, one needs to assume some anti-large ardinal hy-pothesis to prove the existene of ore models. The following is a general resultfor the existene of the ore model:Theorem 1.11.2 (Dodd and Jensen [24℄; Koepke [50℄; Jensen [38℄; Mithell [64℄;Jensen [39℄; Steel [79℄; Jensen and Steel [41, 40℄). Suppose every real has a sharp.If there is no inner model of ZFC with a Woodin ardinal, then the ore model Kexists. More generally, if �12-determinay fails, then there is a real a0 suh thatfor any a �T a0, the a-relativized version of the ore model Ka exists, where �Tis the Turing order.7 Moreover, the ore models have the following properties:1. the relation f(x; a) 2 !! � !! j x 2 Kag is a �13 set of reals, and2. for any real a, Ka � \There is a �13(a) wellordering of the reals".Proof. When there is a real a suh that ay does not exist, see [24℄. In the otherase, see [79℄. Note that in [79℄, Steel assumed the existene of a measurableardinal to onstrut K. But Jensen and Steel [41, 40℄ omitted this assumption.To build ore models, one needs to study fragments of ore models or moregeneral objets, whih are alled mie. Standard examples of mie are L and theore model K. For a set a, there are a-relativized version of mie alled a-mie.Basi examples are L[a℄ and Ka. The following two theorems are essential tostudy mie:Theorem 1.11.3 (Comparison Lemma). LetM;N be mie and � = maxfjM j+; jN j+g.After <� steps of oiterations, one of them is an initial segment of the other.7Note that �12-determinay (lightfae) is equivalent to the existene of an inner model ofZFC with a Woodin ardinal. This is why we said \More generally,".



22 Chapter 1. IntrodutionProof. See, e.g., [92, Lemma 9.1.8℄.Theorem 1.11.4 (Dodd-Jensen Lemma). Let M be a mouse and i : M ! M 0be an iteration map aording to the unique iteration strategy of M . Supposethere is a �� preserving map � : M !M 0. Then1. there is no drop in the iteration tree for i, and2. for any ordinal � in M , i(�) � �(�).In partiular, any two iteration maps without drops from a mouse to a mouse arethe same.Proof. See, e.g., [92, Lemma 9.2.10℄.1.12 AbsolutenessWe speak of absoluteness if a sentene or a lass of sentenes does not hangetruth values of mathematial statements between models of set theory and it isone of the basi and entral notions in set theory. Given models of set theoryM and N with M � N and a formula �, � is absolute between M and N iffor any �nite sequene of elements ~x in M , M � �(~x) if and only if N � �(~x).For example, the formula \x is !" is absolute between any two transitive modelsof ZF. The �rst nontrivial and important absolute notion is wellfoundedness. Arelation R on a set A is wellfounded if for any nonempty subset B of A, there isan R-minimal element of B, i.e., there is a b 2 B suh that for any element a ofB, (a; b) =2 R.Lemma 1.12.1. The formula \R is a wellfounded relation on A" is absolutebetween any two transitive models of ZF.Proof. See, e.g., [37, Lemma 13.11℄ and the two paragraphs preeding it.Given a �11 formula �, one an reursively ompute a tree T on !�! suh thatfx j A2 � �(x)g = fx j [Tx℄ = ;g, where Tx = ft 2 <!! j �x�dom(t); t� 2 Tg inZF+AC!(R). But [Tx℄ = ; if and only if (Tx;�) is wellfounded. Hene A2 � �(x)if and only if (Tx;�) is wellfounded. Hene the problem of membership for a �11set is redued to the one for the wellfoundedness of ertain trees. Combining withLemma 1.12.1,Theorem 1.12.2 (Mostowski). Every �11 formula is absolute between transi-tive models of ZF+AC!(R). Hene every �11 formula is also absolute betweentransitive models of ZF+AC!(R).Proof. See, e.g., [37, Theorem 25.4℄.



D. Ikegami, Games in Set Theory and Logi 23In general, a �12 formula is not absolute between transitive models of ZF.Shoen�eld proved that any �12 formula is absolute between inner models of ZF+AC!(R):Theorem 1.12.3 (Shoen�eld). For any �12 formula � and real a, there is a tree Ton !�!1 in L[a℄ suh that for any real x, A2 � �(x; a) if and only Tx is wellfounded.This tree is alled a Shoen�eld tree and one an onstrut a Shoen�eld tree inany inner model of ZF+AC!(R) and the onstrution depends only on �, a, anda �xed unountable ordinal (in this ase, !V1 ).Hene Shoen�eld trees are absolute and thus every �12 formula (and �12 for-mula) is absolute between between inner models of ZF+AC!(R), espeially be-tween L and V .Proof. See, e.g., [66, 8F.8, 8F.9, 8F.10℄.In general, a �13 formula is not absolute between L and V , e.g., the statement\Every real is in L" is equivalent to a �13 formula and one an add nononstrutiblereal (e.g., a Cohen real over L) via foring starting from L. Using sharps for reals,Martin and Solovay onstruted a tree alled Martin-Solovay tree for a �13 formulawhih is like a Shoen�eld tree for a �12 formula. We will give a suÆient onditionfor the absoluteness of Martin-Solovay trees. Assume every real has a sharp. Fora real a, let Ia be the losed unbounded lass of indisernibles derived from a#and set I = Ta2!! Ia. The lass I is alled the lass of uniform indisernibles andu2 denotes the seond element of I and is alled the seond uniform indisernible.Theorem 1.12.4 (Martin and Solovay). LetM , N be inner models of ZFC+\Everyreal has a sharp". If uM2 = uN2 with M � N , then Martin-Solovay trees are abso-lute between M and N and hene every �13 formula (and �13 formula) is absolutebetween M and N .Proof. See, e.g., [33, Theorem 2.1℄.Every �13 formula is absolute between the ore model K and V when K exists:Theorem 1.12.5 (Dodd and Jensen; Steel). Assume every real has a sharp. If�12-determinay fails, then there is a real a0 suh that for any a �T a0, the a-relativized version of the ore model Ka exists and every �13 formula is absolutebetween Ka and V .Proof. In ase there is a real a suh that ay does not exist, this is due to Dodd andJensen [24℄. If every real has a dagger, then this is due to Steel [79, Theorem 7.9℄.88In [79, Theorem 7.9℄, he assumed two measurable ardinals. But one an replae thisassumption with daggers for reals. See [71, Theorem 0.1℄.



24 Chapter 1. IntrodutionBefore losing this setion, we disuss the absoluteness of being a winningstrategy for Gale-Stewart games with losed payo� sets:Theorem 1.12.6 (Folklore). Let X be a nonempty set and M be a transitivemodel of ZF with X 2 M . For any losed subset A of !X, given a strategy � forplayer I in M , M � \� is winning in A" if and only if V � \� is winning in A".The same holds for player II.Proof. As desribed in [45, 20.B℄, if there is a winning strategy for player I in thegame GX(A) for a losed set A, then there is a anonial winning quasistrategy�A for player I and a strategy � for I is winning for the game GX(A) if and onlyif � � �A. Sine the onstrution of �A is absolute between transitive models ofZF, the statement \� is winning in A" is absolute between transitive models ofZF, as desired.1.13 Borel odes and 1-Borel odesIf X is the Baire spae, the Cantor spae, or the real line, it is easy to showthat there is a surjetion from the Cantor spae to the set of all Borel subsets ofX. (By indution on 1 � � < !1, one an onstrut surjetions from the Cantorspae to �0� subsets of X and one an amalgamate them into one surjetion.)Borel odes are e�etive realizations of suh surjetions introdued by Solovay.To introdue them, we �rst �x some notions and notations. Let Y be a set. Atree T on Y is wellfounded if (T;�) is wellfounded. A node s of T is terminal ifthere is no node t in T extending s. Let Term(T ) denote the set of all terminalnodes of T . Let s; t be nodes of T . The node t is a suessor of s in T if t extendss and lh(t) = lh(s) + 1. For a node s of T , SuT (s) denotes the set of suessorsof s in T .We introdue Borel odes for Borel subsets of the Cantor spae. One anintrodue Borel odes for the Baire spae and the real line in the same way. Borelodes are pairs (T; f) where T is a wellfounded tree on ! and f is a funtion fromTerm(T ) to <!2. One an simply regard Borel odes as elements of the Cantorspae by identifying trees on ! with a map from <!! to f0; 1g and �xing a simplebijetion between <!! and !. With this identi�ation, we regard Borel odes aselements of the Cantor spae. Given a Borel ode  = (T; f), the deode B isde�ned as follows: For eah node t of T ,Bt = 8><>:[f(t)℄ if t 2 Term(T )!2 nBs if (9s 2 T ) fsg = SuT (t)Ss2SuT (t)Bs otherwise.We set B = B;. This is well-de�ned beause T is wellfounded. One an easilyhek any Borel set is of the form B for some Borel ode . The following arebasi observations on Borel odes:



D. Ikegami, Games in Set Theory and Logi 25Lemma 1.13.1 (Solovay). The set of Borel odes and the relations x 2 B,x =2 B are �11 sets and hene they are absolute between transitive models ofZF+AC!(R).Proof. See, e.g., [37, Lemma 25.44 & Lemma 25.55℄.In�nitary Borel odes (1-Borel odes) are a trans�nite generalization of Borelodes: Let L1;0(fangn2!) be the language allowing arbitrary many onjuntionsand disjuntions and no quanti�ers with atomi sentenes an for eah n 2 !. The1-Borel odes are the sentenes in L1;0(fangn2!) belonging to any � suh that� the atomi sentene an is in � for eah n 2 !,� if � is in �, then so is :�, and� if � is an ordinal and h�� j � < �i is a sequene of sentenes eah of whihis in �, then W�<� �� is also in �.To eah 1-Borel ode �, we assign a set of reals B� in the same way as deodingBorel odes:� if � = an, then B� = fx 2 !2 j x(n) = 1g,� if � = : , then B� = !2 nB , and� if � = W�<�  �, then B� = S�<�B � .A set of reals A is alled 1-Borel if there is an 1-Borel ode � suh that A = B�.As Borel odes, one an regard1-Borel odes as wellfounded trees with atomisentenes an on terminal nodes and deode them by assigning sets of reals on eahnode reursively from terminal nodes. (If a node has only one suessor, then itmeans \negation" and if a node has more than one suessors, then it means\disjuntion".) The only di�erene between Borel odes and 1-Borel odes isthat trees are on ! for Borel odes while trees are on ordinals for 1-Borel odes.From this visualization, it is easy to see that the statement \� is an 1-Borelode" is absolute between any transitive models of ZF by Lemma 1.12.1.Given an 1-Borel ode � and a real x, the problem whether x is in B�an be easily translated into the following kind of satisfation game using theabove visualization of 1-Borel odes via wellfounded trees: Let us regard � as awellfounded tree T� on ordinals with terminal nodes labeled by atomi sentenes.In the game G(T�), there are two players, Spoiler and Dupliator, and a ounterdesignating whih player should move next. We start with the top node (theempty sequene) with the ounter designating Dupliator. If the node has onlyone suessor, no player is supposed to deide anything and they move to theunique suessor and exhange the name in the ounter. (This is for the negation.)If the node has more than one suessors, then the player designated by the



26 Chapter 1. Introdutionounter hooses one of the suessors and keeps the name of the ounter. (Thisis for the disjuntion.) If the node is a terminal node, then look at the atomisentene labeled at the node, say an. If the real x satis�es that x(n) = 1, thenthe player designated by the ounter wins, otherwise the other player wins. It isfairly easy to see that a real x is in B� if and only if Dupliator has a winningstrategy in the game G(T�). By the fat that the payo� set of this game is alopen subset of ! for some ordinal , being a winning strategy in this game isabsolute in any transitive model of ZF by Theorem 1.12.6. Hene the statement\a real x is in B�" is absolute between transitive models of ZF.The following haraterization of 1-Borel sets is very useful:Fat 1.13.2 (Folklore). Let A be a set of reals. Then the following are equivalent:1. A is 1-Borel, and2. There is a formula � in the language of set theory and a set S of ordinalssuh that for eah real x,x 2 A () L[S; x℄ � �(x):Proof. See [80℄.Standard examples of 1-Borel sets are Suslin sets. A set of reals A is Suslinif there are an ordinal  and a tree T on 2�  suh that A = p[T ℄, where p[T ℄ isthe projetion of [T ℄ to the �rst oordinate, i.e.,p[T ℄ = fx 2 !2 j (9f 2 !) (x; f) 2 [T ℄g:By the above fat, every Suslin set is 1-Borel. Assuming the Axiom of Choie,it is easy to see that every set of reals is Suslin, in partiular 1-Borel. Henethe property 1-Borelness is trivial in the ZFC ontext while it is nontrivial andpowerful in a determinay world, as we will see in Chapter 3.1.14 Blakwell gamesIn this setion, we introdue Blakwell games, whih are in�nite games withimperfet information and ompare them with Gale-Stewart games.In 1928, John von Neumann proved his famous minimax theorem whih isabout �nite games with imperfet information. In�nite versions of von Neumann'sgames were introdued by David Blakwell [15℄ where he proved the analogue ofvon Neumann's theorem for GÆ sets of reals (i.e., �02 sets of reals). The games heintrodued are alled Blakwell games and they were alled by him \games withslightly imperfet information" in his paper [16℄.



D. Ikegami, Games in Set Theory and Logi 27We start with the de�nition of Blakwell games.9 Let X be a nonempty setand assume AC!(!R). Reall from x 1.4 that the topology of !X is given by theprodut topology where eah oordinate (i.e., X) is seen as the disrete spae.In Blakwell games, players hoose probabilities on X instead of elements of Xand with those probabilities, one an dedue a Borel probability on !X, i.e., ameasure assigning probability to eah Borel subset of !X. Player I wins if theprobability of a given payo� set is 1 and player II wins if the probability of thepayo� set is 0. Let us formulate this in detail.De�nition 1.14.1. A mixed strategy for player I is a funtion � : XEven !Prob!(X), where Prob!(X) is the set of funtions � : X ! [0; 1℄ withPx2X �(x) =1.10 A mixed strategy for player II is a funtion � : XOdd ! Prob!(X).Given mixed strategies �, � for player I and II respetively, let �(�; �) : <!X !Prob!(X) be as follows: For eah �nite sequene s of elements of X,�(�; �)(s) = (�(s) if s 2 XEven,�(s) if s 2 XOdd.For eah �nite sequene s of elements of X, de�ne��;� ([s℄) = lh(s)�1Yi=0 �(�; �)(s�i) �s(i)�:Reall that [s℄ denotes the set of x 2 !X suh that x � s and these sets are basiopen sets in the spae !X. With the help of AC!(!X), we an uniquely extend��;� to a Borel probability on !X, i.e., the probability whose domain is the setof all Borel sets in the spae !X. Let us also use ��;� for denoting this Borelprobability.Let A be a subset of !X. A mixed strategy � for player I is optimal in Aif for any mixed strategy � for player II, A is ��;� -measurable and ��;� (A) = 1.A mixed strategy � for player II is optimal in A if for any mixed strategy � forplayer I, A is ��;� -measurable and ��;� (A) = 0. A set A is Blakwell-determinedif one of the players has an optimal strategy in A. The axiom Bl-ADX states thatevery subset of !X is Blakwell-determined. We write Bl-AD for Bl-AD!.Note that sine there is a bijetion between R and !R, by Remark 1.2.1,AC!(R) implies AC!(!R) and hene one an formulate Blakwell games in !R andBl-ADR within ZF+AC!(R). The following is an analogy with Proposition 1.6.6:9Our de�nitions of Blakwell games and Blakwell determinay are di�erent from the originalones given by Blakwell [16℄ where Blakwell determinay is formulated as an extension of vonNeumann's minimax theorem, but our formulation is equivalent to the original one when it isabout the Cantor spae (i.e., when X = 2). For the original formulation of Blakwell gamesand Blakwell determinay, see, e.g., [56, x 3 & x 5℄.10We use Prob!(X) to denote suh funtions beause they are the same as Borel probabilities� on X with ountable support, i.e., there is a ountable subset A of X with �(A) = 1.



28 Chapter 1. IntrodutionProposition 1.14.2.1. Let X; Y be nonempty sets and suppose that there is an injetion from Xto Y and assume AC!(!Y ). Then Bl-ADY implies Bl-ADX . In partiular,Bl-ADR implies Bl-AD.2. The axioms Bl-AD and Bl-AD2 are equivalent.Proof. The �rst item is easy to see. For the seond item, see [55, Corollary 4.4℄.As for Gale-Stewart games, one ould ask what kind of subsets of !X areBlakwell-determined for a nonempty set X. After proving that every GÆ subsetof the Cantor spae is Blakwell-determined, Blakwell asked whether every Borelsubset of the Cantor spae is determined. It was Donald Martin who found ageneral onnetion between the determinay of Gale-Stewart games and Blakwelldeterminay.11Theorem 1.14.3 (Martin). Let X be a set and assume AC!(!X). If there isa winning strategy for player I (resp., II) in a subset A of !X, then there isan optimal strategy for player I (resp., II) in A. In partiular, AD implies thatBl-AD and ADR implies that Bl-ADR.Proof. Given a strategy � for player I (resp., II), one an naturally translate �into a mixed strategy �̂ for player I (resp., II) by setting �̂(s) to be the Dirameasure onentrating on �(s). It is easy to see that if � is winning in A, then �̂is optimal in A.By Theorem 1.6.4, every Borel subset of the Cantor spae is Blakwell-determinedin ZFC and this answers the question of Blakwell. After proving Theorem 1.14.3,Martin onjetured the following:Conjeture 1.14.4 (Martin). Bl-AD implies AD.This onjeture is still not known to be true. The best known result towardAD from Bl-AD is as follows: Reall the notion of Suslinness from x 1.13. A setof reals is o-Suslin if its omplement is Suslin.Theorem 1.14.5 (Martin, Neeman, and Vervoort). Assume Bl-AD. Then everySuslin and o-Suslin set of reals is determined.Proof. See [59, Lemma 4.1℄.1211In [58℄, Martin proved the Blakwell determinay in the original formulation as mentionedin Footnote 9, not in our formulation.12In [59, Lemma 4.1℄, they assume the Blakwell determinay for sets of reals in a weaklysaled pointlass. But the argument shows the statement in Theorem 1.14.5.



D. Ikegami, Games in Set Theory and Logi 29Together with the following result, one an establish the equionsisteny be-tween AD and Bl-AD:Theorem 1.14.6 (Kehris and Woodin). Assume that every Suslin and o-Suslinset of reals is determined. Then ADL(R) holds.Proof. See [46℄.Corollary 1.14.7 (Martin, Neeman, and Vervoort). In L(R), AD and Bl-AD areequivalent. In partiular, AD and Bl-AD are equionsistent.Also, Bl-AD has some onsequene on regularity properties:Theorem 1.14.8 (Vervoort). Assume Bl-AD. Then every set of reals is Lebesguemeasurable.Proof. See [86℄.We disuss the onnetion between Blakwell determinay and other regularityproperties suh as the Baire property in x 3.2.It is not diÆult to see that if �nite games are Blakwell determined, thenthey are determined. As a orollary, one an obtain the following:Theorem 1.14.9 (L�owe). Assume Bl-ADR. Then every relation on the reals anbe uniformized by a funtion.Proof. See [56, Theorem 9.3℄.Sine there is a relation on the reals whih annot be uniformized by a funtionin L(R), Bl-ADR does not hold in L(R). Sine Bl-ADR implies Bl-AD by the �rstitem of Remark 1.14.2 and Bl-AD implies ADL(R) by Corollary 1.14.7, AD doesnot imply Bl-ADR.In Chapter 3, we disuss the onnetion between ADR and Bl-ADR.1.15 Wadge reduibility and Wadge gamesWhen we study desriptive set theory, we often would like to ompare given twosets of reals via some measure of omplexity, i.e., we would like to ask the question\Whih set of reals is more omplex than the other?". In 1972, Wadge [88℄introdued Wadge reduibility for sets of reals in the Baire spae, whih is ananalogue of many-one reduibility in reursion theory: A set of reals A is Wadgereduible to a set of reals B if there is a ontinuous funtion f from the Bairespae to itself suh that A = f�1(B). After its introdution, set theorists inCalifornia developed a beautiful theory of Wadge reduibility under the Axiomof Determinay (AD) plus the priniple of Dependent Choie (DC). Nowadaysthis theory is one of the basi tools in the researh of determinay and is essential



30 Chapter 1. Introdutionto the study of desriptive set theory. The key tool of the analysis of Wadgereduibility is a type of in�nite games alled Wadge games, whih haraterizeontinuous funtions from the Baire spae to itself.For a subset A of a topologial spae X, A denotes the omplement of A andA denotes the losure of A in X.We start with the de�nition of Wadge reduibility for a general topologialspae. Let X be a topologial spae and A;B be subsets of X. The set A is Wadgereduible to B (write A �XW B) if there is a ontinuous funtion f : X ! X suhthat A = f�1(B). Hene the problem of the membership of A an be reduedto that of the membership of B via a ontinuous funtion, and in this sense Bis more ompliated than (or as ompliated as) A. This notion reminds us ofthe many-one reduibility for subsets of ! in reursion theory given by replaingontinuous funtions with reursive funtions. We de�ne three other notions ofWadge reduibility. A subset A of X is Wadge equivalent to a subset B of X(A �XW B) if A �XW B and B �XW A. A subset A of X is stritly Wadge reduibleto a subset B of X (A <XW B) if A �XW B and B �XW A. A subset A of X isWadge omparable to a subset B of X if A �XW B or B �XW A holds. It is easyto see that the Wadge order �XW is a preorder (i.e., reexive and transitive) andthat the Wadge equivalene �XW is an equivalene relation on subsets of X. Anequivalene lass of this equivalene relation is alled a Wadge degree.When X is the Baire spae, the study of Wadge degrees is interesting todesriptive set theorists in the way that Turing degrees are interesting to reursiontheorists. Sine eah boldfae pointlass is losed under ontinuous preimages, itonsists of an initial segment of all the subsets of reals via Wadge reduibility andhene the study of Wadge degrees gives us a �ner analysis of boldfae pointlassessuh as Borel lasses �0� and projetive lasses �1n. Wadge introdued Wadgegames to analyze Wadge reduibility for the Baire spae. Given two set of realsA;B in the Baire spae, the Wadge game GW(A;B) is played by two playersI and II in the following way: I plays a natural number x0, then II plays anatural number y0 or she an pass, then I plays again a natural number x1 andII plays a natural number or she an pass. After ! rounds of this proess, theywill produe sequenes x = hxn j n 2 !i and y = hyn j n < ii where i � !.Player II wins if i = ! (i.e., player II plays natural numbers in�nitely often) andx 2 A () y 2 B. Otherwise player I wins. It is easy to see that A �!!W B ifand only if player II has a winning strategy in the Wadge game GW(A;B). SineWadge games an be easily simulated by Gale-Stewart games, under AD, we anonlude the following:Theorem 1.15.1 (Wadge's Lemma). Assume AD and let A;B be two sets ofreals in the Baire spae. Then either A �!!W B or B �!!W A holds.Proof. Suppose A �!!W B. Then by the above observation, player I has a winningstrategy in the game GW(A;B). But using this strategy, player II an win thegame GW(B;A) beause the negation of x 2 A () y 2 B is the same as



D. Ikegami, Games in Set Theory and Logi 31y 2 B () x 2 A. Hene player II has a winning strategy in the gameGW(B;A) and B �!!W A.By the above theorem, we an dedue that the Wadge order �!!W is almostlinear in the following sense: Let X be a topologial spae and A be a subset ofX. We say A is selfdual if A �XW A (equivalently A �XW A) and non-selfdual ifA �XW A (equivalently A �XW A). Let A be a selfdual set of reals and B be a setof reals in the Baire spae. Then either i) B <!!W A, ii) B �!!W A, or iii) A <!!W Bholds. Let A be a non-selfdual set of reals and B be a set of reals in the Bairespae. Then either i) B <!!W A and B <!!W A, ii) B �!!W A, iii) B �!!W A, or iv)A <!!W B and A <!!W B holds.Donald Martin and Leonard Monk proved that the Wadge order �!!W is well-founded. Hene we an measure the omplexity of sets of reals via ordinals bytaking their rank in the Wadge order.Theorem 1.15.2 (Martin and Monk). Assume AD+DCR. Then the Wadgeorder �!!W is wellfounded.Proof. See, e.g., [83, Theorem 2.2℄.The above two theorems are essential parts of the basi theory of the Wadgeorder for the Baire spae. In Chapter 5, we show that both theorems fail for theWadge order for the real line.





Chapter 2Games and Regularity Properties
In this hapter, we fous on the onnetion between in�nite games and regularityproperties for sets of reals. Roughly speaking, a set of reals with a regularityproperty an be approximated by some simple sets (e.g., open sets or Borel sets)modulo some small sets.We haraterize almost all the known regularity properties for sets of reals viathe Baire property for some topologial spaes and use Banah-Mazur games toprove the general equivalene theorems between the regularity properties, foringabsoluteness, and the transendene properties over some anonial inner models.With the help of these equivalene results, we answer some open questions fromset theory of the reals.In this hapter, we work in ZFC. We assume that readers are familiar with theelementary theories of foring and desriptive set theory. (For basi de�nitionsnot given in this paper, see [37, 66℄.) When we are talking about \reals", wemean elements of the Baire spae !! or of the Cantor spae !2. In this hapter,we use R for Mathias foring and we will not use it for the real line or the set ofall reals.2.1 P-Baireness and P-measurabilityIn this setion, we introdue two kinds of regularity properties for sets of realsfor a wide lass of foring notions P and ompare them. The �rst one is alledP-Baireness, whih was impliitly mentioned in the paper by Feng, Magidor,and Woodin [25℄. The idea of P-Baireness is to redue properties for sets ofreals to the Baire property in the Stone spae of P by taking the ontinuouspreimages of sets of reals in the Stone spae of P. Sets of reals with the P-Baireness behave niely in foring extensions by P beause ontinuous funtionsfrom the Stone spae of P to the reals orrespond to P-names for reals. Theseond one is alled P-measurability, whih is a generalization of almost all theknown regularity properties for sets of reals. Sine almost all the known regularity33



34 Chapter 2. Games and Regularity Propertiesproperties ome from tree-type forings, we �rst introdue a wide lass of tree-type forings alled strongly arboreal forings. As is mentioned in the introdutionof this hapter, a set of reals with a regularity property an be approximated bysome simple sets modulo small sets. To eah strongly arboreal foring P, we willassoiate a �-ideal IP whih will be the set of small sets in this ontext and give thede�nition of P-measurability. After introduing these two regularity properties,we will investigate the onnetion between them.From now on, we work with only separative partial orders: A partial order Pis separative if for any two elements p; q of P, if p � q, then there is an r � pwith r?q. Every Boolean algebra is separative. The advantage of working withseparative partial orders is that one an identify P and its image via iP inBP where(BP; iP) is a ompletion of P, namely the embedding i is isomorphi between P andits image. From now on, we always identify P and its image inside a ompletionof P.We start with P-Baireness. We reall the de�nition of Stone spaes from x 1.4.For a partial order P, the Stone spae of P (denoted by St(P)) is the set of allultra�lters on BP equipped with the topology generated by fOb j b 2 BPg, whereBP is a ompletion of P and Ob = fu 2 St(P) j u 3 bg. For example, if P isCohen foring C , then St(C ) is homeomorphi to the Cantor spae !2. Densesets in P are the same as open dense subsets in St(P): If D is a dense subset ofP, then the set SfOp j p 2 Dg is open dense in St(P), where i is a unique denseembedding from P to BP. Conversely, if U is an open dense subset of St(P), thenfp 2 P j Op � Ug is a dense open subset of P.Next, we disuss meagerness and the Baire property in St(P). We should �rstobserve that this spae meets our requirement:Lemma 2.1.1. Let P be a separative partial order. Then St(P) is a Baire spae,i.e., any nonempty open set in St(P) is not meager.Proof. We show that Ob is not meager for eah b in BP. Sine P is dense in BP, itsuÆes to show that Op is not meager for eah p in P. Sine any nowhere denseset is a subset of a losed nowhere dense set (the losure of a nowhere dense setis again nowhere dense by de�nition) and the omplement of a losed nowheredense set is an open dense set, it suÆes to show that Op intersets with theountable intersetion of any open dense sets in St(P) for eah p 2 P.Take any p 2 P and let fUn j n 2 !g be a ountable set of open densesubsets of St(P). We would like to prove that the intersetion Op with Tn2! Unis nonempty. We onstrut a desending sequene hpn 2 P j n 2 !i suh thatp0 � p and Opn � Un for eah n 2 !. This is possible beause eah Un is opendense in St(P). Then onsider any ultra�lter u extending fpn j n 2 !g (we useZorn's Lemma here). Then u belongs to Op and Un for eah n 2 !. Hene theintersetion Op with Tn2! Un is nonempty.Before de�ning P-Baireness, let us see the onnetion between Baire mea-surable funtions from St(P) to the reals and P-names for reals. Let X; Y be



D. Ikegami, Games in Set Theory and Logi 35topologial spaes. Then a funtion f : X ! Y is Baire measurable if for anyopen set U in Y , f�1(U) has the Baire property in X. Baire measurable fun-tions are the same as ontinuous funtions modulo meager sets: Let X; Y betopologial spaes and assume Y is seond ountable, i.e., there is a ountablebase for the topology of Y . Then it is fairly easy to see that a funtion f : X ! Yis Baire measurable if and only if there is a omeager set D in X suh that f�Dis ontinuous.There is a natural orrespondene between Baire measurable funtions fromSt(P) to the reals and P-names for reals:Lemma 2.1.2 (Feng, Magidor, and Woodin). Let P be a separative partial order.1. If f : St(P) ! !! is a Baire measurable funtion, then�f = �(m;n)�; p) j Op n fu 2 St(P) j f(u)(m) = ng is meager	is a P-name for a real.2. Let � be a P-name for a real. De�ne f� as follows: For u 2 St(P) andm;n 2 !, f� (u)(m) = n () (9p 2 u) p  �( �m) = �n:Then the domain of f� is omeager in St(P) and f� is ontinuous on the domain.Hene it an be uniquely extended to a Baire measurable funtion from St(P) tothe reals modulo meager sets.3. If f : St(P) ! !! is a Baire measurable funtion, then f�f and f agree ona omeager set in St(P). Also, if � is a P-name for a real, then  �f� = � .Proof. The result is due to Feng, Magidor, and Woodin [25, Theorem 3.2℄. Forthe sake of ompleteness, we will give a proof.Let us �rst �x some notation. When f is a funtion from St(P) to !! andm;n are natural numbers, we write Afm;n = fu 2 St(P) j f(u)(m) = ng.Let us start with proving the �rst item. We show that �f is a P-name for areal assuming f : St(P) ! !! is Baire measurable. Take any P-generi �lter Gover V . We prove that �Gf is a funtion from ! to !. By the de�nition of �f , it iseasy to show that �Gf is a subset of ! � !.We �rst laim that it is a funtion. Suppose (m;n1); (m;n2) 2 �Gf for naturalnumbers m;n1, and n2. We show that n1 = n2. By the assumption, there arepi 2 G (i = 1; 2) suh that ((m;ni)�; pi) 2 �f for i = 1; 2 . By the de�nition of �f ,Opi nAfm;ni is meager in St(P) for i = 1; 2. Sine p1; p2 2 G and G is a �lter, thereis a p suh that p � p1; p2. Hene Op n Afm;ni is meager in St(P) for i = 1; 2. ByLemma 2.1.1, Op is not meager in St(P). Hene Op \Afm;n1 \Afm;n2 is not meagerand espeially non-empty. Take any element u from Op \ Afm;n1 \ Afm;n2 . By thede�nition of Afm;ni for i = 1; 2, n1 = f(u)(m) = n2, as desired.We prove that m 2 dom(�Gf ) for every natural number m. Fix an m. Sine fis Baire measurable, the set D = fp 2 P j (9n 2 !) OpnAfm;n is meagerg is dense.



36 Chapter 2. Games and Regularity PropertiesBy the generiity of G, there is a p both in G and D. Then Op n Afm;n is meagerfor some n and hene ((m;n)�; p) 2 �f whih means that �Gf (m) = n, as desired.We show the seond item. Let � be a P-name for a real. We �rst show that thedomain of f� is omeager in St(P). If we set Dm = fp 2 P j (9n) p  �( �m) = �ngand Um = SfOp j p 2 Dmg for eah m 2 !, dom(f� ) = Tm2! Um. Sine � is aP-name for a real, Dm is dense and hene Um is open dense in St(P) for eah m.So dom(f� ) is omeager in St(P).We next show that f� is a funtion. Let u 2 dom(f� ) and assume f� (u)(m) =n1 and f� (u)(m) = n2 for natural numbers m;n1, and n2. We show that n1 = n2.By the de�nition of f� , there are pi 2 u suh that pi  �( �m) = �ni for i = 1; 2.Sine u is a �lter, there is a p suh that p � pi for eah i = 1; 2, whih yieldsp  �n1 = �( �m) = �n2. Hene n1 = n2.We �nally show that f� is Baire measurable. We prove that Af�m;n has theBaire property in St(P) for all natural numbers m and n. Let U = SfOp jp  �( �m) = �ng. We show that U \ dom(f� ) = Af�m;n \ dom(f� ). If u is inU \ dom(f� ), then there is a p 2 u suh that p  �( �m) = �n. By the de�nitionof f� , f� (u)(m) = n and hene u 2 Af�m;n \ dom(f� ). Conversely, if u is inAf�m;n \dom(f� ), then f� (u)(m) = n and there is a p 2 u suh that p  �( �m) = �n.Hene u 2 U \ dom(f� ).We prove the third item. We �rst show that f�f and f agree on a omeager setif f is Baire measurable. First note that ifOpnAfm;n is meager, then f�f and f agreeon Op\Afm;n. For let u be in Op\Afm;n. Sine OpnAfm;n is meager, ((m;n)�; p) 2 �f ,in partiular, p  �f( �m) = �n. By the de�nition of f�f , f�f (u)(m) = n, as desired.Sine f is Baire measurable, the set D = fp 2 P j (9n 2 !) Op nAfm;n is meagergis dense and hene the set A = SSn2!fOp \ Afm;n j Op n Afm;n is meagerg isomeager. But f�f and f agree on A, as desired.We next show that �Gf� = �G for eah P-name � for a real and a P-generi �lterG over V . Suppose �Gf� (m) = n. We show that �G(m) = n. Sine �Gf� (m) = n,there is a p 2 G suh that ((m;n)�; p) 2 �f� . By the de�nition �f� , Op n Af�m;n ismeager. Then by the de�nition of f� , the set fu 2 St(P) j (9p0 2 u) p0  �( �m) =�ng is omeager in Op, whih means that the set fp0 � p j p0  �( �m) = �ng isdense below p. Sine p 2 G, by the generiity of G, there is a p0 2 G suh thatp0  �( �m) = �n. Hene �G(m) = n, as desired.Now we de�ne the property P-Baireness. Let P be a separative partial orderand A be a set of reals. Then A is P-Baire if for any Baire measurable funtionf : St(P) ! !!, f�1(A) has the Baire property in St(P). It is easy to see thatevery Borel set of reals is P-Baire for any P by the same argument as for the Baireproperty we gave in the paragraphs after De�nition 1.8.1.Next we introdue P-measurability. We start with de�ning a lass of tree-type forings we will work on from now on. A partial order P is arboreal if itsonditions are perfet trees on ! (or on 2) ordered by inlusion. But this lass offorings ontains some trivial forings suh as P = f<!!g. We need the following



D. Ikegami, Games in Set Theory and Logi 37stronger notion:De�nition 2.1.3. A partial order P is strongly arboreal if it is arboreal and thefollowing holds: (8T 2 P) (8t 2 T ) Tt 2 P;where Tt = fs 2 T j either s � t or s � tg.Note that every strongly arboreal foring is separative (if S � T , then thereis an s 2 S n T and hene Ss � S and Ss?T ).With strongly arboreal forings, we an ode generi objets by reals in thestandard way: Let P be strongly arboreal and G be P-generi over V . Let xG =Sfstem(T ) j T 2 Gg. Then xG is a real and G = fT 2 P j xG 2 [T ℄g, where [T ℄is the set of all in�nite paths through T . Hene V [xG℄ = V [G℄. We all suh realxG a P-generi real over V .Almost all typial forings related to regularity properties are strongly arbo-real:Example 2.1.4.1. Cohen foring C : Let T0 be <!!. Consider the partial order �f(T0)s j s 2<!!g;��. Then this is strongly arboreal and equivalent to Cohen foring.2. Random foring B : Consider the set of all perfet trees T on 2 suh thatfor any t 2 T , [Tt℄ has a positive Lebesgue measure, ordered by inlusion. Thenthis foring is strongly arboreal and equivalent to random foring.3. Hehler foring D : For (n; f) 2 D , letT(n;f) = nt 2 <!! j either t � f�n or�t � f�n and �8m 2 dom(t)� t(m) � f(m)�o:Then the partial order (fT(n;f) j (n; f) 2 D g;�) is strongly arboreal and equiva-lent to Hehler foring.4. Mathias foring R: For a ondition (s; A) in R, letT(s;A) = ft 2 <!! j t is stritly inreasing and s � ran(t) � s [ Ag:Then fT(s;A) j (s; A) 2 Rg is a strongly arboreal foring equivalent to Mathiasforing.5. Eventually di�erent foring E : For a ondition (s; F ) in E , letT(s;F ) = ft 2 <!! j either t � s or�t � s and (8f 2 F ) �8n 2 dom(t n s)� t(n) 6= f(n)�g:Then fT(s;F ) j (s; F ) 2 Eg is a strongly arboreal foring equivalent to eventuallydi�erent foring.6. Saks foring S, Silver foring V, Miller foring M , Laver foring L: Theseforings an be naturally seen as strongly arboreal forings.



38 Chapter 2. Games and Regularity PropertiesWe now introdue a �-ideal IP on the reals expressing \smallness" for eahstrongly arboreal foring P.De�nition 2.1.5. Let P be a strongly arboreal foring. A set of reals A is P-nullif for any T in P there is a T 0 � T suh that [T 0℄ \A = ;. Let NP denote the setof all P-null sets and IP denote the �-ideal generated by P-null sets, i.e., the setof all ountable unions of P-null sets.Example 2.1.6.1. Cohen foring C : C -null sets are the same as nowhere dense sets in theBaire spae !! and IC is the ideal of meager sets in the Baire spae.2. Random foring B : B -null sets are the same as Lebesgue null sets in theBaire spae and IB is the Lebesgue null ideal.3. Hehler foring D : D -null sets are the same as nowhere dense sets in thedominating topology, i.e., the topology generated by f[s; f ℄ j (s; f) 2 D g where[s; f ℄ = fx 2 !! j s � x and (8n � dom(s)) x(n) � f(n)g:Hene ID is the meager ideal in the dominating topology.4. Eventually di�erent foring E : E -null sets are the same as nowhere densesets in the eventually di�erent topology E , i.e., the topology generated by f[s; F ℄ j(s; F ) 2 Eg where[s; F ℄ = fx 2 !! j s � x and (8f 2 F ) (8n � dom(s)) x(n) 6= f(n)g:Hene IE is the meager ideal in the topology E .5. Mathias foring R: A set of reals A is R-null if and only if fran(x) j x 2A \A0g is Ramsey null or meager in the Ellentuk topology, where A0 is the setof stritly inreasing in�nite sequenes of natural numbers. Hene IR = NR.6. Saks foring S: In this ase, IS = NS by a standard fusion argument. Theideal IS is alled the Marzewski ideal and often denoted by s0.As with Saks foring, all the typial non- tree-type forings admitting afusion argument satisfy the equation IP = NP. In the ase of  forings, IP isoften di�erent from NP (e.g., Cohen foring and Hehler foring).We now introdue P-measurability:De�nition 2.1.7. Let P be strongly arboreal. A set of reals A is P-measurableif for any T in P there is a T 0 � T suh that either [T 0℄ \ A 2 IP or [T 0℄ nA 2 IP.As is expeted, P-measurability oinides with a known regularity propertyfor P when P is :Proposition 2.1.8. Let P be a strongly arboreal,  foring and let A be a setof reals. Then A is P-measurable if and only if there is a Borel set B suh thatA4B 2 IP, where A4B is the symmetri di�erene between A and B.



D. Ikegami, Games in Set Theory and Logi 39Proof. The diretion from right to left follows from the fat that every Borel setof reals is P-measurable whih will be proved in Lemma 2.1.15.For the other diretion, suppose A is P-measurable and we will �nd a Borelset approximating A modulo IP. Sine A is P-measurable, the set D = fT 2 P jeither [T ℄ \ A 2 IP or [T ℄ nA 2 IPg is dense. We take a maximal antihain A inD and de�ne B = Sf[T ℄ j T 2 A and [T ℄ n A 2 IPg. Then sine A is ountableby the -ness of P, B is Borel and A4B 2 IP beause D is dense.This argument does not work for non- forings suh as Saks foring. Forexample, assuming every �11 set has the perfet set property (i.e., either the setis ountable or ontains a perfet subset), there is no �11 Bernstein set (i.e., a setwhere neither it nor its omplement ontains a perfet subset) but for a �11 setof reals A, A is approximated by a Borel set modulo IS if and only if A is Borel.This is beause IS restrited to analyti sets (or o-analyti sets) is the set of allountable sets of reals by the assumption that every �11 set has the perfet setproperty.But P-measurability is almost the same as the regularity properties for non- forings P, e.g., for Mathias foring, a set of reals A is R-measurable if andonly if fran(x) j x 2 A \ A0g is ompletely Ramsey (or has the Baire propertyin the Ellentuk topology), where A0 is the set of all stritly inreasing in�nitesequenes of natural numbers. Also, for Saks foring, the following holds:Proposition 2.1.9 (Brendle, L�owe). Let � be a topologially reasonable point-lass on the Cantor spae !2, i.e., it is a set of subsets of the Cantor spae losedunder ontinuous preimages on the Cantor spae and any intersetion between aset in � and a losed set in the Cantor spae. Then every set in � is S-measurableif and only if there is no Bernstein set in �.1Proof. See [20, Lemma 2.1℄.We now introdue a (possibly �ner) ideal IP� whih will be entral to ourtheorems:De�nition 2.1.10. Let P be a strongly arboreal foring. A set of reals A is inIP� if for any T in P there is a T 0 � T suh that [T 0℄ \ A is in IP.Question 2.1.11. Let P be a strongly arboreal, proper foring. Can we proveIP = IP�?We give some easy observations onerning Question 2.1.11:1In general, the property not being a Bernstein set does not imply S-measurability whilethe onverse is true. By using the axiom of hoie, we an onstrut a set of reals whih is notS-measurable but is not a Bernstein set.



40 Chapter 2. Games and Regularity PropertiesLemma 2.1.12. Let P be a strongly arboreal foring.1. The ideal IP is a subset of IP�.2. A set of reals A is P-measurable if and only if for any T in P there is aT 0 � T suh that either [T 0℄ \ A 2 IP� or [T 0℄ n A 2 IP� holds. Hene we getthe same notion of measurability even if we replae IP by IP� in the de�nition ofP-measurability.3. If P is , then IP = IP�.4. If IP = NP, then IP = IP�. Hene IP = IP� for any typial non- tree-typeforing admitting a fusion argument.5. (Brendle) Suppose P satis�es the following ondition: For any maximalantihain A in P, there is a maximal antihain A0 suh that for any two distintelements T; T 0 of A0, [T ℄ and [T 0℄ are disjoint and A0 re�nes A, i.e., for any T 0 inA0 there is a T in A with T 0 � T . Then IP = IP�.Saks foring is a typial example of the ondition in 5. But we do not knowof any strongly arboreal P satisfying the ondition but whih are neither  norsatisfying IP = NP.Proof. We will prove only 5. The rest are straightforward. Suppose P satis�esthe above ondition and let A be in IP�. We prove A is in IP. Sine A is in IP�,the set of all T in P suh that [T ℄ \ A 2 IP is dense in P. Hene we an takea maximal antihain A ontained in this set. By the ondition, we may assumefor any two distint elements T1, T2 of A, [T1℄ and [T2℄ are pairwise disjoint. Foreah T in A, [T ℄ \ A 2 IP. So we an pik fNn;T j n 2 !g suh that eah Nn;Tis P-null and Sn2!Nn;T = [T ℄ \ A. Let Nn = ST2ANn;T for eah n 2 !. SineA nSn2!Nn is P-null, the proof is omplete if we prove the following:Claim 2.1.13. For eah n 2 !, Nn is P-null.Proof of Claim 2.1.13. Take any T 0 in P. Sine A is a maximal antihain, we antake a T 2 A suh that T and T 0 are ompatible. Take a ommon extension T 00of T and T 0. Then [T 00℄\Nn = [T 00℄\Nn;T beause of the property of A. But weknow that Nn;T is P-null. Hene we an take a further extension of T 00 disjointfrom Nn. � (Claim 2.1.13)Before investigating the relation between P-Baireness and P-measurability,we �rst look at the P-name for a generi real we de�ned in the paragraph afterDe�nition 2.1.3 and its orresponding Baire measurable funtion from St(P) tothe reals given in Lemma 2.1.2. Reall that xG is a generi real onstruted froma generi objet G for any strongly arboreal foring P. Let _xG be a anonialP-name for xG.Example 2.1.14. Let P be strongly arboreal. Then f _xG(u)(m) = n if and onlyif there is a T in u suh that stem(T )(m) = n, where f _xG is the orresponding



D. Ikegami, Games in Set Theory and Logi 41Baire measurable funtion from St(P) to the reals given in Lemma 2.1.2. Henef _xG(u) = Sfstem(T ) j T 2 ug for u 2 dom(f _xG), as is expeted.From now on, we use � for denoting f _xG throughout this hapter.We give the relation between P-Baireness and P-measurability. Reall thatIP� is a tehnial ideal introdued in De�nition 2.1.10 whih is the same as IP formost ases.Lemma 2.1.15 (P-Baireness vs. P-measurability). Let P be a strongly arboreal,proper foring and A be a set of reals. Then1. A is in IP� if and only if ��1(A) is meager in St(P), and2. A is P-measurable if and only if ��1(A) has the Baire property in St(P).In partiular, if A is P-Baire, then A is P-measurable. Hene every Borel set isP-measurable by the paragraph after Lemma 2.1.2.Note that P-measurability does not imply P-Baireness in general.2Proof of Lemma 2.1.15. Note that the domain of � is omeager in St(P) and � isontinuous on it by Lemma 2.1.2.The following are useful for the proof:Claim 2.1.16. (a) For T in P and u 2 dom(�), if T 2 u, then �(u) 2 [T ℄.(b) For T in P, the onverse of (a) holds for omeager many u, i.e., for omeagermany u in St(P), u is in the domain of � and if �(u) 2 [T ℄, then T 2 u.Proof of Claim 2.1.16. For (a), suppose T 2 u. We prove �(u)�n 2 T for eahn 2 !. Fix a natural number n. Then by Example 2.1.14, there is a T 0 in usuh that stem(T 0) � �(u)�n. Sine both T and T 0 are in u, they are ompatible,espeially stem(T 0) 2 T (otherwise [T ℄ \ [T 0℄ = ;). Hene �(u)�n 2 T .For (b), take any T in P. Then the set DT = fT 0 2 P j T 0 � T or [T 0℄\[T ℄ = ;gis dense in P. (Take any T 0. If T 0 * T , then there is a t0 2 T 0 n T . By strongarborealness of P, T 0t0 2 P and [T 0t0 ℄ \ [T ℄ = ;.) Sine DT is dense, the setfu j u \DT 6= ;g is open dense in St(P). Hene it suÆes to show that if u is indom(�), u \ DT 6= ; and �(u) 2 [T ℄, then T 2 u. Suppose T =2 u. Then sineu \DT 6= ;, there is a T 0 2 u suh that [T 0℄ \ [T ℄ = ;. By (a), �(u) 2 [T 0℄, hene�(u) =2 [T ℄, a ontradition. � (Claim 2.1.16)We prove the �rst item of Lemma 2.1.15. We start with the diretion fromleft to right.We �rst show that ��1(A) is meager if A is in NP. If A is in NP, then theset D = fT j [T ℄ \ A = ;g is dense in P. Hene the set of all u 2 dom(�) with2For example, if A is a �12 (lightfae) set of reals universal for �12 (boldfae) sets of reals andif every �12 (lightfae) set of reals has the Baire property but there is a �12 (boldfae) set of realswithout the Baire property, then A is C -measurable by Proposition 2.1.8, but A is not C -Bairebeause every�12 subset of the Cantor spae is a ontinuous preimage of A and every ontinuouspreimage of A has to have the Baire property in the Cantor spae for the C -Baireness of A.



42 Chapter 2. Games and Regularity Propertiesu\D 6= ; is omeager. But if u is in the omeager set, then there is a T 2 u\Dand by Claim 2.1.16 (a), �(u) 2 [T ℄ and [T ℄ \ A = ;, in partiular �(u) =2 A.Therefore ��1(A) is meager.We have seen that ��1(A) is meager assuming A is in NP. Sine IP is the�-ideal generated by sets in NP, ��1(A) is meager for all A in IP.We show that ��1(A) is meager if A is in IP�. Sine A is in IP�, the setD0 = fT j [T ℄ \ A 2 IPg is dense in P. We use the following well-known fat:Fat 2.1.17. Let X be a topologial spae and A be a subset of X. Then�SfU j U is open and U \ A is meager g� \ A is meager.Proof of Fat 2.1.17. See, e.g., [45, Theorem 8.29℄.Sine D0 is dense, SfOT j T 2 D0g is open dense. By the above fat, it suÆesto prove that OT \ ��1(A) is meager for any T in D0.Take any T in D0. By the de�nition of D0, we know that [T ℄\A is in IP. Hene��1([T ℄\A) is meager in St(P). But by Claim 2.1.16 (a), OT \��1(A)\dom(�) ���1([T ℄\A). Sine dom(�) is omeager in St(P), OT \��1(A) is almost inludedin the meager set ��1([T ℄ \ A). Therefore, OT \ ��1(A) is meager as desired.Next, we see the diretion from right to left for the equivalene of the �rstitem of Lemma 2.1.15. Suppose ��1(A) is meager. Take any T in P and we will�nd an extension T 0 of T suh that [T 0℄ \ A is in IP. Sine ��1(A) is meager,then there is a sequene hUn j n 2 !i of open dense sets in St(P) suh thatTn2! Un \ ��1(A) = ;. For eah n 2 !, let Dn = fS 2 P j OS � Ung. Sine Un isopen dense in St(P), Dn is dense open in P. We hoose a sequene hAn j n 2 !iof maximal antihains suh that An � Dn, for eah element S of An, the lengthof stem(S) is greater than n, and An+1 re�nes An, i.e., every element of An+1 isbelow some element in An.Now we use the properness of P to treat eah An as \ountable". Let � be asuÆiently large regular ardinal and X be a ountable elementary substrutureof H� suh that P; T; hAn j n 2 !i are in X. By properness, there is an (X;P)-generi ondition T 0 below T . We show that [T 0℄\A is in IP, whih will ompletethe proof of the �rst item of Lemma 2.1.15.Consider the setB = \n2![f[S℄ j S 2 An \Xg n [n2!f[S℄ \ [S 0℄ j S; S 0 2 An \X and S 6= S 0g:So B is the set of all xs uniquely deiding whih ondition from An ontains itfor eah n. By the property of hAn j n 2 !i, it will generate a �lter oming fromelements in Ans. The point is that any ultra�lter u extending that �lter satis�es�(u) = x, the given element, and that u is in Un for eah n. This will play a rolefor the argument.Now we laim [T 0℄nB 2 IP and B \A = ;. We will be done if we prove them.The fat that [T 0℄nB 2 IP follows from the fat that fS j S 2 An\Xg is predense



D. Ikegami, Games in Set Theory and Logi 43below [T 0℄ for eah n beause T 0 is (X;P)-generi and from that [S℄ \ [S 0℄ 2 IPfor eah S; S 0 2 An \X with S 6= S 0 beause An is an antihain, and from thatAn \X is ountable for eah n.To prove B \A = ;, take any element x from B. As we mentioned above, foreah n 2 !, there is a unique element Sn in An \ X with x 2 [Sn℄. Sine An+1re�nes An, Sn+1 � Sn for eah n. Hene the set fSn j n 2 !g generates a �lterFx. Take any ultra�lter u extending Fx. We laim that �(u) = x and u 2 Un foreah n. By the property of hAn j n 2 !i, the length of stem(Sn) is greater thann. Hene, by Example 2.1.14, �(u) is already deided to be x by Sn (n 2 !). Thefat that u 2 Un for eah n follows from the fat that Sn 2 An � Dn and thede�nition of Dn. Sine we have assumed that Tn2! Un \ ��1(A) = ;, x does notbelong to A. Hene we have seen B \ A = ; as desired.We have shown the �rst item of Lemma 2.1.15. Next, we show the equiv-alene in the seond item of Lemma 2.1.15. For left to right, we assume A isP-measurable. Then the setD = fT 2 P j either [T ℄ \ A 2 IP or [T ℄ n A 2 IPgis dense and the set U = SfOT j T 2 Dg is open dense in St(P). Let U1 =SfOT j [T ℄ n A 2 IPg and U2 = SfOT j [T ℄ \ A 2 IPg. Then U = U1 [ U2.We laim that U1 \ U2 = ;. First we note that [T ℄ =2 IP (even [T ℄ =2 IP�) forany T 2 P. If [T ℄ is in IP for some T , then ��1([T ℄) is meager in St(P) by the�rst item of Lemma 2.1.15. Sine OT � ��1([T ℄) by Claim 2.1.16 (a), OT wouldbe also meager in St(P), whih would ontradit Lemma 2.1.1. Hene [T ℄ =2 IPfor any T 2 P. We show that U1 \U2 = ;. Suppose there is a u in U1 \U2. Thenthere are T1; T2 2 u with [T1℄ nA 2 IP and [T2℄ \A 2 IP. Sine u is a �lter, thereis a T3 in u with T3 � T1; T2. But then [T3℄ nA and [T3℄\A are both in IP, whihmeans [T3℄ itself is in IP. Contradition!Hene, it suÆes to show that U1 n ��1(A), U2 \ ��1(A) are meager beausethat will imply U14��1(A) is meager. We will only see that U2 \ ��1(A) ismeager. The ase for U1 n ��1(A) being meager is similar. By Fat 2.1.17, itsuÆes to see that OT \��1(A) is meager when [T ℄\A 2 IP. But if [T ℄\A 2 IP,then OT \��1(A) � ��1([T ℄\A) and ��1([T ℄\A) is meager by Claim 2.1.16 (a)and the �rst item of Lemma 2.1.15. Hene we are done.Now we see the diretion from right to left. Assume ��1(A) has the Baireproperty in St(P). Then there are open sets U1, U2 suh that U14��1(A),U24��1(!! n A) are meager. By Lemma 2.1.1, U1 \ U2 = ; and U1 [ U2 isopen dense in St(P). Let Di = fT 2 P j OT � Uig for i = 1; 2. Then D1 [D2 isdense in P. Hene by Lemma 2.1.12 (2), it suÆes to prove that [T ℄ nA 2 IP� foreah T in D1 and that [T ℄ \ A 2 IP� for eah T in D2.We only prove [T ℄nA 2 IP� for eah T inD1. By the �rst item of Lemma 2.1.15,it is enough to see that ��1([T ℄ n A) is meager in St(P). But by Claim 2.1.16,��1([T ℄nA) is almost the same as OT n��1(A). Sine T is in D1, by the de�nition



44 Chapter 2. Games and Regularity Propertiesof U1, OT n ��1(A) is meager. This ompletes the proof of the seond item ofLemma 2.1.15.Note that if P satis�es the ondition in Lemma 2.1.12 (5), then we do notneed the properness of P for the proofs of Lemma 2.1.15.Before losing this setion, let us mention the onnetion between our frame-work and Zapletal's setting. In [91℄, Zapletal starts from a �-ideal I on a Polishspae X (a separable, ompletely metrizable spae) and onsiders the quotient ofthe set of all Borel sets in X modulo I and develops the general theory of this for-ing so-alled \idealized foring" as a Boolean algebra. The following propositionshows that our forings are all idealized forings:Proposition 2.1.18. Suppose P is a strongly arboreal, proper foring. Then themap i : P ! �B=IP�� n f0g de�ned byi(T ) = the equivalene lass represented by [T ℄;is a dense embedding, where B denotes the set of all Borel sets of the reals andB=IP� is the quotient Boolean algebra via IP�.Hene, our situation is a speial ase of Zapletal's.3Proof of Proposition 2.1.18. First we see that the map i is well-de�ned, i.e., [T ℄is not in IP� for eah T in P. But this is just the same argument as the proof of[T ℄ =2 IP for eah T in P in Lemma 2.1.15.It is lear that if T1 � T2, then i(T1) � i(T2). To show the onverse, assumeT1 � T2 and we prove that i(T1) � i(T2). Sine T1 � T2, there is a t 2 T1 whihis not in T2. By strong arborealness of P, (T1)t 2 P and [(T1)t℄ \ [T2℄ = ;. Henei((T1)t) � i(T2). Sine (T1)t � T1, i((T1)t) � i(T1). Therefore, i(T1) � i(T2).So it suÆes to show that the range of i is dense in �B=IP�� n f0g. Let B bea Borel set whih is not in IP�. We will �nd a T in P with [T ℄ n B 2 IP�. ByLemma 2.1.15, B is P-measurable. Sine B is not in IP�, there is a T suh that[T ℄ nB 2 IP, hene [T ℄ nB 2 IP� by Lemma 2.1.12, as desired.2.2 Foring absolutenessReall from x 1.12 that absoluteness is one of the entral notions in set theory,and it is the unhangingness of the truth-values of statements between modelsof set theory. Foring absoluteness is the absoluteness between ground modelsand their generi extensions, whih plays an important role in many areas in set3In [91, Corollary 2.1.5℄, Zapletal proved a more general result. In the orollary, the ideal Ihe onstruted is essentially the same as our IP�in the following sense: If we use bn = j _xgen(�n) =1j (n 2 !) instead of bt (t 2 <!2) for the generators of C, then Zapletal's I is exatly the sameas our IP� on Borel sets.



D. Ikegami, Games in Set Theory and Logi 45theory. In this setion, we fous on the foring absoluteness of statements inseond-order arithmeti. We start with its de�nition:De�nition 2.2.1 (�1n-P-absoluteness). Let P be a foring notion and n be anatural number with n � 1. Then �1n-P-absoluteness is the following statement:For any �1n formula ', real r in V , and P-generi �lter G over V ,V � '(r) if and only if V [G℄ � '(r).By de�nition, it is immediate that �1n-P-absoluteness is equivalent to �1n-P-absoluteness for eah P and eah n � 1, where �1n-P-absoluteness is de�nedsimilarly. By Theorem 1.12.3, �12-P-absoluteness holds for any P. How about�13-P-absoluteness? In L, �13-P-absoluteness fails if P adds a new real, i.e., thereis a new real in a generi extension by P. This is beause the statement \Thereis a non-onstrutible real" is �13 and it is true in a generi extension of L byP while it is false in L. On the other hand, typial foring axioms imply �13-P-absoluteness for many P, e.g., MA�1 implies �13-P-absoluteness for any  foringP.4 Sine one an fore MA�1 starting from a model of ZFC, the statement that�13-P-absoluteness holds for a  foring P is independent from ZFC. It is naturalto ask: When is the statement true and when is it not? We disuss this questionin x 2.4.From now on, we will restrit our attention to de�nable forings. Let n bea natural number with n � 1. A partial order P is provably �1n if there are �1nformula � and �1n formula  suh that the statement \� and  de�ne the samepartial order (P;�P) with the inompatibility relation ?P" is provable in ZFC.All the typial strongly arboreal forings are provably �12. We will need thisde�nability ondition for forings when we ompute the omplexity of IP�.In some of our results in x 2.4, we shall need a strengthening of the standardnotion of properness for de�nable forings. Let P be a provably �1n foring forsome n � 1. We say P is strongly proper if for any ountable transitive modelM ofa �nite fragment of ZFC, if P;�P;?P are absolute between M and V respetively,(i.e., PM ;�MP ;?MP are the same as P \M;�P \(M �M);?P\ (M �M) respe-tively), then for any ondition p in PM (or P \M), there is an (M;P)-generiondition q below p, i.e., if M � \A is a maximal antihain in P", then A \M ispredense below q.5 Let us ompare strong properness with properness. (For thede�nition of properness, see x 1.9.) Here (M;P)-generi onditions are the sameas (X;P)-generi onditions for a ountable elementary substruture X of H�: IfP is provably �1n for some n � 1, X is a ountable elementary substruture of4For the proof, see [5, Theorem 13℄. For basi de�nitions and properties of foring axioms,see [37℄.5Although we will not expliitly mention the �nite fragment of ZFC we will use for thede�nition of strong properness, it will be large enough that we an proeed all the arguments inthis hapter within the fragment as usual. From now on, we say \ountable transitive modelsof ZFC" instead of \ountable transitive models of a �nite fragment of ZFC" for simpliity.



46 Chapter 2. Games and Regularity PropertiesH� for some large enough regular � and M is the transitive ollapse of X, then aondition p is (M;P)-generi if and only if it is (X;P)-generi in the usual sense.In partiular, if P is provably �1n for some n � 1 and strongly proper, then Pis proper. All the typial examples of proper, provably �12 forings are stronglyproper. But there is a , provably �13 foring whih is not strongly proper.6We use strong properness instead of properness as it allows us to leave outthe quanti�ation \2 H�" whih would inrease the omplexity of our statementsin the relevant results (Proposition 2.3.3, Theorem 2.4.8, Theorem 2.4.9) beyondprojetive.2.3 The transendene properties over inner mod-elsBy \transendene over an inner model M", we refer to properties that expressthat the universe is di�erent from M in some onrete sense. E.g., the property!M1 < !V1 is suh a transendene property; another transendene propertywould be \there are P-generis over M" for some nontrivial foring P. (Here,by inner models, we mean proper lass transitive models of ZFC.) In x 2.1, wehave seen that the generi �lters of any strongly arboreal foring an been seen asgeneri reals of the foring. All suh generi reals annot exist in a given groundmodel: A partial order P is alled non-trivial if for any ondition p in P there aretwo extensions q; r of p suh that they are inompatible (q?r). It is easy to seethat if P is non-trivial and G is a P-generi �lter over V , then G does not belongto V . Sine G an be oded by a generi real over V for eah strongly arborealforing, suh a generi real does not belong to V either. Hene the existene ofgeneri reals over an inner model M an be seen as a transendene property overM . Although this transendene property measures the di�erene of two modelsof set theory very well and often plays an important role in set theory of thereals, it is sometimes too strong when we onsider some spei� problems. Wenow introdue a weaker notion alled quasi-generi reals, whih are obvious gen-eralization of Cohen reals and random reals. This notion will give us the righttransendene property to haraterize the regularity properties for sets of reals.De�nition 2.3.1 (Brendle, Halbeisen, and L�owe [19℄). Let P be strongly arborealand M be a transitive model of ZFC. A real x is quasi-P-generi over M if for6Assuming !1 is not �1-Mahlo in L, Bagaria and Bosh onstruted a , provably �13 for-ing whih adds a real x suh that L[x℄ orretly omputes !1 (see the proof of [7, Theorem 6.1℄).This partial order is not strongly proper beause every �13 strongly proper foring preservesthe statement \L(R) is a Solovay model over L" by [6, Theorem 1℄ and this statement implies!1 > !L[a℄1 for every real a.



D. Ikegami, Games in Set Theory and Logi 47any Borel ode  in M with B 2 IP�, x is not in B, where B is the deodedBorel set from .Example 2.3.2.1. Cohen foring C : Quasi-C -generi reals are the same as Cohen reals byde�nition. Hene quasi-C -generiity oinides with C -generiity.2. Random foring B : Quasi-B -generi reals are the same as random reals byde�nition. Hene quasi-B -generiity oinides with B -generiity.3. Hehler foring D : Quasi-D -generi reals are the same as Hehler reals.Hene quasi-D -generiity oinides with D -generiity.4. Saks foring S: If M is an inner model of ZFC, quasi-S-generi reals overM are the reals whih are not in M beause any Borel set in IS� = NS is ountableand this is also true in M if the ode is in M by Shoen�eld absoluteness (theabsoluteness we mentioned in the paragraph after De�nition 2.2.1). Therefore,quasi-S-generiity does not oinide with S-generiity.The last example explains the di�erene between generiity and quasi-generiityfor non- strongly arboreal forings: There is a model of set theory where thereis a quasi-Saks-generi real over L but there is no Saks real over L, e.g., add oneCohen real over L. As is expeted, generiity implies quasi-generiity for all thetypial strongly arboreal forings and the onverse is true for most  forings:Proposition 2.3.3. Let P be a strongly arboreal, strongly proper, provably �12foring. Then1. The set f j B 2 IP�g is �12. Hene the statement \ odes a Borel set inIP�" is absolute between inner models of ZFC.2. Suppose P is also �11 and provably , i.e., there is a formula � de�ning Pand the statement \� is " is provable in ZFC. Then the set f j B 2 IP�g isalso �12 and hene �12.3. If M is a transitive model of ZFC and a real x is P-generi over M , then xis quasi-P-generi over M .4. Suppose P is provably . Then if M is an inner model of ZFC and a realx is quasi-P-generi over M , then x is P-generi over M .Proof. We show the �rst statement. By Lemma 2.1.15, a set of reals A is inIP� if and only if ��1(A) is meager in St(P). Hene, it suÆes to show thatf j ��1(B) is meagerg 2 �12.We prove the following:��1(B) is meager () (8M 3 ) �M : a .t.m. of ZFC (?)=) M � \��1(B) is meager"�:First note that the right hand side makes sense: The statement \P is a stronglyarboreal foring" is �12 by the assumption that P is provably �12, so by downward



48 Chapter 2. Games and Regularity Propertiesabsoluteness, this is also true in M and then we an de�ne a P-name for a P-generi real and the funtion � in M . Sine the right hand side is �12, it suÆesto show the above equivalene.The following laim is the key point where we use the unfolded Banah-Mazurgames essentially:Claim 2.3.4. Let M be a ountable transitive model of ZFC with  2 M . IfM � \��1(B) is meager", then for any T 2 P \M , there is a T 0 � T suh thatOT 0 \ ��1(B) is meager in V .Proof of Claim 2.3.4. Take any T in P\M . Sine P is provably �12, P;�P;?P areabsolute between M and V . Hene M satis�es the assumption in the de�nitionof strong properness and we an take a T 0 � T suh that T 0 is (M;P)-generi bystrong properness of P.We show that T 0 satis�es the desired property, i.e., OT 0 \��1(B) is meager inV . For that, we will use the unfolded Banah-Mazur games introdued in x 1.8.Let U be a tree on !�!, reursive in  suh that B = p[U ℄ holds in any transitivemodel N of ZFC with  2 N , where p[U ℄ is the projetion of [U ℄ to the �rstoordinate.7 Sine � is ontinuous in dom(�) and ��1(B) = 9R(��id)�1([U ℄), wean apply Theorem 1.8.5 for A = ��1(B), F = (�� id)�1([U ℄) and X = dom(�)(or X = dom(�) \ OT 0).Sine dom(�) is omeager in St(P), it suÆes to show that player II has a win-ning strategy in the game G��u �(�� id)�1([U ℄); dom(�)\OT 0� (all it G0), namelyplayer I �rst hooses (S00; y0), where S00 � T 0. Sine M � \��1(B) is meager",by applying Theorem 1.8.5 in M , we an �nd a winning strategy � for playerII in the game G��u �(� � id)�1([U ℄); dom(�)� in M (all it GM). The idea is totransfer � to a winning strategy for player II in G0 in V . Instead of writing downa winning strategy for player II in G0, we desribe how to win the game G0 forplayer II as follows: I �S00 (� T 0); y0� (S20; y1) : : :G0 II S10 S30 : : :I (S0; y0) (S2; y1) : : :GM II S1 S3 : : :We onstrut sequenes hSn j n 2 !i, hSn0 j n 2 !i, hyn j n 2 !i with thefollowing properties:� �hSn0 j n 2 !i; hyn j n 2 !i� is a run in the game G0 in V ,� �hSn j n 2 !i; hyn j n 2 !i� is a run in the game GM in V ,7For the existene of suh U , see, e.g., [66, Theorem 7B.5℄.



D. Ikegami, Games in Set Theory and Logi 49� S2n0 and yn are arbitrarily hosen by player I for eah n,� player II follows � in GM , and� S2n+10 � S2n+1 for eah n.Assuming we have onstruted the above sequenes, we prove that player IIwins in the game G0. First note that GM is a losed game for player II, hene thestrategy � remains winning in V . Therefore, (�(u); y) =2 [U ℄ for any u 2 Tn2! OSnin V . But sine S2n+10 � S2n+1 for eah n, (�(u); y) =2 [U ℄ for any u 2 Tn2! OSn0 ,hene player II wins the game G0.We desribe how to onstrut the above sequenes. Suppose we have h(Si0; Si; yi) ji < 2ni for some n. We deide S2n0, S2n+10, S2n, S2n+1 and yn. By the aboveproperties, S2n0 and yn are arbitrarily hosen by player I and S2n+1 will be deidedby the rest and �. So let's deide S2n and S2n+10.Let D be the set of all possible andidates for S2n+1 by � and the previousplay hSi j i < 2ni; hyi j i < ni. Then in M , D is dense below S2n�1 (if n > 0).Sine S2n0 � S2n�10 � S2n�1 and T 0 is (M;P)-generi, D \M = D is predensebelow S2n0. Take an element from D whih is ompatible with S2n0 and hooseS2n so that the element we have taken beomes S2n+1 by � and let S2n+10 be aommon extension (in V ) of S2n0 and S2n+1. This �nishes the onstrution of thesequenes. � (Claim 2.3.4)Now let us prove the equivalene (?):Suppose ��1(B) is meager and assume there is a ountable transitive modelM of ZFC with  2 M suh that M � \��1(B) is not meager". We will derivea ontradition. Sine every Borel set is P-Baire, ��1(B) has the Baire propertyin M . Hene if ��1(B) is not meager in M , then there is a T 2 PM suh that��1(B) is omeager in OT (i.e., ��1(B) \ OT is omeager in OT ) in M . ByClaim 2.1.16 (b), ��1([T ℄nB) is almost inluded in the meager set OT n��1(B),hene, in M , ��1([T ℄ n B) is meager in St(P). Now apply the above laim forthe Borel set [T ℄ n B. Then we get a T 0 � T suh that OT 0 \ ��1([T ℄ n B)is meager in V . But this means that OT 0 is almost inluded in ��1(B). SineOT 0 is not meager by Lemma 2.1.1, ��1(B) is not meager, whih ontradits theassumption that ��1(B) is meager.For the other diretion, suppose the right hand side holds for ��1(B) and weshow that it is atually meager in V . By Fat 2.1.17, it suÆes to show that forany T in P, there is a T 0 � T suh that OT 0 \ ��1(B) is meager. So �x any Tand pik a ountable transitive model M with ; T 2 M . Then by Claim 2.3.4,there is a T 0 � T suh that OT 0 \ ��1(B) is meager, as desired.We next show the seond statement of this proposition. For that, it suÆes



50 Chapter 2. Games and Regularity Propertiesto see the following by Lemma 2.1.15:��1(B) is meager () (9M 3 ) �M : a ountable transitive modelof ZFC and M � \��1(B) is meager"�() (8M 3 ) �M : a ountable transitive modelof ZFC =) M � \��1(B) is meager"�;where � = f _xG as before.We only show the �rst equivalene. For left to right, if we take a ountableelementary substruture X of H� for enough large � suh that X has all theessential elements, then the transitive ollapse of X will do the job for M in theright hand side.For right to left, take an M with the property in the right hand side. Theidea is the same as the proof of Claim 2.3.4 in the �rst item of Lemma 2.3.3. Thistime, we use the unfolded Banah-Mazur game G��u �(�� id)�1([U ℄)dom(�)� bothin M and V and translate a winning strategy in GM to the one in G0.By the assumption, in M , player II has a winning strategy �0 in GM . Theonstrution of a winning strategy for II in G0 in V from �0 is exatly the sameas Claim 2.3.4. But instead of using the (M;P)-generiity for a ondition T 0, weuse the following:Claim 2.3.5. Let D be a dense subset of P in M . Then D is predense in P in V .Proof of Claim 2.3.5. LetD be a dense subset of P inM . Then sine P is provably, in M , there is a ountable maximal antihain A � D. But sine P is �11, thestatement \a real odes a maximal antihain" is �11^�11 and therefore A remainsa maximal antihain in V . Hene D is predense in P in V . �(Claim 2:3:5)The rest is exatly the same as Claim 2.3.4.We show the third statement of this proposition. Let x be P-generi over M .Then the set Gx = fT 2 PM j x 2 [T ℄g is a PM -generi �lter over M . We showthat x =2 B when  is a Borel ode in M with B 2 IP�.First, we make a small observation about x and Borel sets with their odesin M . Let iM be the dense embedding from PM to ��B=IP�� n f0g�M de�ned inProposition 2.1.18 applied in M and iM� (Gx) be the �B=IP��-generi �lter over Mindued by iM and Gx. Using the fat that IP� is a �-ideal, it is routine to hekthat B 2 iM� (Gx) if and only if x 2 B for any Borel set B with a ode in M .Now let  be a Borel ode in M with B 2 IP� in V . By the �rst item of in thisproposition and the downward absoluteness for �12 formulas, M � \B 2 IP�".Suppose that x does belong to B. Then by the above observation, B 2 iM� (Gx).But this implies that M � \B =2 IP�", hene by upward absoluteness for �12formulas, B =2 IP�. Contradition!



D. Ikegami, Games in Set Theory and Logi 51We show the last statement of this proposition. Let x be a quasi-P-generireal over M and put Gx = fT 2 PM j x 2 [T ℄g. We show that Gx is a PM -generi�lter over M .We �rst show that Gx meets every maximal antihain of PM in M . Take anymaximal antihain A of PM in M . Sine P is provably , A is ountable in M .Now onsider B = Sf[T ℄ j T 2 Ag. Then B is a Borel set with a ode in M andM � \!! nB 2 IP�". By the �rst item of this proposition, this is also true in V .Sine x is quasi-P-generi over M , x =2 !! nB, i.e., x is in B. Hene Gx meets A.Now we show that Gx is a �lter. Take any two elements T1; T2 in Gx. We will�nd a ommon extension of T1, T2 in Gx. Consider D = fS 2 P j ([S℄ \ [T1℄ =; and [S℄ \ [T2℄ = ;) or (S � T1 and [S℄ \ [T2℄ = ;) or (S � T2 and [S℄ \ [T2℄ =;) or (S � T1; T2)g in M . Then by strong arborealness of P, D is dense in M .Hene Gx meets D. Take a ondition S from Gx \D. Then only the last ase inD happens beause S 2 Gx () x 2 [S℄. Hene S � T1; T2. Therefore, Gx is aPM -generi �lter over M .2.4 The equivalene resultsIn x 1.8 and x 2.2, we have asked when every �12 set of reals has the Baire propertyand when �13-P-absoluteness holds for a strongly arboreal foring P. In fat,the answer to the �rst question is exatly the same as the one for the seondquestion, for Cohen foring: Bagaria [4℄ and Woodin [89℄ showed that every �12set of reals has the Baire property if and only if �13-C -absoluteness holds whereC is Cohen foring. They also proved the same equivalene holds for Lebesguemeasurability and random foring and the same holds for the Baire propertyfor dominating topology (D -measurability) and Hehler foring (see [42, 20℄).These are the typial ases for , strongly arboreal forings. How about non-forings? Halbeisen and Judah [30℄ showed the same equivalene for ompletelyRamseyness (R-measurability) and Mathias foring and the author [34℄ proved itfor the property not being a Bernstein set (S-measurability) and Saks foring.Therefore, the regularity properties for �12 sets and �13 foring absoluteness arelosely related. We an further onnet the transendene property over L withthese two properties: E.g., Judah and Shelah [43℄ proved that every �12 set ofreals has the Baire property if and only if for any real x, there is a Cohen realover L[x℄. They also proved the same equivalene for Lebesgue measurabilityand random reals. Similarly Brendle and L�owe [20℄ showed that there is no �12Bernstein set if and only if for any real x there is a real not in L[x℄. As we haveseen in x 2.3, these latter statements an be seen as the existene of quasi-generireals over L[x℄ for reals x while the existene of generi reals might not work, e.g.,for the last statement, there is a model of set theory where for any real x thereis a real not in L[x℄ but there is no Saks real over L.88For example, start with L and add !1 many Cohen reals.



52 Chapter 2. Games and Regularity PropertiesIn this setion, we prove the above equivalene results for a wide lass ofstrongly arboreal forings in a uniform way and explore the equivalene betweenregularity properties for �13 sets (or �13 sets), �14 foring absoluteness, and thetransendene properties over the ore model K.Now we are ready to state our main theorems in this hapter:Theorem 2.4.1. Let P be a strongly arboreal, proper foring. Then the followingare equivalent:1. Every �12 set of reals is P-measurable, and2. �13-P-absoluteness holds.Theorem 2.4.2. Let P be a strongly arboreal, strongly proper, �12 foring. As-sume the following:f j  is a Borel ode and B 2 IP�g 2 �12: (�)Then the following are equivalent:1. Every �12 set of reals is P-measurable,2. �13-P-absoluteness holds, and3. For any real a and T 2 P, there is a quasi-P-generi real x 2 [T ℄ over L[a℄.Before going to the proofs of these theorems, let us see the general equivalenetheorem between P-Baireness and the foring absoluteness via P:Theorem 2.4.3 (Castells). Let P be a partial order. Then the following areequivalent:1. Every �12 set of reals is P-Baire, and2. �13-P-absoluteness holds.Proof. The idea for this argument goes bak to [25, Theorem 3.1℄.9We �rst show the diretion from P-Baireness to foring absoluteness. Weassume every �12-set of reals is P-Baire and we show that �13-P-absoluteness. Toderive a ontradition, suppose it fails. Then there are a �13 formula �, a reala, and a P-generi �lter G over V suh that V [G℄ � �(a) but V 2 �(a). Thisis beause any �13 formula is upward absolute from V to V [G℄ by Shoen�eldabsoluteness.Let  be the �11 formula suh that � = (9x) (8y)  . Then there are p 2 Gand a P-name � for a real suh that p  (8y)  (�; y; �a). By the assumption, inV , (8x) (9y) : (x; y; a). Sine  is a �11 formula, by the Kondô-Addison theo-rem [51℄, there is a�12 funtion g : !! ! !! suh that V � \(8x) : (x; g(x); a)".109We would like to thank Neus Castells for providing her notes with a proof of Theorem 2.4.3.Our statement of Theorem 2.4.3 and presentation of the proof di�er slightly from Castells's note.10Atually, g an be taken as a �11 funtion in this ase. But for the analogous argument forTheorem 2.4.7, we write �12.



D. Ikegami, Games in Set Theory and Logi 53Now we laim gÆf� is Baire measurable, where f� is de�ned in Lemma 2.1.2. ItsuÆes to hek that (gÆf� )�1([s℄) has the Baire property for eah �nite sequeneof natural numbers s, where [s℄ = fx 2 !! j x � sg, the basi open set from s inthe Baire spae. Take any suh s. Sine g is �12, the set g�1([s℄) is �12. By the�rst assumption, it is P-Baire, in partiular, f�1� g�1([s℄) = (g Æ f� )�1([s℄) has theBaire property in St(P).The idea is to approximate �; �gÆf� and a witness for  by a tree and using theabsoluteness of the wellfoundedness of the tree between V and V [G℄, we will derivea ontradition. Let T be a tree on ! � ! � ! suh that (8x; y) � (x; y; a) ()(9z) (x; y; z) 2 [T ℄�.Sine f�gÆf� (u) = g Æ f� (u) for omeager many u, there is a sequene hDn j n 2!i of dense open sets in P suh that f�gÆf� (u) = gÆf�(u) for eah u 2 Tn2!SfOp jp 2 Dng. Consider the following tree U on P � ! � ! � ! in V :(~p; s; t; v) 2 U () ~p is a dereasing sequene in P;if ~p = hpi j i < ni; then lh(s) = lh(t) = lh(v) = n;(s; t; v) 2 T; p0 = p; (8i < n) pi 2\j<iDj; and(8i < n) pi  \s�i � �; t�i � �gÆf� "We laim that U is wellfounded in V but ill-founded in V [G℄. Suppose thereis an in�nite path through U in V and all it (~p; x; y; z). Take any u 2 St(P)ontaining eah element in ~p (i.e., any ultra�lter on P extending the set ~p). Thenu 2 Tn2!SfOp j p 2 Dng and hene f�gÆf� (u) = g Æ f� (u). Furthermore, by thede�nition of f� and f�gÆf� , f� (u) = x, f�gÆf� (u) = g Æ f� (u) = y and (x; y; z) 2 [T ℄.But this implies  (x; g(x); a), ontraditing (8x) : (x; g(x); a) in V . Hene U iswellfounded in V . On the other hand, U is ertainly ill-founded in V [G℄ beauseG; �G = f� (G); �GgÆf� = g Æ f� (G) and a witness for  (�G; �GgÆf� ; a) easily give anin�nite path through U . Contradition!Next we show the diretion from foring absoluteness to P-Baireness. Takeany �12 set A and a Baire measurable funtion f from St(P) to the reals. Weshow that f�1(A) has the Baire property in St(P).Sine A is �12, there are �12 formulas � and  de�ning A with a real parametera, in partiular, (8x) �(x; a) ()  (x; a): (y)Note that this statement is �13(a). Hene by �13-absoluteness for P, the statement(y) remains true in V P. This is the only part we use the seond assumption.Now we use Shoen�eld trees to get the absolute tree representation for Aand !! n A between V and V P. Let � be suÆiently large so that � remainsunountable in V P. Let U1, U2 be Shoen�eld trees on !� � for � and  . Sine �remains unountable in V P, the Shoen�eld trees for � and  up to � onstruted



54 Chapter 2. Games and Regularity Propertiesin V P are the same as U1, U2 respetively. Moreover, sine (y) remains true inV P, we have the following:A = p[U1℄; !! n A = p[U2℄;P \p[U1℄ [ p[U2℄ = !!; p[U1℄ \ p[U2℄ = ;":Let Di = fp j p  \�f 2 p[Ui℄"g and Oi = SfOp j p 2 Dig for i = 1; 2, where�f is from Lemma 2.1.2. Then D1 [ D2 is dense in P and any two elements piof Di are inompatible for i = 1; 2. Hene O1 [ O2 is dense open in St(P) andO1 \ O2 = ;. So it suÆes to show that Oi n f�1(p[Ui℄) is meager in St(P) fori = 1; 2.We only show that O1 n f�1(p[U1℄) is meager in St(P). By Fat 2.1.17, itsuÆes to show that Op n f�1(p[U1℄) is meager for eah p in D1. The followinglaim is the key point, where we use Banah-Mazur games essentially. Let � besuÆiently large regular ardinal.Claim 2.4.4. Let a be any set in H�. Then the set A of all G 2 St(P) suhthat there is a ountable elementary substruture X of H� with a 2 X suh thatG \X is P-generi over X is omeager in St(P).Proof of Claim 2.4.4. Fix a set a in H�. We prove the laim by using the Banah-Mazur game G���A; St(P)�. By Theorem 1.8.3, it suÆes to show that player IIhas a winning strategy in this game. Sine fOp j p 2 Pg forms a basis in St(P),we may assume that two players will pik elements of P instead of nonempty opensets in St(P).Instead of speifying a winning strategy for player II, we desribe how to winthe game for player II. We will also onstrut a�-dereasing sequene hpn j n 2 !iand an �-inreasing sequene hXn j n 2 !i of ountable elementary substruturesof H� suh that� a;P 2 X0, p2n�1; p2n 2 Xn,� p2n is arbitrarily hosen by player I, and� any dense set of P in Xn ontains pm for some m.We an easily arrange this onstrution by a standard book-keeping argument.Now we are done: Let X be the union of all Xn. Then for any G ontaining eahpn, G \X is P-generi over X beause G \X � fpn j n 2 !g and any dense setof P in X must ontain pm for some m. � (Claim 2.4.4)We now prove that Op n f�1(p[U1℄) is meager if p 2 D1. By the laim, it isenough to see that f(G) 2 p[U1℄ for G satisfying the property in the laim forsome suitable a and p 2 G. Also we may assume f(G) = f�f (G) beause it istrue for omeager many G by Lemma 2.1.2.



D. Ikegami, Games in Set Theory and Logi 55Take a ountable elementary substruture X of H� for G as in the laim fora = (P; U1; p; f; �f). Then G\X is P-generi over X. Sine p 2 D1, p  �f 2 p[U1℄and hene X � \p  �f 2 p[U1℄". Sine G\X � X, we an apply foring theoremto X and G \ X and get X[G \ X℄ � �G\Xf 2 p[U1℄. By upward absoluteness,�G\Xf 2 p[U1℄ in V . Note that �G\Xf = f�f (G) beause for any natural numbersm and n, �G\Xf (m) = n () (9p 2 G \X) p  �f ( �m) = �n() (9p 2 G) p  �f ( �m) = �n() f�f (G)(m) = n:Hene f(G) = f�f (G) 2 p[U1℄ as desired.Now we prove Theorem 2.4.1 and Theorem 2.4.2:Proof of Theorem 2.4.1. By Theorem 2.4.3, it suÆes to show that every �12set of reals is P-measurable if and only if every �12 set of reals is P-Baire. ByLemma 2.1.15, it is enough to see that every �12 set of reals is P-Baire assumingevery �12 set of reals is P-measurable.The following laim is the key point:Claim 2.4.5. Let P be a strongly arboreal, proper foring and � be a P-name fora real. Then for any T in P, there is a T 0 � T and a Borel funtion g : [T 0℄ ! !!suh that T 0  � = g( _xG).Proof of Claim 2.4.5. This is a ombination of Proposition 2.1.18 in this thesisand [90, Proposition 2.3.1℄.Now take any �12-set A and a Baire measurable funtion f from St(P) tothe reals. We show that f�1(A) has the Baire property. It suÆes to show thatfT j OT \ f�1(A) is meager or OT n f�1(A) is meagerg is dense in P.So take any T in P and we will �nd an extension S of T with the aboveproperty. By the above laim, there is a T 0 � T and a Borel funtion g : [T 0℄ !!! suh that T 0  �f = g( _xG), where �f is the P-name for a real de�ned inLemma 2.1.2. Hene, by Lemma 2.1.2, f = g Æ f _xG almost everywhere in OT 0.Sine g�1(A) is �12, it is P-measurable by the assumption. By Lemma 2.1.15,f�1_xG (g�1(A)) = (gÆf _xG)�1(A) has the Baire property. Hene f�1(A) has the Baireproperty in OT 0. In partiular, there is an S � T 0 suh that either OS \ f�1(A)is meager or OS n f�1(A) is meager, as desired.Proof of Theorem 2.4.2. We have seen the equivalene between the regularityproperty and foring absoluteness. We will show the diretion from foring abso-luteness to the transendene property and the diretion from the transendeneproperty to the regularity property.



56 Chapter 2. Games and Regularity PropertiesWe �rst show the diretion from foring absoluteness to the transendeneproperty. Take a real a and T in P. We will �nd a quasi-P-generi real x overL[a℄ with x 2 [T ℄. But by the assumption (�), the statement \There is a quasi-P-generi real x over L[a℄ with x 2 [T ℄" is �13 and this is true in a generi extensionV [G℄ with T 2 G by the same argument as in Proposition 2.3.3. (Although Pmight not be provably �12 as we assumed in Proposition 2.3.3, we used it onlyto see M � B 2 IP� when B 2 IP� in V and this is ensured by the assumption(�) and Shoen�eld absoluteness without using P being provably �12.) Hene by�13-foring absoluteness, the statement is also true in V .We show the diretion from the transendene property to the regularity prop-erty. Take any �12 set A and we will show that A is P-measurable. Take any Tin P.Case 1: !L[a℄1 < !V1 for every real a.In this ase, we an atually show that every �12 set of reals is P-measurableas follows (now we assume A is �12 instead of �12): Pik a real a suh thatT 2 L[a℄ and A is �12(a) and L[a℄ ontains a parameter of the �12 de�nitionof P. Take a Shoen�eld tree U for A in L[a℄, i.e., A = p[U ℄ Then there isan extension T 0 � T in PL[a℄ suh that either L[a℄ � \T 0  _xG 2 p[U ℄" orL[a℄ � \T 0  _xG =2 p[U ℄", where _xG is a anonial P-name for a generi real. Wemay assume that L[a℄ � \T 0  _xG 2 p[U ℄". (The other ase is similar.)By the assumption, the set of all dense sets of PL[a℄ in L[a℄ is ountable. Henethere is a ountable transitive model M � L[a℄ of ZFC suh that M ontainsall the reals and all the dense subsets of PL[a℄ in L[a℄. (E.g., take a ountableelementary submodel of L�[a℄ ontaining all the reals and the dense subsets inL[a℄ and ollapse it.) Sine P is �12, L[a℄ omputes P orretly, M also omputesP orretly. Now we apply the strong properness of P and get an extensionT 00 � T suh that T 00 is (M;P)-generi ondition and hene also (L[a℄;P)-generi.Therefore maximal antihains in PL[a℄ stay maximal in V below T 00. Togetherwith the ondition that the set of all dense sets in L[a℄ is ountable, we anonlude that almost all the reals are P-generi over L[a℄ below T 00. Sine wehave L[a℄ � \T 0  _xG 2 p[U ℄", almost all the reals below T 00 belong to p[U ℄ = A,as desired.Case 2: !L[a℄1 = !V1 for some real a.The idea for this argument goes bak to [19, Proposition 2.1℄. Pik a real awith T 2 L[a℄ suh that !L[a℄1 = !V1 and A is �12(a). The idea is to deompose[T ℄ \ A and [T ℄ n A into Borel sets in an absolute way between L[a℄ and V ,then a Borel set ontaining a quasi-P-generi real over L[a℄ must be IP�-positiveand below that Borel set we will �nd an extension of T as a witness for theP-measurability of A.Sine [T ℄\A and [T ℄ nA are �12(a) sets, there are Shoen�eld trees U1 and U2in L[a℄ for [T ℄ \ A and [T ℄ n A respetively. From these trees, we an naturallydeompose [T ℄ \ A and [T ℄ n A into !1 many Borel sets as in [66, 2F.1{2F.3℄,



D. Ikegami, Games in Set Theory and Logi 57i.e., there are sequenes h� j � < !1i, hd� j � < !1i of Borel odes in L[a℄suh that [T ℄ \ A = S�<!1 B� and [T ℄ n A = S�<!1 Bd� . The point is that theabove equations are absolute between L[a℄ and V beause those two sequenesonly depend on U1; U2, and !1, and we have !L[a℄1 = !V1 as we assumed.By assumption, there is a quasi-P-generi real x over L[a℄ with x 2 [T ℄. Henethere is an � < !1 suh that either x 2 B� or x 2 Bd�. Without loss of generality,we may assume x 2 B�. Sine � is in L[a℄, by the de�nition of quasi-P-generiity,B� is not in IP�. Sine every Borel set is P-measurable, there is a ondition T 0suh that [T 0℄ nB� 2 IP. Sine B� � [T ℄ \A, we have T 0 � T and [T 0℄ nA 2 IP,as desired.We do not know whether we ould eliminate the ondition (�) in Theorem 2.4.2under some reasonable assumptions for P. For further disussions about this issue,see x 2.6.So far we have investigated the onnetion between P-measurability for �12sets, �13-P-absoluteness, and the transendene property over L. How aboutP-measurability for �12 sets? Is there any suh equivalene? Solovay provedthat every �12 set has the Baire property if and only if for any real a, the setof all Cohen reals over L[a℄ is omeager. He also proved the same equivalenefor Lebesgue measurability and random reals. Similar equivalenes have beenobtained for other forings (see, e.g., [20, Proposition 5.12℄). We now give ageneral equivalene result for this phenomenon:Theorem 2.4.6. Let P be a strongly arboreal, strongly proper, �12 foring. As-sume f j  is a Borel ode and B 2 IP�g 2 �12; (�)and IP is Borel-generated or IP = NP; (��)where IP is Borel-generated if any element of IP is a subset of an element of IPwhih is Borel.Then the following are equivalent:1. Every �12 set of reals is P-measurable, and2. For any real a, !! n fx j x is quasi-P-generi over L[a℄g 2 IP�.The ideal IP is Borel-generated if P is  and IP = NP for all the typialnon- forings admitting a fusion argument as we disussed in Lemma 2.1.12.Hene the ondition (��) is always true for typial strongly arboreal forings.Proof. We show the diretion from the regularity property to the transendeneproperty. Take any real a and we show that the set A = fx j x is quasi-P-generiover L[a℄g is of measure one with respet to IP�. Suppose not. Then !! nA =2 IP�.



58 Chapter 2. Games and Regularity PropertiesBy the assumption (�), !! nA is �12. So by the assumption 1, it is P-measurable.Hene there is a T in P suh that [T ℄ n (!! n A) = [T ℄ \ A 2 IP. We show thatthis annot happen.Case 1: IP is Borel-generated.Sine [T ℄ \ A 2 IP, there is a Borel set B � [T ℄ in IP suh that [T ℄ \ A � B.Let  be a Borel ode for B. By Theorem 2.4.2, there is a quasi-P-generi real xover L[a; ℄ with x 2 [T ℄. Sine B 2 IP, x =2 B. But this is impossible beause xis also quasi-P-generi over L[a℄ and hene x 2 [T ℄ \ A � B.Case 2: IP = NP.In this ase, [T ℄ \A is P-null, hene there is a T 0 � T suh that [T 0℄ \A = ;.By Theorem 2.4.2, there is a quasi-P-generi real x over L[a℄ with x 2 [T 0℄. Henex 2 [T 0℄ \ A, a ontradition.We now show the diretion from the transendene property to the regularityproperty. Take any �12 set A. We show that A is P-measurable. Let T be inP. We will �nd an extension T 0 of T approximating A as in the de�nition ofP-measurability. If [T ℄ \ A 2 IP�, we are done. So we assume [T ℄ \ A =2 IP�.Case 1: !L[a℄1 < !V1 for every real a.The same as Case 1 in Theorem 2.4.2.Case 2: !L[a℄1 = !V1 for some real a.Let a be a real suh that [T ℄ \ A is �12(a) and !L[a℄1 = !V1 . Then we have aShoen�eld tree in L[a℄ for [T ℄\A and we get an !1 many Borel deomposition of[T ℄\A into Borel sets fB� j � < !1g with � 2 L[a℄ for eah � as in the proof ofTheorem 2.4.2. Sine [T ℄\A =2 IP� and the set of quasi-P-generi reals over L[a℄ isof measure one with respet to IP� by the assumption 2, there is a quasi-P-generireal x over L[a℄ with x 2 [T ℄ \ A, so there is an � suh that x 2 B�.The rest is the same as in the proof from the transendene property to theregularity property in Theorem 2.4.2. Sine � 2 L[a℄ and x is quasi-P-generiover L[a℄, B� =2 IP�. Sine any Borel set is P-measurable, there is a T 0 in P suhthat [T 0℄ n B� 2 IP. But B� � [T ℄ \ A. Hene T 0 � T and [T 0℄ n A 2 IP, asdesired.We do not know if there is a foring absoluteness statement orrespondingto P-measurability for �12 sets in general. For some forings, it is true, e.g.,Judah [42℄ proved that �13-D -absoluteness is equivalent to the Baire property (inthe usual topology in the Baire spae) for all �12 sets. (The same equivaleneholds for amoeba foring and Lebesgue measurability.) But we do not know howto uniformly �nd a foring orresponding to P-measurability for �12 sets given P.We have linked P-measurability for �12 sets and �12 sets with foring abso-luteness and the transendene properties over L. How about P-measurability for�13 sets and �13 sets? Unfortunately we annot prove the equivalene betweenP-measurability for �13 sets and �14-P-absoluteness in ZFC in general, e.g., start



D. Ikegami, Games in Set Theory and Logi 59from L and add !1 many Cohen reals, then in this model, �14-foring absolutenessfor Cohen foring holds but there is a �12 set of reals without the Baire property.With an additional assumption (sharps for sets), we will establish the analoguesof the equivalene results we have obtained for P-measurability for �13 sets and �13sets, �14-P-absoluteness, and the transendene property over the ore model K:Theorem 2.4.7. Let P be a strongly arboreal, proper foring.1. Assume that every real has a sharp and that �12-determinay fails. Thenif every �13 set of reals is P-measurable, then �14-P-absoluteness holds.2. Suppose that every set has a sharp. Then if �14-P-absoluteness holds, thenevery �13 set of reals is P-measurable.In partiular, if every set has a sharp, then either �12-determinay holds orevery �13 set of reals is P-measurable if and only if �14-P-absoluteness holds.Theorem 2.4.8. Let P be a strongly arboreal, strongly proper, provably �12foring. Suppose every real has a sharp. Then either �12-determinay holds orthe following are equivalent:1. Every �13 set of reals is P-measurable,2. �14-P-absoluteness holds, and3. For any real a and any T 2 P, there is a quasi-P-generi real x 2 [T ℄ overKa, where Ka is the ore model onstruted from a-mie.Theorem 2.4.9. Let P be a strongly arboreal, strongly proper, provably �12foring. Suppose every real has a sharp. AssumeIP is Borel-generated or IP = NP: (��)Then either �12-determinay holds or the following are equivalent:1. Every �13 set of reals is P-measurable, and2. For any real a, !! n fx j x is quasi-P-generi over Kag 2 IP�, where Ka isthe ore model onstruted from a-mie.Note that the additional assumption \Every set has a sharp" is equivalentto every �12 set of reals being P-Baire for any P (or universally Baire). So oursetting is that, assuming that �12 sets of reals behave niely for any foring P, weonsider the equivalene mentioned above.Also note that we do not need the analogue of the assumption (�) in Theo-rem 2.4.2 in the above theorems beause the set of all Borel odes whose deodesare in IP� is �12 as we proved in Proposition 2.3.3.Proof of Theorem 2.4.7. We start with proving the �rst item of this theorem,i.e., we show the diretion from the regularity property to foring absolutenessassuming that every real has a sharp and that �12-determinay fails. First notethat we may assume that every �13 set is P-Baire by the same argument forthe same diretion in Theorem 2.4.1. The argument is basially the same as in



60 Chapter 2. Games and Regularity PropertiesTheorem 2.4.3. What we need is to uniformize a �12 relation by a �13 funtionas we uniformized a �11 relation by a �12 funtion in Theorem 2.4.3. The restis exatly the same. But suh uniformization is possible assuming the failure of�12-determinay.Theorem 2.4.10 (Folklore11). Suppose every real has a sharp. Then either �12-determinay holds or �13 has the uniformization property, i.e., any �13 relationan be uniformized by a �13 funtion.12Proof of Theorem 2.4.10. It suÆes to show that every �12 relation an be uni-formized by a �13 funtion. Suppose �12-determinay fails. By Theorem 1.12.5,there is a real a0 suh that for any a �T a0, the a-relativized version of the oremodel Ka exists and every �13 formula is absolute between Ka and V . (Reall that�T is the Turing order on the reals.) For eah a �T a0, let <a be the anonialgood �13(a) well-ordering on the reals in Ka ensured by Theorem 1.11.2. Given areal b and a �12(b) relation R, de�ne the uniformization funtion f as follows:f(x) = y () y is the <hx;a0;bi-least element with (x; y) 2 R,where hx; a0; bi is the real oding x; a0 and b. For eah x 2 dom(R), suh a yalways exists beause every �13 formula is absolute between Khx;a0;bi and V . So funiformizes R and onsidering the fat that <a is a good �13(a) well-ordering inKa for eah a �T a0 in a uniform way, it is easy to see that f is �13.Now we show the seond item of Theorem 2.4.7, i.e., the diretion from foringabsoluteness to the regularity property assuming sharps for sets. The argument isthe same as for the impliation in Theorem 2.4.3. By Theorem 1.12.4, it suÆesto hek that every real has a sharp in V [G℄ and uV2 = uV [G℄2 for any P-generi�lter G over V .We �rst show that every real has a sharp in V [G℄ whenever G is a P-generi�lter over V assuming sharps for sets in V . Take any P-generi �lter G over V anda real x in V [G℄. Let � be a P-name with �G = x. Sine we have a sharp for (�;P)in V , we have an elementary embedding j from L(�;P) to itself with ritial pointabove the ranks of � and P in V . Sine the ritial point of j is above the ranksof � and P, j preserves � and P and we an lift j to �| : L(�;P)[G℄ ! L(�;P)[G℄ inV [G℄ in the following standard way:�|(�G) = j(�)G;for any P-name � in L(�;P). Sine x = �G 2 L(�;P)[G℄, �|�L[x℄ gives us a non-trivial elementary embedding from L[x℄ to itself, hene x# exists as desired.11The author would like to thank Hugh Woodin for pointing out this fat to him.12Sine �12-determinay implies that �13 has the uniformization property, this fat states thedihotomy of the uniformization property for �13 and �13.



D. Ikegami, Games in Set Theory and Logi 61We now show that uV2 = uV [G℄2 for any P-generi �lter G over V whih will om-plete the proof. First note that u2 is the length of a provably �13 prewellorderinggiven in Shliht [75, Example 3.2.7℄ assuming sharps for reals. But by a resultof Shliht [75, Theorem 2.1.9℄, the length of the prewellordering is the same be-tween in V and V [G℄, assuming sharps for sets and P being proper. Therefore,uV2 = uV [G℄2 .Proof of Theorem 2.4.8. In Theorem 2.4.7, we have seen the equivalene betweenthe regularity property and foring absoluteness. We show the diretion fromforing absoluteness to the transendene property and the one from the tran-sendene property to the regularity property. (Note that the assumption, theexistene of sharps for reals, is weaker than the existene of sharps for sets. Butwe used sharps for sets only for (2) in Theorem 2.4.7, i.e., for the diretion fromforing absoluteness to the regularity property, whih we will not use here. Wewill prove the equivalene of the three statements just from sharps for reals.)We show the diretion from foring absoluteness to the transendene prop-erty. All we need is that the statement \there is a quasi-P-generi real x overKa with x 2 [T ℄" is �14 for eah real a and eah T 2 P. But this is true byProposition 2.3.3 and the fat that the set of reals in Ka is �13(a) in V .We now show the diretion from the transendene property to the regular-ity property. The argument is basially the same as the one in Theorem 2.4.2.Assume the failure of �12-determinay. By Theorem 1.12.5, there is a real a0suh that Ka exists and every �13 formula is absolute between Ka and V for anya �T a0.Case 1. !Ka1 < !V1 for every real a �T a0.As in Theorem 2.4.2, we an onlude that every �13 set of reals (even �13set of reals) is P-measurable by using the fat that every �13 formula is absolutebetween Ka for a �T a0.Case 2. !Ka1 = !V1 for some real a.We need the absolute deomposition of �13 sets into Borel sets between Kaand V for some real a �T a0. The following result is essential; its proof wasommuniated to us by Ralf Shindler:Theorem 2.4.11 (Shindler). If uKa2 < uV2 for every real a �T a0, then !Ka1 < !V1for every real a �T a0.Proof. Here we use the mahinery of inner model theory.For simpliity, we assume Ka0 = K and only prove !K1 < !V1 assuming uKa2 <uV2 for eah real a. The general ase will be proved in the same way.Toward a ontradition, we assume !K1 = !V1 . The following is the �rst point:Claim 2.4.12. Let a be a real. The mouse Kaj!1 is universal for ountable a-mie, i.e., M �� Kaj!1 for any ountable a-mouse M , where �� is the mouseorder.



62 Chapter 2. Games and Regularity PropertiesProof of Claim 2.4.12. Suppose there is a ountable a-mouse M with M >�Kaj!1. Coiterate M and Kaj!1 and let T ;U be the resulting trees for M andKaj!1 respetively.Case 1: lh(T ) is ountable.Sine M >� Kaj!1, U does not have a drop. But then the last model ofU annot be an initial segment of the last model of T sine the length of T isountable, a ontradition.Case 2: lh(T ) is unountable.Sine M >� Kaj!1, U does not have a drop. If U was non-trivial, then the�nal model of U would be non-sound and ould not be a proper initial segmentof the �nal model of T . Hene U is trivial and Kaj!1 is an initial segment of the�nal model of T . But this means !1 is a limit of ritial points of embeddings viaT , hene !1 is inaessible in Ka, ontraditing the assumption !Ka1 = !K1 = !V1 .� (Claim 2.4.12)Case 1: There is a real a suh that a{ does not exist.This ase was taken are of by Steel and Welh. In [81, Lemma 3.6℄, theyassumed u2 = !2, whih is stronger than uKa2 < uV2 for eah real a, and provedthere is a ountable mouse stronger than Kj!1 with respet to mouse order. Butassuming !K1 = !V1 and the non-existene of 0{, we an run the same argumentonly assuming uK2 < uV2 and get the same onlusion. Furthermore, we an easilyrelativize this argument to Ka. Hene assuming !K1 = !V1 (even !Ka1 = !V1 ) andthe non-existene of a{, if uKa2 < uV2 , then there is an a-mouse stronger thanKaj!1 with respet to mouse order, whih ontradits the a-relativized version ofClaim 2.4.12.Case 2: For every real a, a{ exists.This ase is new. Sine uK2 < uV2 , there is a real a suh that uK2 < (!+1 )L[a℄.The idea is to use ay (whih exists sine a{ exists) and linearly iterate it with thelower measure in ay with length !1. Then the height of the last model is biggerthan uK2 sine uK2 < (!+1 )L[a℄. Now we restrit this linear iteration map to K inay onstruted up to the point with the top measure. The point is this is aniteration map on it and the �nal model of this iteration has height bigger thanuK2 . Sine it is a ountable mouse, by Claim 2.4.12, we get a ountable mouse in Kwith the same property, whih yields a ontradition by a standard boundednessargument.We disuss this idea in detail. Let i be the linear iteration map of ay derivedfrom the iterated ultrapower starting from the lower measure in it with length!1. Then the target N of i has height bigger than uK2 sine uK2 < (!+1 )L[a℄, theritial point of i goes to !1, and N has a ardinal bigger than !1 and a 2 N .Let Kayj
 be the K in ayj
, where 
 is the ritial point of the top measure in



D. Ikegami, Games in Set Theory and Logi 63ay.13 Then Kayj
 is a mouse and we all it M .We laim that if we restrit i to M , then it is an iteration map on M . Sinei is from a linear iteration of ultrapowers via measures, by applying the resultof Shindler [72, Corollary 3.1℄ in eah ultrapower in the iteration, we an provethat the restrition of i to M is an iteration with length !1 (whih itself might bevery ompliated). Moreover, the �nal model of this iteration has height greaterthan uK2 beause i maps 
 greater than or equal to (!+1 )L[a℄. Let us all the treeof this iteration T and let M� be the �th iterate via T and iT�;� : M� ! M� bethe indued maps for � � � � !1.Sine M is a ountable mouse, by Claim 2.4.12, there is an �0 < !1 suhthat M �� Kj�0. We will show that Kj�0 has the same property, i.e., there isan iteration from Kj�0 with length !1 suh that the height of the �nal model isgreater than uK2 . (Note that there might be a drop.) Coiterate Kj�0 and M andlet � : M ! N be the resulting map. Note that there is no drop from the M -sidebeause M �� Kj�0.We will onstrut hN� j � � !1i, h�� : M� ! N� j � � !1i, and hiU�;� : N� !N� j � � � � !1i with the following properties:(1) The diagrams below all ommute,(2) M� �� N� �� M�+1 for eah �, i.e., they are equal with respet to mouseorder,(3) N� is the diret limit of N� (� < �) for limit �, and(4) iU�;�+1 and ��+1 are the maps resulting from the omparison between N�and M�+1 for eah �.Kj�0 ///o/o/o N = N0 iU0;1 // N1 iU1;2 // : : : // N� iU�;�+1 // : : : // N!1M = M0�=�0OO iT0;1 // M1�1OO iT1;2 // : : : // M���OO iT�;�+1 // : : : // M!1�!1OO
The above properties uniquely speify hN� j � � !1i, h�� : M� ! N� j � �!1i, and hiU�;� : N� ! N� j � � � � !1i. Hene it suÆes to hek (1) and (2)above for this onstrution.For (1), it suÆes to show that iU�;�+1 Æ �� = ��+1 Æ iT�;�+1 for eah �. By theDodd-Jensen Lemma (Theorem 1.11.4), any two iteration maps without dropsfrom a mouse to a mouse are the same. By (2) for �, ��, ��+1, iT�;�+1, and iU�;�+1are all iteration maps without drops. Hene we get the desired ommutativity.(2) follows from the fat that all the maps onstruted before are simple iterationmaps.Sine the height of N!1 is greater than or equal to that of M!1 , there is aniteration from Kj�0 with length !1 whose �nal model has height greater than uK2 ,13Note that ayj
 is a transitive model of ZFC and obviously there is no inner model with aWoodin ardinal in that model. Hene by Theorem 1.11.2, one an onstrut K in ayj
.



64 Chapter 2. Games and Regularity Propertiesas desired.Sine Kj�0 is in K and �0 is ountable in K, there is a real x in K odingKj�0. We show that the height of N!1 is less than (!+1 )L[x℄. In L[x℄, we ollapse!V1 with the foring Coll(!; !V1 ). Let g : ! ! !V1 be a generi surjetion over L[x℄.Sine Kj�0 is oded by x and the length of iteration is !V1 whih is ountable inL[x℄[g℄ witnessed by g, by the boundedness lemma in L[x℄[g℄, the height of N!1is less than !L[x℄[g℄1 = (!+1 )L[x℄, as desired. Sine x is in K, (!+1 )L[x℄ < uK2 andhene the height of N!1 is less than uK2 . But the height was greater than uK2 .Contradition!Now by the assumption in Case 2 and Theorem 2.4.11, there is a real a suhthat !Ka1 = !V1 and uKa2 = uV2 . By Theorem 1.12.4, the Martin-Solovay trees for�13 sets are absolute between Ka and V . Hene we get the absolute deompositionof �13 sets into Borel sets between Ka and V , as desired. The rest is exatly thesame as in Theorem 2.4.2.Proof of Theorem 2.4.9. The argument is exatly the same as Theorem 2.4.6 byreplaing L[a℄ with Ka and using the analogous fats about Ka stated in Theo-rem 1.11.2 and Theorem 1.12.5.2.5 AppliationsWe now use our theorems to answer some open questions in set theory of thereals.The �rst one is about Silver foring V, whose onditions are uniform perfettrees on 2 ordered by inlusion, where a tree T on 2 is uniform if for any two nodess and t of T with the same length, sahii 2 T () tahii 2 T for i = 0; 1. In [19℄,Brendle, Halbeisen, and L�owe proved that every �12 set of reals is V-measurableassuming that for any real a there is a quasi-V-generi real over L[a℄. Then theyasked whether the onverse is true. We answer this question positively:Proposition 2.5.1. Assume every �12 set of reals is V-measurable. Then for anyreal a, there is a quasi-V-generi real over L[a℄.Proof. Sine Silver foring is strongly arboreal and proper, by Theorem 2.4.2, itsuÆes to show that the set of Borel odes with B 2 IV� is �12. We use thefollowing fat:Fat 2.5.2 (Zapletal). Let G be the graph on !2 onneting two binary sequenesif they di�er in exatly one plae. Let I be the �-ideal generated by Borel G-independent sets (i.e., Borel sets in !2 suh that any two distint elements ofthem are not onneted by G). Then every analyti set is either in I or ontains[T ℄ for some T 2 V.Proof. See [90, Lemma 2.3.37℄.



D. Ikegami, Games in Set Theory and Logi 65We show how to use Fat 2.5.2 to prove Proposition 2.5.1. We �rst show thatI � IV. It suÆes to see that every Borel G-independent set is in NV. Take suhBorel set B. Sine every Borel set is V-measurable and IV = NV, for eah T 2 V,there is a T 0 � T suh that either [T 0℄ � B or [T 0℄ \ B = ;. But the formerase annot happen beause [T 0℄ ontains many G-dependent elements. Hene[T 0℄ \ B = ;. Therefore B is V-null.With the above fat, this means every Borel set is either in IV� or ontains [T ℄for some T 2 V. Sine sets in IV� annot ontain [T ℄ for some T in V, B 2 IV� ifand only if B is in I, i.e., it is the union of a ountable set of G-invariant Borelsets. This is easily seen to be �12, as desired.Regarding IV = NV, the following is a diret onsequene of Theorem 2.4.6and Proposition 2.5.1 (or an easy onsequene of [19, Lemma 3.1℄):14Corollary 2.5.3. The following are equivalent:1. Every �12 set of reals is V-measurable, and2. For any real a, the set of quasi-V-generi reals over L[a℄ is of measure onewith respet to NV.Another appliation is for eventually di�erent foring E by Brendle and L�owe [21℄.They used Theorem 2.4.6 to prove that the Baire property in eventually di�erenttopology for every �12 set of reals is equivalent to the statement \!1 is inaessibleby reals", i.e., for every real a, !V1 is inaessible in L[a℄, whih is the strongestregularity property for �12 sets (Hehler foring also has this feature).We state their results and their proofs here. Reall the de�nition of eventuallydi�erent foring from x 1.9 and the de�nition of the eventually di�erent topologyE from Example 2.1.6. Also, the meager ideal in the topology E is the same as IEby Example 2.1.6. As mentioned in 1.9, eventually di�erent foring is . Heneby Lemma 1.9 3., IE � = IE . By Proposition 2.1.8, the Baire property in thetopology E oinides with E -measurability. Sine E is provably  and simplyde�nable, by Proposition 2.3.3 (3), quasi-E -generiity is the same as E -generiity.Theorem 2.5.4 (Brendle and L�owe [21℄). The following are equivalent:1. Every �12 set of reals has the Baire property in the eventually di�erenttopology E ,2. �13-E -absoluteness holds, and3. For any real a, there is an E -generi real x over L[a℄.Proof. By Theorem 2.4.2, it suÆes to hek the ondition (�) in Theorem 2.4.2.But sine E is provably  and simply de�nable, the ondition (�) follows fromProposition 2.3.3 (2).14This answers [19, Question 3℄ positively.



66 Chapter 2. Games and Regularity PropertiesTheorem 2.5.5 (Brendle and L�owe [21℄). The following are equivalent:1. Every �12 set of reals has the Baire property in the eventually di�erenttopology E ,2. For any real a, the set of E -generi reals over L[a℄ is omeager in the even-tually di�erent topology E , and3. For any real a, !L[a℄1 < !1.Proof. For the equivalene between (1) and (2), by Theorem 2.4.6 it suÆes tosee that IE is Borel-generated. But as mentioned in the paragraph after Theo-rem 2.4.6, IP is Borel-generated if P is .We show the diretion from (3) to (2). Let a be a real. Sine E -generi realsover L[a℄ are the same as quasi-E -generi reals over L[a℄, it suÆes to show thatthe set of quasi-E -generi reals over L[a℄ is omeager in the topology E . Sine!L[a℄1 and CH holds in L[a℄, the set of Borel odes in L[a℄ is ountable in V . Henethe union of Borel meager sets in the topology E with a Borel ode in L[a℄ is alsomeager in the topology E . Therefore the set of quasi-E -generi reals over L[a℄ isomeager in the topology E .Next, we show the diretion from 2. to 3. Toward a ontradition, assumethere is a real a suh that !L[a℄1 = !1. Then, in L[a℄, there is a sequene hf� 2!! j � < !1i of pairwise eventually di�erent funtions, i.e., for any � < � < !1,there is a natural number n0 suh that f�(n) 6= f�(n) for all n � n0. For eah� < !1, let E� be the set of reals not eventually di�erent from f�. It is easy tosee that E� is meager in the topology E . The following is the key point:Theorem 2.5.6 (Brendle). If A is meager in the topology E , then the set f� <!1E� � Ag is ountable.Proof. See [54, Theorem 4.7℄.Sine E� is meager in the topology E with a Borel ode in L[a℄, by 3., S�<!1 E�must be meager in the topology E . But this ontradits Theorem 2.5.6.Brendle and L�owe have also investigated the relation between the Baire prop-erty in the eventually di�erent topology and other regularity properties. Here arethe relations they listed in their paper [21℄ as in Figure 2.1:In Figure 2.1, the letters B ; C ; D ; E ; L ; M ;R ;S, and V stand for random,Cohen, Hehler, eventually di�erent, Laver, Miller, Mathias, Saks, and Silverforing, respetively. �12(P) stands for the statement that every �12 set is P-measurable and the same for �12(P). All the non-existene of impliations means\one statement does not imply the other in ZFC", e.g., �12(R) does not imply�12(C ) in ZFC, exept for the non-impliations from �12(L) to and �12(V) andfrom �12(L) to �12(V) (it is urrently not known whether �12(L) does not im-ply �12(V) and whether �12(L) does not imply �12(V)). All the impliations and



D. Ikegami, Games in Set Theory and Logi 67�12(E ) = �12(D ) #+OOOOOOO OOOOOOOw� wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww �12(B ) �&FFFFF FFFFF��s{ oooooooooooooo�12(R) = �12(R)�� �'GGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGG �12(C ) = �12(D )��qy kkkkkkkkkkkkkkkkkkkk �12(E )s{ oooooooooooooo �12(B )
jr

�12(L) = �12(L)�� ? ((? -- �12(C )���12(V)��qy kkkkkkkkkkkkkkkkkkkkkk�12(M ) = �12(M )�� �12(V)qy kkkkkkkkkkkkkkkkkkkkkk�12(S) = �12(S)Figure 2.1: Regularity properties for �12 sets and �12 setsthe non-impliations not involving E have been known before their work and theyhave established the impliations and the non-impliations involving E using The-orem 2.4.2 and Theorem 2.4.6 in this hapter. Here haraterizing the regularityproperties in terms of the transendene properties over L (rather foring abso-luteness) is essential, whih was not known for eventually di�erent foring beforeour work.Using Theorem 2.4.8 and Theorem 2.4.9, we an establish the same implia-tions and non-impliations for �13 sets and �13 sets assuming sharps for reals asin Figure 2.2:Again, we do not know whether �13(L) does not imply �13(V) and whether�13(L) does not imply �13(V) assuming sharps for reals. The proofs of the impli-ations and non-impliations are exatly the same as for �12 sets and �12 sets byreplaing L with K. We suspet many of the impliations and the non-impliationsfor �13 sets and �13 sets we have shown above are also well-known to experts inthis area.2.6 Conlusion and QuestionsWe introdued two general regularity properties, P-Baireness and P-measurability,and redued the problems of P-measurability to ones of P-Baireness with theavor of Baire ategory and used Banah-Mazur games and their variants. Thenwe proved general equivalene theorems between the regularity properties, foring



68 Chapter 2. Games and Regularity Properties�13(E ) = �13(D ) #+OOOOOOO OOOOOOOw� wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww �13(B ) �&FFFFF FFFFF��s{ oooooooooooooo�13(R) = �13(R)�� �'GGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGG �13(C ) = �13(D )��qy kkkkkkkkkkkkkkkkkkkk �13(E )s{ oooooooooooooo �13(B )
jr

�13(L) = �13(L)�� ? ((? -- �13(C )���13(V)��qy kkkkkkkkkkkkkkkkkkkkkk�13(M ) = �13(M )�� �13(V)qy kkkkkkkkkkkkkkkkkkkkkk�13(S) = �13(S)Figure 2.2: Regularity properties for �13 sets and �13 setsabsoluteness, and transendene properties over some anonial inner models ina uniform way and applied the theorems to answer some open questions in settheory of the reals. This is one of the instanes where reduing problems to theones of in�nite games gives us lear intuition and solutions.We lose this hapter by raising several questions and disussing them.On IP and IP�. Although IP� is the same as IP for most ases as we have seenin Lemma 2.1.12, as in Question 2.1.11, we still do not know whether this is truein general. What we ould hope is that this is true at least for Borel sets:Question 2.6.1. Let P be a strongly arboreal, proper foring. Then an we proveB 2 IP if and only if B 2 IP� for any Borel set B?If this is true, we do not have to mention IP� in our theorems.On the ondition (�) in Theorem 2.4.2. It is interesting to give suÆientonditions for P satisfying (�) in Theorem 2.4.2, i.e., the set of all Borel odeswith B 2 IP� is �12. These onditions ould be de�nability onditions on IP� ordiretly on P. For the �rst ase, we have a useful suÆient ondition: We saythat a �-ideal I on the reals is �12 on �11 if for any analyti set A � !2� !!, theset f j A 2 Ig is �12. It is easy to hek that if IP� is �12 on �11, then (�) holds.Sine IP is �12 on �11 and IP = IP� for most ases, (�) is true for most P. For theseond ase, we ask the following:



D. Ikegami, Games in Set Theory and Logi 69Question 2.6.2. Let P be a strongly arboreal, strongly proper, provably �12-foring. Then an we prove (�)?Although the ondition (�) is true for most typial forings, we have oneexample, namely Mathias foring, that we do not about the answer of the abovequestion. Solving this partiular question might give us another intuition of thisproblem.�12-determinay and �14-foring absoluteness. In Theorem 2.4.7, we usethe failure of �12-determinay to prove the equivalene between the regularityproperty and foring absoluteness. But it ould be that both are onsequenes of�12-determinay. Sine we have not used the failure of �12-determinay for thediretion from foring absoluteness to the regularity property, it is enough to askwhether �12-determinay implies �14-foring absoluteness:Question 2.6.3. Suppose �12-determinay holds. Then an we prove �14-P-absoluteness for eah strongly arboreal, proper, provably �12-foring P?Sharps for sets vs. sharps for reals. In Theorem 2.4.7, we have assumedthe existene of sharps for sets. Sine the result is about reals, it is natural toask whether we an redue this assumption to sharps for reals. The obstale iswhether proper forings preserve the statement \every real has a sharp" and u2:Question 2.6.4. Suppose every real has a sharp. Let P be a strongly arboreal,proper, provably �12-foring. Then an we prove that every real has a sharp inV P and uV2 = uV P2 ?Finally, we show that in the ase of provably , �11-forings, things workperfetly:Proposition 2.6.5. Let P be a strongly arboreal, provably , �11-foring. Then:1. IP = IP�.2. IP is Borel-generated.3. The ondition (�) holds. Moreover, f j B 2 IP�g 2 �12.4. Let M be a transitive model of ZFC. Then a real x is P-generi over M ifand only if x is quasi-P-generi over M .5. If �12-determinay holds, then so does �14-P-absoluteness.6. If every real has a sharp, then every real has a sharp also in V P and uV2 =uV P2 .Proof. (1) is already mentioned in Lemma 2.1.12, (2) is already mentioned in theparagraph after Theorem 2.4.6, and (3) is already shown in Proposition 2.3.3.The argument for (4) is exatly the same as for Lemma 2.3.3. For (5), see [75,Lemma 2.2.4℄. For (6), see [75, Lemma 2.2.2, Theorem 2.2.7, Example 3.2.7℄.Note that the assumption of Proposition 2.6.5 is true for all the typial ,strongly arboreal forings.





Chapter 3 Games themselves
In this hapter, we ompare the stronger versions of determinay of Gale-Stewartgames and Blakwell games, i.e., the Axiom of Real Determinay ADR and theAxiom of Real Blakwell Determinay Bl-ADR. In x 3.1, we show that Bl-ADRimplies that R# exists and that the onsisteny of Bl-ADR is stritly stronger thanthat of AD. In x 3.2, we show that Bl-ADR implies that every set of reals is 1-Borel. From this, we an derive almost all the regularity properties for every setof reals. In x 3.3, we disuss the possibility of the equivalene between ADR andBl-ADR under ZF+DC. In x 3.4, we disuss the possibility of the equionsistenybetween ADR and Bl-ADR.Throughout this hapter, we use standard notations from set theory and as-sume familiarity with desriptive set theory. By reals, we mean elements of theCantor spae and we use R to denote the Cantor spae.3.1 Real Blakwell Determinay and R#In this setion, we prove that Bl-ADR implies that R# exists and that the on-sisteny of Bl-ADR is stritly stronger than that of AD.Solovay [77℄ proved that ADR implies that R# exists. Our plan is to mimiSolovay's proof using Blakwell games. In order to do so, we analyze his proofwhih has two main omponents:Theorem 3.1.1 (Solovay). The axiom ADR implies that there is a �ne normalmeasure on P!1(R), where P!1(R) is the set of all ountable subsets of R.Proof. See [77, Lemma 3.1℄.Theorem 3.1.2 (Solovay). Suppose there is a �ne normal measure on P!1(R)and every real has a sharp. Then R# exists.Proof. See [77, Lemma 4.1 & Theorem 4.4℄.71



72 Chapter 3. Games themselvesHene it suÆes to show that there is a �ne normal measure on P!1(R) fromBl-ADR beause Bl-ADR implies AD in L(R), whih implies that every real hasa sharp by the result of Harrington [31℄.Theorem 3.1.3. Assume Bl-ADR. Then there is a �ne normal measure onP!1(R).Let us �rst see what is a �ne normal measure. Let X be a set and � be anunountable ardinal. As usual, we denote by P�(X) the set of all subsets of Xwith ardinality less than �, i.e., subsets A of X suh that there are an � < �and a surjetion from � to A. Let U be a set of subsets of P�(X). We say that Uis �-omplete if U is losed under intersetions with <�-many elements; we say itis �ne if for any x 2 X, fa 2 P�(X) j x 2 ag 2 U ; we say that U is normal if forany family fAx 2 U j x 2 Xg, the diagonal intersetion 4x2XAx is in U (where4x2XAx = fa 2 P�(X) j (8x 2 a) a 2 Axg). We say that U is a �ne measure ifit is a �ne �-omplete ultra�lter, and we say that it is a �ne normal measure if itis a �ne normal �-omplete ultra�lter.Proof of Theorem 3.1.3. The following is the key point: A subset A of !R isrange-invariant if for any ~x and ~y in !R with ran(~x) = ran(~y), ~x 2 A if and onlyif ~y 2 A.Lemma 3.1.4. Assume Bl-ADR. Then every range-invariant subset of !R isdetermined.Proof of Lemma 3.1.4. Let A be a range-invariant subset of !R. We show thatif there is an optimal strategy for player I in A, then so is a winning strategy forplayer I in A. The ase for player II is similar and we will skip it.Let us �rst introdue some notations. Given a funtion f : <!R ! R, aountable set of reals a is losed under f if for any �nite sequene s of elementsin a, f(s) is in a. For a strategy � : REven ! R for player I, where REven is the setof all �nite sequenes of reals with even length, a ountable set of reals a is losedunder � if for any �nite sequene s of elements in a with even length, �(s) is ina. For a funtion F : <!R ! P!1(R), a ountable set of reals a is losed under Fif for any �nite sequene s of elements in a, F (s) is a subset of a.The following two laims are basi:Claim 3.1.5. There is a winning strategy for player I in A if and only if there isa funtion f : <!R ! R suh that if a is a ountable set of reals and losed underf , then any enumeration of a belongs to A.Proof of Claim 3.1.5. We �rst show the diretion from left to right. Given awinning strategy � for player I in A, let f be suh that if a is losed under f ,then a is losed under �. (Sine � is a funtion from REven to R, any funtionfrom <!R to R extending � will do.) We see this f works for our purpose. Leta be a ountable set of reals losed under f . Then sine a is losed under � and



D. Ikegami, Games in Set Theory and Logi 73ountable, there is a run x of the game following � suh that its range is equalto a. Sine � is winning for player I, x is in A and by the range-invariane of A,any enumeration of a is also in A.We now show the diretion from right to left. Given suh an f , we an arrangea strategy � for player I suh that if x is a run of the game following �, thenthe range of x is losed under f : Given a �nite sequene of reals (a0; � � � ; a2n�1),onsider the set of all �nite sequenes s from elements of fa0; � � �a2n�1g and all thevalues f(s) from this set. What we should arrange is to hoose �(a0; � � � ; a2n�1)in suh a way that the range of any run of the game via � will over all suhvalues f(s) when (a0; � � � ; a2n�1) is a �nite initial segment of the run for any nin ! moves. But this is possible by a standard book-keeping argument. By theproperty of f , this implies that x is in A and hene � is winning for player I.� (Claim 3.1.5)Claim 3.1.6. There is a funtion f : <!R ! R suh that if a is a ountable setof reals and losed under f , then any enumeration of a belongs to A if and onlyif there is a funtion F : <!R ! P!1(R) suh that if a is a ountable set of realsand losed under F , then any enumeration of a belongs to A.Proof of Claim 3.1.6. We �rst show the diretion from left to right: Given suhan f , let F (s) = ff(s)g. Then it is easy to hek that this F works.We show the diretion from right to left: Given suh an F , it suÆes to showthat there is an f suh that if a is losed under f then a is also losed underF . We may assume that F (s) 6= for eah s. Fix a bijetion � : R ! !R. Letg : <!R ! R be suh that ran��(g(s))�= F (s) for eah s (this is possible beauseevery relation on the reals an be uniformized by a funtion by Theorem 1.14.9).Let h : <!R ! R be suh that h(s) = ��s(0)�(lh(s)�1), where lh(s) is the lengthof s when s 6= ;, if s = ; let h(s) be an arbitrary real.It is easy to see that if a is losed under g and h, then so is under F : Fixa �nite sequene s of reals in a. We have to show that eah x in F (s) is in a.Consider g(s). By the losure under g, g(s) is in a. By hoie of g, we knowthat ran(�(g(s))) = F (s), so it is enough to show that x is in a for any x inran(�(g(s)). Suppose x is the nth bit of �(g(s)). Consider the �nite sequene t =�g(s); :::; g(s)� of length n + 1. Then h(t) = �(t(0))(lh(t)� 1) = �(g(s))(n) = x.But g(s) is in a and a was losed under h, so x is in a.Now it is easy to onstrut an f suh that if a is losed under f , then so isunder g and h. � (Claim 3.1.6)By the above two laims, it suÆes to show that there is a funtion F : <!R !P!1(R) suh that if a is a ountable set of reals and losed under F , then anyenumeration of a belongs to A.



74 Chapter 3. Games themselvesLet � be an optimal strategy for player I in A. Let F be as follows:F (s) = (; if lh(s) is odd,fy 2 R j �(s)(y) 6= 0g otherwise.Then F is as desired: If a is losed under F , then enumerate a to be han j n 2!i and let player I follow � and let player II play the Dira measure for an at hernth move. Then the probability of the set fx 2 !R j ran(x) = ag is 1 and sine� is optimal for player I in A, there is an x suh that the range of x is a and xis in A. But by the range-invariane of A, any enumeration of a belongs to A.� (Lemma 3.1.4)We shall be losely following Solovay's original idea. We de�ne a family U �P(P!1(R)) as follows: Fix A � P!1(R) and onsider the following game ~GA:Players alternately play reals; say that they produe an in�nite sequene ~x =(xi j i 2 !). Then player II wins the game ~GA if ran(~x) 2 A, otherwise player Iwins. Sine the payo� set of this game is range-invariant as a Gale-Stewart game,by Lemma 3.1.4, it is determined.We say that A 2 U if and only if player II has a winning strategy in ~GA. Weshall show that it is a �ne normal measure under the assumption of Bl-ADR, thus�nishing the proof of Theorem 3.1.3.A few properties of U are obvious: For instane, we see readily that ; =2 Uand that P!1(R) 2 U , as well as the fat that U is losed under taking supersets.In order to see that U is a �ne family, �x a real x, and let player II play x in her�rst move: This is a winning strategy for player II in ~Gfajx2ag.We next show that for any set A � P!1(R), either A or the omplement of A isin U . Given any suh set A, suppose A is not in U . We show that the omplementof A is in U . Sine the game ~GA is determined, by the assumption, there is awinning strategy � for I in ~GA. Setting �(s) = ��s�(lh(s) � 1)� for s 2 ROdd , itis easy to see that � is a winning strategy for player II in the game ~GA.We show that U is losed under �nite intersetions. Let A1 and A2 be inU . Sine the payo� sets in the games ~GA1 and ~GA2 are range-invariant, by theanalogue of Claim 3.1.5, there are funtions f1 : <!R ! R and f2 : <!R ! R suhthat if a is losed under fi, then a is in Ai for i = 1; 2. Then it is easy to �ndan f : <!R ! R suh that if a is losed under f , then a is losed under both f1and f2. By the analogue of Claim 3.1.5 again, this f witnesses the existene of awinning strategy for player II in the game ~GA1\A2 .We have shown that U is an ultra�lter on subsets of P!1(R). We show the!1-ompleteness of U as follows: By Theorem 1.14.8, every set of reals is Lebesguemeasurable assuming Bl-AD. If there is a non-prinipal ultra�lter on !, then thereis a set of reals whih is not Lebesgue measurable. Hene there is no non-prinipalultra�lter on !, whih implies that any ultra�lter is !1-omplete. In partiular,U is !1-omplete.



D. Ikegami, Games in Set Theory and Logi 75The last to show is that U is normal. Let fAx j x 2 Rg be a family of setsin U . We show that 4x2RAx is in U . Consider the following game ~G: PlayerI moves x, then player II passes. After that, they play the game ~GAx. This isBlakwell determined and player II has an optimal strategy � sine eah Ax is inU . Let F : <!R ! P!1(R) be as follows:F (s) = (; if lh(s) is even,fy 2 R j �(s)(y) 6= 0g otherwise.We laim that if a is losed under F , then a is in 4x2RAx. Then, by the analoguesof Claim 3.1.5 and Claim 3.1.6, F will witness the existene of a winning strategyfor player II in the game ~G4x2RAx and we will have proved that 4x2RAx 2 U .Suppose a is losed under F . We show that a 2 Ax for eah x 2 a. Fix an xin a and enumerate a to be (xn j n 2 !). In the game ~G, let player I �rst movex and then they play the game ~GAx. Let player II follow � and player I play theDira measure onentrating on xn at the nth move. Then the probability of theset f~x 2 !R j x0 = x and ran(~x) = ag is 1 and sine � is optimal for player II inthe game ~G, there is an ~x suh that the range of ~x is a and ~x is a winning runfor player II in ~G, hene a is in Ax. � (Theorem 3.1.3)Corollary 3.1.7. The onsisteny of Bl-ADR is stritly stronger than that ofAD.Proof. Sine Bl-ADR implies Bl-AD by the �rst item of Proposition 1.14.2 andBl-AD implies ADL(R) by Corollary 1.14.7, Bl-ADR implies ADL(R). By Theo-rem 3.1.3, Bl-ADR also implies the existene of R# . By the property of R# ,one an onstrut a set-size elementary substruture of L(R). Hene ADL(R) andthe existene of R# imply the onsisteny of AD. Therefore, Bl-ADR implies theonsisteny of AD and by G�odel's Inompleteness Theorem, the onsisteny ofBl-ADR is stritly stronger than that of AD.3.2 Real Blakwell Determinay and regularitypropertiesIn this setion, we show that Bl-ADR implies almost all the regularity propertiesfor every set of reals. Note that DCR follows from the uniformization for everyrelation on the reals. Hene by Theorem 1.14.9, Bl-ADR implies DCR. For therest of the setions in this hapter, we freely use DCR when we assume Bl-ADRand we �x a �ne normal measure U on P!1(R), whih exists by Theorem 3.1.3.We start with proving the perfet set property for every set of reals. Reallthat a set of reals A has the perfet set property if either A is ountable or Aontains a perfet subset, where a perfet set of reals is a losed set withoutisolated points.



76 Chapter 3. Games themselvesTheorem 3.2.1. Assume Bl-ADR. Then every set of reals has the perfet setproperty.Proof. The theorem follows from the following two lemmas:Lemma 3.2.2. Assume Bl-ADR. Then every relation on the reals an be uni-formized by a Borel funtion modulo a Lebesgue null set, i.e., for any relationR on the reals, there is a Borel funtion f suh that the set fx j (x; f(x)) 2R or there is no real y with (x; y) 2 Rg is of Lebesgue measure one.Proof of Lemma 3.2.2. The onlusion follows by a folklore argument from Lebesguemeasurability and uniformization for any relation on the reals both of whih areonsequenes of Bl-ADR by Theorem 1.14.8 and Theorem 1.14.9).Let R be an arbitrary relation on the reals. We may assume the domain of Ris the whole spae, i.e., for any real x, there is a real y suh that (x; y) 2 R. Wewill �nd a Borel funtion uniformizing R almost everywhere.By the uniformization priniple, there is a funtion g uniformizing R. Foreah �nite binary sequene s, the set g�1([s℄) is Lebesgue measurable by Theo-rem 1.14.8. Hene for eah s there is a Borel set Bs suh that g�1([s℄)4Bs isLebesgue null. Now de�ne f so that the following holds: For eah �nite binarysequene s, f(x) 2 [s℄ () x 2 Bs:Then by the property of Bs, f is de�ned almost everywhere, Borel, and is equal tog almost everywhere. Hene any Borel extension of f will be the one we desired.� (Lemma 3.2.2)Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals anbe uniformized by a Borel funtion modulo a Lebesgue null set. Then every setof reals has the perfet set property.Proof of Lemma 3.2.3. See [70, Theorem 5℄. � (Theorem 3.2.1)Next, we show that Bl-ADR implies that every set of reals has the Baire prop-erty. We �rst introdue the Blakwell meager ideal as an analogue of the meagerideal. A set A of reals is Blakwell meager if player II has an optimal strategy inthe Banah-Mazur game G��(A). Let IBM denote the set of all Blakwell meagersets of reals.Lemma 3.2.4. Assume Bl-AD. Then any meager set is in IBM, [s℄ =2 IBM foreah �nite binary sequene s, and IBM is a �-ideal. Moreover, every set of realsis measurable with respet to IBM, i.e., for any set A of reals and �nite binarysequene s, there is a �nite binary sequene t extending s suh that either [t℄\Aor [t℄ n A is in IBM.



D. Ikegami, Games in Set Theory and Logi 77Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has awinning strategy in the Banah-Mazur game G��(A) and in partiular player IIhas an optimal strategy in G��(A) by Theorem 1.14.3. Hene A is Blakwellmeager.It is easy to see that [s℄ =2 IBM for eah �nite binary sequene s by lettingplayer I �rst play the Dira measure onentrating on s in the game G��([s℄).We show that IBM is a �-ideal. The losure of IBM under subsets is immediate.We prove that it is losed under ountable unions.In order to prove this, we need to develop the appropriate transfer tehnique(as disussed and applied in [55℄) for the present ontext. Let � � ! be anin�nite and o-in�nite set. We think of � as the set of rounds in whih playerI moves. We identify � with the inreasing enumeration of its members, i.e.,� = f�i j i 2 !g. Similarly, we write �� for the inreasing enumeration of !n�,i.e., !n� = f��i j i 2 !g. For notational ease, we all � a I-oding if no twoonseutive numbers are in � and 0 2 � (i.e., the �rst move is played by I). Weall � a II-oding if no two onseutive numbers are in !n� and 0 2 �.Fix A � !! and de�ne two variants of G��A with alternative orders of play asdetermined by �. If � is a I-oding, the game G���;IA is played as follows:I s�0 = s0 s�1 : : :II s�0+1; : : : ; s�0�1 s�1+1; : : : ; s�2�1 : : :If � is a II-oding, then the game G���;IIA is played as follows:I s0; : : : ; s��0�1 s��0+1; : : : ; s��1�1 : : :II s��0 s��1 : : :In both ases, player II wins the game if s_0 s_1 : : :_ s_n : : : =2 A. Obviously, wehave G��A = G��Even;IIAwhere Even is the set of even numbers.Lemma 3.2.5. Let A be a subset of the Baire spae and � be a I-oding. Thenthere is a translation � 7! �� of mixed strategies for player I suh that if � is anoptimal strategy for player I in G��A , then �� is an optimal strategy for player Iin G���;IA .Similarly, if � is a II-oding, there is a translation � 7! �� of mixed strategiesfor player II suh that if � is an optimal strategy for player II in G��A , then �� isan optimal strategy for player II in G���;IIA .Proof of Lemma 3.2.5. We prove only the lemma for the games G���;IA , the otherproof being similar. If ~s = hsi j i 2 !i is an in�nite sequene of �nite binarysequenes, we de�ne b~si = s_�i+1 : : :_ s�i+1�1:



78 Chapter 3. Games themselvesNote that in order to ompute b~si , we only need the �rst �i+1 bits of ~s. The ideais that now the G��A -run I s�0 s�1 s�2 : : :II b~s0 b~s1 b~s2 : : : (�)yields the same output in terms of the onatenation of all played �nite sets asthe run ~s in the game G���;IA . We an de�ne a map �� on in�nite sequenes of�nite binary sequenes by(��(~s))i = � s�k if i = 2k,b~sk if i = 2k + 1,and see that s_0 s_1 : : : = (��(~s))_0 (��(~s))_1 : : :.Now, given a mixed strategy � for player I in G��A and a run ~s of the gameG���;IA , we de�ne �� via �� as follows:��(s0; : : : ; s�m�1) = �(s�0; b~s0; : : : ; s�i; b~si ; : : : ; s�m�1; b~sm�1):Assume that � is an optimal strategy for player I in G��A and �x an arbitrarymixed strategy � in the game G���;IA . We show that the payo� set for A in G���;IAis ���;� -measurable and ��� ;�(A) = 1. In order to do so, we onstrut a mixedstrategy ���1 for player II in G��A so that the game played by �� and � is essentiallythe same as the game played by � and ���1 .Given a sequene ~b of moves in G��A , we need to unravel it into a sequene ofmoves in G���;IA in an inverse of the maps ~s 7! b~si aording to (�), i.e., b2i+1 = b~si .Thus, we de�ne A~b2i+1 = f~s j b~si = b2i+1g,A~b�2i+1 = \j�iA~b2j+1:Note that only a �nite fragment of ~s is needed to hek whether b~si = b2i+1,and thus we think of A~b�2i+1 as a set of (�i+1 � (i + 1))-tuples of �nite binarysequenes. In the following, when we quantify over all \~s 2 A~b�i", we think ofthis as a olletion of �nite strings of �nite binary sequenes. In order to pad themoves made in G���;IA , we de�ne the following notation: For in�nite sequenes ~sand ~b, we write x~s;~bi = (b2i; s�i+1; :::; s�i+1�1):Compare (�) to see that if ~s orresponds to moves in G���;IA and ~b to the moves inG��A , then these are exatly the �nite sequenes that player II will have to respondto in G���;IA . Moreover, for a given sequene ~z of �nite binary sequenes, we letP� (z0; :::; zn) = Yi�n;i=2� �(z0; :::; zi�1)(zi):



D. Ikegami, Games in Set Theory and Logi 79Fix a sequene ~b of �nite binary sequenes with even length and de�ne ���1as follows: ���1(b0; : : : ; b2m)(b2m+1) = P~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )Qmi=1 ���1(b0; : : : ; b2i�2)(b2i�1) :Using the two operations � 7! �� and � 7! ���1 , sine the payo� set for G��A isinvariant under ��, it now suÆes to prove for all basi open sets [t℄ indued by a�nite sequene t = (b0; :::; blh(t)�1) that ��;���1 ([t℄) = ���;� ((��)�1([t℄)). We provethis by indution on the length of t, and have to onsider three di�erent ases:Case 1. lh(t) = 0. This is immediate.Case 2. lh(t) = 2m + 1 with m � 0. By indution hypothesis, we have thatX = ��;���1 ([b0; : : : ; b2m�1℄) = ��� ;�((��)�1([b0; : : : ; b2m�1℄)). Thus,��;���1 ([b0; : : : ; b2m℄) = X � �(b0; : : : ; b2m�1)(b2m)= ��� ;� ((��)�1([b0; : : : ; b2m℄)):Case 3. lh(t) = 2m+ 2 with m � 0.��;���1 (t) = mYi=0 �(b0; : : : ; b2i�1)(b2i) � X~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )= ���;��(��)�1([b0; : : : ; b2m+1℄)�:This alulation �nishes the proof of this lemma. � (Lemma 3.2.5)We now show that IBM is losed under ountable unions. Let fAn j n 2 !gbe a family of sets in IBM. Take an optimal strategy �n in the game G��(An) foreah n. We prove that Sn2! An is also in IBM.Fix a bookkeeping bijetion � from !�! to ! suh that �(n;m) < �(n;m+1)and �(n; 0) � n. We are playing in�nitely many games in a diagram where the �rstoordinate is for the index of the game we are playing, and the seond oordinateis for the number of moves. Hene the pair (n;m) stands for \mth move in thenth game". De�ne a II-oding �n = !nf2�(n; i) + 1 j i 2 !g orresponding to thefollowing game diagram:I s0; : : : ; s2�(n;0) s2�(n;0)+2; : : : ; s2�(n;1) : : :II s2�(n;0)+1 s2�(n;1)+1 : : :By Lemma 3.2.5, we know that for eah n 2 !, we get an optimal strategy (�n)�nfor the game G���n;IIAn . Let � be the following mixed strategy�(s0; : : : ; s2�(n;m)) = (�n)�n(s0; : : : ; s2�(n;m)):



80 Chapter 3. Games themselvesThe properties of � make sure that this strategy is well-de�ned. We shall nowprove that � is an optimal strategy for player II in G��Sn2! An .Pik any mixed strategy � for player I in G��Sn2! An and de�ne strategies �n forG���n;IIAn . Let m = �(k; `), then�n(s0; : : : ; s2m�1) = �(s0; : : : ; s2m�1), and�n(s0; : : : ; s2m) = (�k)�k(s0; : : : ; s2m) (if k 6= n).Note that for eah n 2 !, ��;� = ��n;(�n)�n .The payo� set (for player II) in G��Sn2! An is A = f~s j s_0 s_1 : : : =2 Sn2! Ang.We show that ��;� (A) = 1. Sine A = Tn2! f~s j s_0 s_1 : : : =2 Ang, it suÆesto hek that the sets Bn = f~s j s_0 s_1 : : : =2 Ang has ��;� -measure 1. But��;� (Bn) = ��n;(�n)�n (Bn) = 1. Thus we have shown that IBM is a �-ideal.We �nally show that every set A of reals is measurable with respet to IBM,i.e., for any �nite binary sequene s, there is a �nite binary sequene t extendings suh that either [t℄ \ A or [t℄ n A is in IBM. Fix suh A and s. If [s℄ \ A isin IBM, we are done. So suppose not. Then player II does not have an optimalstrategy in the game G��([s℄ \ A). By Bl-AD, there is an optimal strategy � forplayer I in the game G��([s℄ \ A). Let t be any s0 with �(;)(s0) 6= 0. Then sine� is optimal, t extends s and the strategy � easily gives us an optimal strategyfor player II in the game G��([t℄nA). Hene [t℄nA is in IBM. � (Lemma 3.2.4)Reall the notions of Stone spae St(P) and P-Baireness for a partial order Pfrom hapter 2. The based set of St(P) was the set of all ultra�lters on BP whereBP is a ompletion of P. Without the Axiom of Choie, it might be empty if P isbig. But in this hapter, we only onsider partial orders P whih are elements ofH!1 in V , i.e., the transitive losure of P is ountable in V . If P is an element ofH!1 , then St(P) is essentially the same as St(C ) where C is Cohen foring, henethe Cantor spae !!Sine every meager set is Blakwell meager as we have seen in Lemma 3.2.4,if P is in H!1 , then one an onsider Blakwell meagerness for subsets of St(P)by identifying St(P) with the Cantor spae.We are now ready to prove the Baire property for every set of reals from Bl-ADR.Theorem 3.2.6. Assume Bl-ADR. Then every set of reals has the Baire property.Proof. Take any set A of reals. We show that A has the Baire property. LetA2A be the seond-order arithmeti struture with A as a unary prediate. Sineany relation on the reals an be uniformized by a funtion by Theorem 1.14.9,we an onstrut a Skolem funtion F for A2A and by a simple oding of �nitesequenes of reals and formulas via reals, we regard it as a funtion from thereals to themselves. Let �F = f(x; s) 2 R � <!2 j F (x) � sg. The followingare the key objets for the proof (they are alled term relations): Reall from



D. Ikegami, Games in Set Theory and Logi 81Lemma 2.1.2 that for a P-name � for a real, f� is the Baire measurable funtion(whih is ontinuous on a omeager set) orresponding to � .�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;��F = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Fg;��F  = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �F g;where �81G 2 St(P)� means \for all G modulo a Blakwell meager set inSt(P). . . ". Let M = HODL[�A;�A ;��F ;��F  ℄�A;�A ;��F ;��F  and for G 2 St(P), let AG = ff�(G) j(9p 2 G) (P; p; �) 2 �A\Mg. Note that for any ountable ordinal �, P(�)\M isountable: Sine M is a transitive model of ZFC, if P(�) \M was unountable,then there would be an unountable sequene of distint reals whih would on-tradit Lebesgue measurability for every set of reals. Hene for any P 2 H!1 \M ,the set of P-generi �lters over M is omeager, in partiular Blakwell omeager(i.e., its omplement is Blakwell meager). Therefore, when we disuss statementsstarting from �81G 2 St(P)�, we may assume that G is P-generi over M .Claim 3.2.7.1. Let P be a partial order inM . Then �81G 2 St(P)� AG = A\M [G℄ 2M [G℄and M [G℄ is losed under F .2. Let P = Coll(!; 2!)M , where Coll(!; 2!) is the foring ollapsing the ar-dinal 2! into ountable with �nite onditions. Then �81G 2 St(P)� AG has theBaire property in M [G℄.Proof. We �rst show that AG = A\M [G℄ for Blakwell omeager many G. SineIBM is a �-ideal, for Blakwell omeager many G, G is P-generi over M and if(P; p; �) 2 �A \M (resp., �A \M) and p 2 G, then f�(G) = �G 2 A (resp., A).We show that AG = A \M [G℄ for any suh G.Fix suh a G. We �rst prove that AG � A \ M [G℄. Take any real x inAG. Then there is a p 2 G and a � suh that (P; p; �) 2 �A \M and �G = x.Then by the property of G, x = �G = f�(G) 2 A, as desired. We show thatA \M [G℄ � AG. Let x be a real in M [G℄ whih is not in AG. We prove thatx is also not in A. Sine x is in M [G℄, there is a P-name � for a real in Msuh that �G = x. Sine A is measurable with respet to IBM by Lemma 3.2.4,the set fp 2 P j either (P; p; �) 2 �A \M or (P; p; �) 2 �A \Mg is dense andit is in M . Sine G is P-generi over M , there is a p 2 G suh that either(P; p; �) 2 �A or (P; p; �) 2 �A . But (P; p; �) 2 �A annot hold beause it would



82 Chapter 3. Games themselvesimply x = �G 2 AG. Hene (P; p; �) 2 �A and x = �G = f�(G) 2 A by theproperty of G, as desired.Let �A = f(�; p) j (P; p; �) 2 �A \Mg. Sine the omprehension axioms with�A as a unary prediate hold in M , �A is a P-name for a set of reals in M and�GA = AG 2 M [G℄. Hene AG = A \M [G℄ 2 M [G℄ for Blakwell omeager manyG, as desired.Next, we show that M [G℄ is losed under F for Blakwell omeager many G.We prove this for any G whih is P-generi over M suh that if (P; p; �; s) 2 ��F(resp., ��F ) and p is in G, then F (�G) � s (resp., F (�G) + s). Fix suh a G andlet x be a real in M [G℄. We show that F (x) is also in M [G℄. Sine x is in M [G℄,there is a P-name � for a real in M suh that �G = x. Sine every subset of St(P)is measurable with respet to IBM, the funtion G0 7! F �f�(G0)� is ontinuousmodulo a Blakwell meager set in St(P). Hene for any �nite binary sequene s,the set of all p 2 P suh that either �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � sor �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� + s is dense and is in M . By thegeneriity and the property of G, for any s, there is a p 2 G suh that F (�G) � s ifand only if �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � s if and only if (P; p; �; s) 2��F \M . Hene F (x) = F (�G) = Sfs j (9p 2 G) (P; p; �; s) 2 ��f \Mg, whihis in M [G℄, as desired.Finally, we show that AG has the Baire property in M [G℄ for Blakwell omea-ger many G when P = Coll(!; 2!)M . Atually, we show that AG has the Baireproperty in M [G℄ for any P-generi G over M . Let s be a �nite binary sequene.We show that there is a t extending s suh that either [t℄ \ AG or [t℄ n AG ismeager in M [G℄. Let _ be a anonial name for a Cohen real. Sine one anembed Cohen foring into Coll(!; 2!)M in a natural way in M , we may regard _as a P-name for a Cohen real. Sine 2! in M is ountable in M [G℄, the set ofCohen reals over M is omeager in M [G℄. Take any Cohen real  over M withs �  in M [G℄. We may assume  is in AG (the ase  =2 AG an be dealt within the same way). Reall that �G = AG and hene by the foring theorem, thereis a p 2 G and a � suh that M � p  \ _ = � � �s" and (P; p; �) 2 �A \M ,whih implies (P; p; _) 2 �A \M , namely ( _; p) 2 �A. But the value of _ will bedeided within Cohen foring and by the de�nition of �A, we may assume thatp is a ondition of Cohen foring extending s. Hene for any Cohen real 0 overM with p �  in M [G℄,  is in AG. Sine the set of all Cohen reals over M isomeager in M [G℄, this is what we desired. � (Claim 3.2.7)We now �nish the proof of Theorem 3.2.6 by showing that A has the Baireproperty. Let G be suh that the onlusions of Claim 3.2.7 hold. By the �rst itemof Claim 3.2.7, the struture (!; !!\M [G℄; app;+; �;=; 0; 1; AG) is an elementarysubstruture of A2A. Sine the Baire property for A an be desribed in thestruture A2A in this language and AG has the Baire property in M [G℄, A alsohas the Baire property, as desired. � (Theorem 3.2.6)Next, we show that every set of reals is 1-Borel assuming Bl-ADR. For that



D. Ikegami, Games in Set Theory and Logi 83purpose, we introdue the Vop�enka algebra and its variant, whih is a main toolfor our argument. The original motivation for the Vop�enka algebra is to makeevery set to be generi over HOD, the lass of all the hereditarily ordinal de�nablesets, i.e., any element of the transitive losure of a given set is ordinal de�nable.HOD is an important inner model of ZFC ontaining all the (possible) importantinner models with large ardinals and it is lose to V in the sense that any set inV an be generi over HOD via the Vop�enka algebra.We de�ne the Vop�enka algebra and its variant for HODX , where X is anarbitrary set, ODX is the lass of all sets ordinal de�nable with a parameter X,and HODX is the lass of sets a where any element of the transitive losure of ais in ODX .Take any arbitrary set X and �x an ordinal de�nable injetion iX : ODX !HODX . Then onsider the Vop�enka algebra PV;X in HODX as follows: PV;X =fiX(A) j A 2 ODX and A � P(!)g. For p; q 2 PV;X , p � q if i�1X (p) � i�1X (q).It is easy to see that the de�nition of PV;X does not depend on the hoie of iX ,i.e., if there are two suh injetions, then the orresponding two partial ordersare isomorphi in HODX . Vop�enka [87℄ proved that PV;; is a omplete Booleanalgebra in HOD (when X = ;) and eah real in V an be seen as a PV;;-generi�lter over HOD in the following way: For eah real x in V , the set Gx = fp 2PV;; j x 2 i�1; (p)g is a PV;;-generi �lter over HOD and HOD[x℄ = HOD[Gx℄.Conversely, if G is a PV;;-generi �lter over HOD, then the set Tfi�1; (p) j p 2 Ggis a singleton. We all the element of the singleton a Vop�enka real over HOD anddenote it yG. Then yGx = x for eah real x in V . The analogue of the aboveresults holds for HODX for arbitrary set X.We now introdue a variant of the Vop�enka algebra, namely the Vop�enka alge-bra with 1-Borel odes. Given a set X, onsider the following partial order P�V;Xin HODX : Conditions of P�V;X are 1-Borel odes in HODX where the ordinalsused in their trees are below � in HODX and for �;  in P�V;X , � �  if B� � B .1Then we an prove the analogue of Vop�enka's theorem in exatly the same way:Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.1. P�V;X is a omplete Boolean algebra in HODX .2. For eah real x in V , the set Gx = f� 2 P�V;X j x 2 B�g is P�V;X -generiover HODX and HODX [x℄ = HODX [Gx℄. Conversely, if G is a P�V;X -generi �lterover HODX , then the set TfB� j � 2 Gg is a singleton and we all the real inthe singleton a Vop�enka real over HODX and denote it yG. Then HODX [yG℄ =HODX [G℄ and yGx = x for eah G and x.Proof. The proof is exatly the same as for the Vop�enka algebra whih an befound, e.g., in Jeh's textbook [37, Theorem 15.46℄.1For any 1-Borel ode � in HODX , there is an 1-Borel ode  where the ordinals used inthe tree of  is less than � in HODX suh that � �  and  � �. Hene the restrition ofordinals for 1-Borel odes will not a�et the struture of this partial order.



84 Chapter 3. Games themselvesThe di�erene between PV;X and P�V;X is that yG might not reover G fromHODX for PV;X while HODX [yG℄ = HODX [G℄ for P�V;X . This is beause theinjetion iX is not in HODX in general while the de�nition of P�V;X does not referto OD. For our purpose, we will use P�V;X .Theorem 3.2.9. Assume Bl-ADR. Then every set of reals is 1-Borel.Proof. We modify the argument for the following theorem by Woodin:Theorem 3.2.10 (Woodin). Assume AD and that every relation on the realsan be uniformized. Then every set of reals is 1-Borel.Let A be an arbitrary set of reals. We show that A is 1-Borel.By Theorem 3.2.6, every set of reals has the Baire property. Hene everysubset of St(P) has the Baire property for any P 2 H!1 . We freely use this fatlater. We �x a simple oding of elements of H!1 by reals and if we say \a real xodes: : :", then we refer to this oding.Let �A and RA be as follows:�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;RA = f(x; y) j if x odes a (P; p; �) 2 �A, then y odes a (Di j i < !)suh that (8i) Di is dense in P and�8G 2 St(P)� �p 2 G; (8i) G \Di 6= ; =) f�(G) 2 A�g;where \�81G 2 St(P)� : : : " means \For omeager many G in St(P) : : :". Notethat the term relation �A de�ned here is di�erent from the one in Theorem 3.2.6 inthe sense that now we use omeagerness for the quanti�er 81 instead of Blakwellomeagerness.Let FA uniformize RA and �A be the graph of FA, i.e., �A = f(x; s) j s 2<!!; FA(x) � sg. De�ne ��A as follows:��A = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Ag;here we also use omeagerness for the quanti�er 81.Let A be the omplement of A and de�ne and onstrut �A ; RA; FA ;�A,and ��A as above.The following is the key point:Claim 3.2.11 (Woodin). Let M be a transitive subset of H!1 and (M;2; �A; ��A)is a model of ZFC.2 Let (P; p; �) 2M \ �A. Then for every P-generi �lter G overM , if p is in G, then �G 2 A. The same holds for A.2Here it satis�es Comprehension sheme and Replaement sheme for formulas in the lan-guage of set theory with prediates for �A and ��A .



D. Ikegami, Games in Set Theory and Logi 85Proof of Claim 3.2.11. Let Q = Coll�!;TC(P)�, where Coll�!;TC(P)� is thestandard foring ollapsing TC(P) into a ountable set with �nite sets as ondi-tions. Sine P; p; � are ountable in MQ , there is a Q -name �0 for a real in Moding the triple (P; p; �).Sublaim 3.2.12. There is a Q -name � for a real in M suh that in V , foromeager many H in St(Q), f�(H) = FA(f�0(H)).Proof of Sublaim 3.2.12. First note that the map f : H 7! FA�f�0(H)� is on-tinuous on a omeager set in St(Q), i.e., Baire measurable. This is beause everysubset of St(Q ) has the Baire property in St(Q ) and we an do the same argumentas the one in Proposition 3.2.2 to uniformize a relation almost everywhere (sinewe use open sets in St(Q ) to approximate subsets in St(Q) in this ase, we get aontinuous funtion instead of a Borel funtion).Let � = �f where the notation �f is from Lemma 2.1.2. Then � is a Q -namefor a real beause the map f is Baire measurable as we observed. Moreover, � isin M beause((m;n)�; q) 2 � () (9s 2 <!2) �s(m) = n and �Q ; q; (�; s)� 2 ��A�and the right hand side of the equivalene is de�nable in (M; �A; ��A), whih is amodel of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that foromeager many H in St(Q), f�(H) = FA(f�0(H)). � (Sublaim 3.2.12)Now let G be a P-generi �lter over M with p 2 G. We show that f�(G) 2 A.Take a Q -generi �lter H over M [G℄ with �H = FA(�0H). This is possible bySublaim 3.2.12 and that M [G℄ � H!1 . Then G is also a P-generi �lter overM [H℄ and FA(�0H) = �H 2 M [H℄. But by the de�nition of FA, FA(�0H) odes asequene (Di j i 2 !) suh that Di is a dense subset of P in M [H℄ for eah i 2 !and for any G0 in St(P), if G0 \ Di 6= for eah i, then f�(G0) 2 A. But G is aP-generi �lter over M [H℄ and eah Di is in M [H℄. Hene G \ Di 6= ; for eahi 2 ! and f�(G) 2 A, as desired. � (Claim 3.2.11)Let X = (A; �A; ��A; �A ; ��A ). Reall that U is the �ne normal measureon P!1 we �xed at the beginning of this setion. Let M = L(X;R)[U ℄. Sinethe statement \a real is in the deode of an 1-Borel ode" is absolute betweentransitive models of ZF as in x 1.13 and M ontains all the reals, if A is 1-Borelin M , so is in V .From now on, we work in M and prove that A is 1-Borel in M , whihompletes the proof of this theorem. The bene�t of working in M is that we haveDC in M beause DCR implies DC in M while DC might fail in V in general.Note that U \ M is a �ne normal measure on P!1(R) in M and we use U todenote U \M from now on.We �nd a set of ordinals S and a formula � suh that for any real x,x 2 A () L[S; x℄ � �(x): (3.1)



86 Chapter 3. Games themselvesBy Fat 1.13.2, this implies that A is 1-Borel.For a in P!1(R), let Ma;Q �a , and ba be as follows:Ma = HODL!1 [X℄(a)X ;Q �a =P�V;X in Ma;ba = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag in Ma;where _yG is a anonial Q �a -name for a Vop�enka real given in Theorem 3.2.8.Note that Ma is a transitive subset ofH!1 and (Ma; �A; ��A) and (Ma; �A; ��A )are models of ZFC beause L!1[X℄(a) is a transitive model of ZF (to hek thepower set axiom, we use the ondition that there is no unountable sequene ofdistint reals ensured by Lebesgue measurability). Note also that ba is well-de�nedbeause Q �a is a omplete Boolean algebra in Ma by Theorem 3.2.8.Then we laim that for eah a 2 P!1(R) and real x whih indues the �lter Gxthat is P�V;X -generi �lter over Ma, x 2 A () ba 2 Gx. Fix a and x. Assumeba 2 Gx. We show that x 2 A. If we apply Claim 3.2.11 to M = Ma; (P; p; �) =(Q �a ; ba; _yG), and G = Gx, then we get x 2 A beause yGx = x as in Theorem 3.2.8.For the onverse, we assume ba is not in Gx and prove that x is not in A. Let ba0be the one orresponding to ba for A instead of for A, i.e.,ba0 = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag:Then ba _ ba 0 = 1. This is beause f�1_yG (A) has the Baire property in St(Q �a).Sine ba =2 Gx and Gx is P�V;X -generi over Ma, ba0 is in Gx. Hene we an applyClaim 3.2.11 to Ma; A; (Q �a ; ba0; _yG), and Gx and we get x 2 A, i.e., x is not inA, as desired.Fix an a 2 P!1(R). Note that sine P�V;X is the Vop�enka algebra with 1-Borelodes de�ned in Ma, any real in L!1 [X℄(a) is P�V;X -generi over Ma. Hene forany real x in L!1[X℄(a), x 2 A () ba 2 Gx.Now we use this loal equivalene in L!1[X℄(a) to get the global equiva-lene (3.1) by taking the ultraprodut of Ma via U . Let M1;Q1 ; b1 be asfollows: M1 = YU Ma; Q1 = YU Q �a ; b1 = YU ba:Note that  Lo�s's theorem holds for M1 beause there is a anonial funtionmapping a to a well-order on Ma.3 By DC (in M), M1 is wellfounded. So wemay assume M1 is transitive. Hene, M1 is a transitive model of ZFC, Q1 is apartial order onsisting of 1-Borel odes, and b1 2 Q1 .We laim that for eah real x, x 2 A () x 2 Bb1. This will establish theequivalene (3.1) beause the pair (Q1 ; b1) an be seen as a set of ordinals sinethey are objets in the transitive model M1 of ZFC.3  Lo�s's theorem fails for QU L!1 [X ℄(a). This is beause L!1 [X ℄(a) is not a model of ZFC foralmost all a and we annot assign a well-order on L!1 [X ℄(a) to eah a as we did for QU Ma.



D. Ikegami, Games in Set Theory and Logi 87Let us �x a real x. By the �neness of U , x 2 a for almost all a w.r.t. U . Thenx 2 A () ba 2 Gx for almost all a() x 2 Bba for almost all a() x 2 Bb1 ;where the �rst equivalene is by the loal equivalene we have seen and the thirdequivalene follows from  Lo�s's theorem forQUMa[x℄ (note that Ma[x℄ is a generiextension of Ma given by Gx and we an prove  Lo�s's theorem for QUMa[x℄ inthe same way as for QU Ma). This ompletes the proof.Together with the non-existene of unountable sequenes of distint reals,the 1-Borelness for every set of reals gives us almost all the regularity propertieswe introdued in hapter 2 for every set of reals. Reall that P-measurabilityfor a strongly arboreal foring P was the regularity property we introdued inDe�nition 2.1.7. Also reall that strongly proper forings are strengthening ofproper forings for projetive forings.Proposition 3.2.13. Assume that there is no unountable sequene of distintreals and every set of reals is 1-Borel. Then every set of reals is P-measurablefor any strongly arboreal, strongly proper foring P.Proof. The results for Cohen foring, random foring, and Mathias foring arewell-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. Wejust replae L[a℄ in Theorem 2.4.2 with L[S℄, where S odes a given set of realsand a given partial order P. The fat that the set of all dense subsets of P in L[S℄is ountable follows from the non-existene of unountable sequenes of distintreals (beause L[S℄ is a ZFC model) and the fat that L[S℄ orretly omputesP follows from that S odes P. The rest is exatly the same as in Case 1 inTheorem 2.4.2.Corollary 3.2.14. Assume Bl-ADR. Then every set of reals is P-measurable forany strongly arboreal, strongly proper foring P.3.3 Toward ADR from Bl-ADRIn this setion, we disuss the following onjeture:Conjeture 3.3.1 (DC). ADR and Bl-ADR are equivalent.Sine ADR implies Bl-ADR by Theorem 1.14.3, the question is whether Bl-ADRimplies ADR in ZF+DC. Woodin proved the following:Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-alent:



88 Chapter 3. Games themselves1. Every set of reals is Suslin,2. The axiom ADR holds, and3. Every relation on the reals an be uniformized.Hene, to prove Conjeture 3.3.1, it suÆes to show that every set of realsis Suslin from Bl-ADR: If every set of reals is Suslin, then by Theorem 1.14.5,AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds assumingBl-ADR and DC. Note that Martin's Conjeture (i.e., Bl-AD implies AD) impliesConjeture 3.3.1 by Theorem 3.3.2. Hene it is interesting to see whether this isConjeture is true or not.We try to mimi the arguments for the impliation from uniformization toSuslinness in Theorem 3.3.2 and redue Conjeture 3.3.1 to a small onjeture.Throughout this setion, we �x U as a �ne normal measure on P!1(R), whihexists by Theorem 3.1.3.First, we show that every set of reals is strong 1-Borel assuming Bl-ADR.Before giving a de�nition of strong 1-Borel odes, we start with a small lemma:Lemma 3.3.3. Assume Bl-ADR and DC. Let j : V ! Ult(V; U) be the ultrapowermap via U . Then j(!1) = �.Proof. We �rst show that j(!1) � �. Let � be an ordinal less than � and R bea prewellorder on the reals with length �. De�ne f : P!1(R) ! !1 be as follows:For a 2 P!1(R), f(a) is the length of the prewellorder R\ (a�a) on a. Sine a isountable, f(a) is also ountable. Hene f 2U !1, where 2U is the membershiprelation for Ult(V; U) and !1 is the onstant funtion on P!1(R) with value !1.We show that the struture ([f ℄U ;2) is isomorphi to (�;2) and hene [f ℄U =�, whih implies � < j(!1) beause f 2U !1. For any a 2 P!1(R), let �(a) bethe transitive ollapse of �a; R \ (a� a)� into �f(a);2�. Then by  Lo�s's Theoremfor simple formulas, [�℄U is an isomorphism between �[id℄U ; j(R)\ ([id℄U � [id℄U)�and ([f ℄U ;2), where id is the identity funtion on P!1(R).Claim 3.3.4. The identity funtion id represents R, i.e., [id℄U = R.Proof of Claim 3.3.4. By the �neness of U , for any real x, fa j x 2 ag 2 U .Hene [x℄U 2 [id℄U . By the ountable ompleteness of U , [x℄U = x and henex 2 [id℄U for any real x. Suppose f is a funtion on P!1(R) with f 2U id. Then bythe normality of U , there is a real x suh that fa j x = f(a)g 2 U , i.e., x =U f .Hene [f ℄U = x and [f ℄U is a real, whih �nishes the proof. � (Claim 3.3.4)By Claim 3.3.4, we have [id℄U = R and j(R) \ ([id℄U � [id℄U)� = R. Sine�[id℄U ; j(R)\([id℄U�[id℄U)� and ([f ℄U ;2) are isomorphi, ([f ℄U ;2) is isomorphi to(R; R), whih is isomorphi to (�;2), as desired. Hene � < j(!1) and j(!1) � �.Next, we show that j(!1) � �. Let f be a funtion from P!1(R) to !1. Weshow that [f ℄U < �. By uniformization for every set of reals, there is a funtion



D. Ikegami, Games in Set Theory and Logi 89e from the reals to themselves suh that if a real x odes an a 2 P!1(R), thene(x) odes f(a). Let S be an 1-Borel ode for the graph �e of e whih exists byTheorem 3.2.9.Claim 3.3.5. For all a 2 P!1(R), f(a) < �L[S℄(a).Proof of Claim 3.3.5. Note that P(x) \ L[S℄(a) is ountable in V for any x 2H!1 \ L[S℄(a). Hene there is a Coll(!; a)-generi g over L[S℄(a) in V . Fix suha g. Let xg be a real oding a from g. Then sine S is an 1-Borel ode for�e, one an ompute whether e(xg) � s for eah �nite binary sequene s or notin L[S℄(a; g), hene e(xg) 2 L[S℄(a; g). Therefore f(a) is ountable in L[S℄(a; g).But �L[S℄(a) stays an unountable ardinal in L[S℄(a; g). Hene f(a) < �L[S℄(a),as desired.By the normality of U , the following hoie priniple holds: For any funtionF : P!1(R) ! V suh that ; 6= F (a) 2 L[S℄(a) for almost a with respet to U ,then there is a funtion f : P!1(R) ! V suh that f(a) 2 F (a) for almost all awith respet to U . This implies  Lo�s's Theorem for the ultraprodut QU L[S℄(a).Let S� = j(S). Then �QU L[S℄(a);2U� is isomorphi to �L[S�℄(R);2� bylooking at the map g 7! j(g)(R). (Note that Ult(V; U) is wellfounded by DC.)Hene [f ℄U < [a 7! �L[S℄(a)℄U = �L[S�℄(R) � �V ;as desired.We now introdue strong 1-Borel odes. An 1-Borel ode S is strong if thetree of S is a tree on  for some  < � and for any f : <!R ! R and surjetion� : R ! , there is an a 2 P!1 suh that a is losed under f , S��[a℄ is an 1-Borel ode, and BS��[a℄ � BS. Note that the hoie of  does not depend on thede�nition of strong 1-Borel odes. A set of reals A is strong 1-Borel if A = BSfor some strong 1-Borel ode S. There is a �ner version of Fat 1.13.2 as follows:Fat 3.3.6.1. Let S be a strong 1-Borel ode and  < � be suh that S is a tree on �for some � <  and L[S; x℄ � \KP + �1-Separation" for any real x. Let �(S; x)be a �1-formula expressing \x 2 BS". Then for any funtion f : <!R ! R andsurjetion � : R ! , there is an a 2 P!1(R) suh that a is losed under f andfor any real x, if L�[ �S; x℄ � �( �S; x), then L [S; x℄ � �(S; x), where L� [ �S℄ is thetransitive ollapse of the Skolem hull of �[a℄ [ fSg in L[S℄.2. Let  be an ordinal with  < �, � be a �1-formula, and S be a boundedsubset of  suh that L[S; x℄ � \KP + �1-Separation" for any real x. Set A =fx 2 R j L[S; x℄ � �(S; x)g. Assume that for any funtion f : <!R ! R andsurjetion � : R ! , there is an a 2 P!1(R) suh that a is losed under f andfor any real x, if L�[ �S; x℄ � �( �S; x), then L [S; x℄ � �(S; x), where L� [ �S℄ is the



90 Chapter 3. Games themselvestransitive ollapse of the Skolem hull of �[a℄ [ fSg in L[S℄. Then A is strong1-Borel.Proof. This an be done by losely looking at the argument for Fat 1.13.2 in [80℄.Theorem 3.3.7. Assume Bl-ADR and DC. Then every set of reals is strong1-Borel.Proof. Fix a set of reals A. We show that A is strong 1-Borel. Let �(Ma;Q �a ; ba) ja 2 P!1(R)� and (M1;Q �1 ; b1) be as in the proof of Theorem 3.2.9, but weonstrut them in V , not in M . Sine we have DC now, we an prove the followingequivalenes in exatly the same way as in Theorem 3.2.9: For all a 2 P!1(R)and all real x induing the �lter Gx whih is Q �a -generi over Ma,x 2 A () ba 2 Gx (in Q �a):Also, (8x 2 R) x 2 A () b1 2 Gx (in Q �1):For any a, let Da be the set of all dense subsets of Q �a in Ma and let D1 = QU Da.Let � be a �1-formula suh that for all a,�(Q �a ; ba; Da; x) () x determines the �lter Gx � Q �a suh that(8D 2 Da) Gx \D 6= ; and ba 2 Gx,�(Q �1 ; b1; D1; x) () x determines the �lter Gx � Q �1suh that(8D 2 D1) Gx \D 6= ; and b1 2 Gx:Let Sa and S1 be sets of ordinals oding the two triples (Q �a ; ba; Da) and(Q �1 ; b1; D1) respetively. For an a 2 P!1(R), let �a be the least ordinal �suh that Sa is a bounded subset of � and for all x 2 a, L�[Sa; x℄ is a model ofKP+�1-Separation and let �1 be the least ordinal � suh that S1 is a boundedsubset of � and for all x 2 R, L�[S1; x℄ is a model of KP+�1-Separation. Notethat by  Lo�s's Theorem, (QU L�a[Sa; x℄;2U ) is isomorphi to (L�1 [S1; x℄;2) forevery real x. Sine eah �a is ountable, by Lemma 3.3.3, �1 < �. Also, by theabove equivalenes, for all a 2 P!1(R) and all reals x,x 2 A () L�a[Sa; x℄ � � (Sa; x)x 2 A () L�1[S1; x℄ � � (S1; x):By the seond item of Fat 3.3.6, it suÆes to show the following: For anyfuntion f : <!R ! R and surjetion � : R ! �1, there is an a 2 P!1(R) suhthat a is losed under f and for any real x, if L ��1[ �S1; x℄ � �( �S1; x), thenL�1[S1; x℄ � �(S1; x), where L ��1[ �S1℄ is the transitive ollapse of the Skolemhull of �[a℄ [ fS1g in L�1 [S1℄.Let us �x f : <!R ! R and � : R ! �1. Sine x 2 A () L�b [Sb; x℄ �� (Sb; x) for eah real x and b 2 P!1(R), the following laim ompletes the proof:



D. Ikegami, Games in Set Theory and Logi 91Claim 3.3.8. There are a and b in P!1(R) suh that a is losed under f and(Xa;2) is isomorphi to (L�b [Sb℄;2), where Xa is the Skolem hull of �[a℄ [ fS1gin L�1[S1℄.Proof of Claim 3.3.8. Let �f = f(x; s) 2 R � <!2 j f(x) � sg. For eah b,onsider the following game Ĝb in L[Sb; S1;�f ; �℄: In ! rounds,1. Player I and II produe a ountable elementary substruture X of L�b [Sb℄,2. Player II produes an a 2 P!1(R) whih is losed under f , and3. Player II tries to onstrut an isomorphism between (X;2) and (Xa;2),where Xa is the Skolem hull of �[a℄ [ fS1g in L�1[S1℄.Player II wins if she sueeds to onstrut an isomorphism between (X;2) and(Xa;2). This is an open game on some set of the form Tb � R where Tb iswellorderable. Hene by DCR, it is determined.Sublaim 3.3.9. There is a b 2 P!1(R) suh that player II has a winning strategyin the game Ĝb.Proof of Sublaim 3.3.9. To derive a ontradition, suppose there is no b suhthat player II has a winning strategy in the game Ĝb in L[Sb; S1;�f ; �℄. Bythe determinay of the game Ĝb, player I has a winning strategy in the gameĜb. Let j : V ! Ult(V; U) be the ultrapower map. Then by  Lo�s's Theo-rem, QU�L[Sb; S1;�f ; �℄;2U ;�f ; �� is isomorphi to �L[S1; j(S1);�f ; j(�)℄;2;�f ; j(�)�. Then the game Ĝ1 = QU Ĝb is an open game on some set of theform T1 � R where T1 is wellorderable in L[S1; j(S1);�f ; j(�)℄ suh that in !rounds,1. Players I and II produe a ountable elementary substruture Y of L�1 [S1℄,2. Player II produes an a 2 P!1(R) whih is losed under f , and3. Player II tries to onstrut an isomorphism between (Y;2) and (Ya;2),where Ya is the Skolem hull of j(�)[a℄ [ fj(S1)g in Lj(�1)[j(S1)℄.Player II wins if she sueeds to onstrut an isomorphism between Y and Ya.By  Lo�s's Theorem, player I has a winning strategy � in L[S1; j(S1);�f ; j(�)℄.By Theorem 1.12.6, � is also winning in V . In V , let player II move in suha way that she an arrange that a is losed under f , j[Y ℄ = Ya, and j�Y isthe andidate for the isomorphism. This is possible by a bookkeeping argument.But then player II wins beause j�Y is an isomorphism between Y and j[Y ℄ anddefeats the strategy �, ontradition! � (Sublaim 3.3.9)



92 Chapter 3. Games themselvesHene there is a b 2 P!1(R) suh that player II has a winning strategy �in the game Ĝb in L[Sb; S1;�f ; �℄. By Theorem 1.12.6, � is also winning in V .Sine L�b[Sb℄ is ountable in V , we an let player I move in suh a way thatX = L�b [Sb℄ and let player II follow � . Sine � is winning in V , there is ana 2 P!1(R) suh that a is losed under f and L�b [Sb℄ = X is isomorphi to Xa,as desired. � (Claim 3.3.8)We are now ready to prove the key statement toward Conjeture 3.3.1: Reallthat for a natural number n with n � 1 and a subset A of Rn+1 , 9RA = fx 2Rn j (9y 2 R) (x; y) 2 Ag.Theorem 3.3.10. Assume Bl-ADR and DC. Let A be a subset of R3 and assume9RA is a strit well-founded relation on a set of reals. Suppose A has a strong1-Borel ode S and let  be an ordinal less than � suh that the tree of S is on. Then the length of 9RA is less than +.Proof. Let A; S, and  be as in the assumptions. We show that the length of9RA is less than +. Fix a surjetion � : R ! . Let us start with the followinglemma:Lemma 3.3.11. There is a funtion f : <!R ! R suh that if a is losed underf , then S��[a℄ is an 1-Borel ode and BS��[a℄ � BS.Note that the assertion of the above lemma is the strengthening of the de�ni-tion of strong 1-Borel odes.Proof of Lemma 3.3.11. Let us onsider the following game: Player I and IIhoose reals one by one and produe an !-sequene x of reals. Setting a = ran(f),player I wins if S��[a℄ is an 1-Borel ode and BS��[a℄ � BS. Sine S is a strong1-Borel ode, player I an defeat any strategy for player II beause strategies anbe seen as funtions from <!R to R by Claim 3.1.5. Sine the payo� set of thisgame is range-invariant, by Lemma 3.1.4, this game is determined. Hene playerI has a winning strategy and by Claim 3.1.5, there is a funtion f as desired.� (Lemma 3.3.11)We �x an f0 satisfying the onlusion of Lemma 3.3.11 for the rest of this proof.Reall that U is the �ne normal measure on P!1(R) we �xed at the beginning ofthis setion. Using �, we an transfer this measure to a �ne normal measure onP!1() as follows: Let �� : P!1(R) ! P!1() be suh that ��(a) = �[a℄ for eaha 2 P!1(R). For A � P!1(), A 2 U� if ��1� (A) 2 U . It is easy to hek that U�is a �ne normal measure on P!1().We now prove the key lemma for this theorem:



D. Ikegami, Games in Set Theory and Logi 93Lemma 3.3.12. Let G be Coll(!; )-generi over V . Then in V [G℄, there is anelementary embedding j : L(R; S; f0 ; �) ! L�j(R); j(S); j(f0); j(�)� suh that allthe reals in V [G℄ are ontained in L�j(R); j(S); j(f0); j(�)�.Proof of Lemma 3.3.12. The argument is based on the result of Kehris andWoodin [47, Theorem 6.2℄. We �rst introdue the notion of weakly meager sets.A subset B of ! is weakly meager if there is an X 2 U� suh that (8b 2 X)!b\Bis meager in the spae !b. Sine b is ountable, the spae !b is homeomorphi tothe Baire spae in most ases. Note that if B is a meager set in the spae !,then it is weakly meager. A subset B of ! is weakly omeager if its omplementis weakly meager. Let I be the set of weakly meager sets.Sublemma 3.3.13.1. The ideal I is a �-ideal on !.2. For any s 2 <!, [s℄ is not weakly meager.3. If a subset B of ! is not weakly meager, then there is an s 2 <! suh that[s℄ nB is weakly meager.4. Let g be a funtion from ! to On. Then for any B whih is not weaklymeager, there is a B0 � B whih is not weakly meager suh that for all xand y in B0, if ran(x) = ran(y), then g(x) = g(y).Proof. The �rst statement follows from the �-ompleteness of U�. The seondstatement follows from the �neness of U�.For the third statement, suppose B is not weakly meager. Then sine U� isan ultra�lter, there is an X 2 U� suh that (8b 2 X) !b \B is not meager in !b.We may assume that eah b in X is in�nite beause the set of �nite subsets of is measure zero with respet to U� by the �neness of U�. Take any b in X. Sinethe spae !b is homeomorphi to the Baire spae, the set !b \ B has the Baireproperty in !b. Hene there is an sb 2 <!b suh that [sb℄ nB is meager in !b. Bynormality of U�, there is a Y 2 U� suh that Y � X and there is an s 2 <! suhthat sb = s for any b 2 Y . Hene [s℄ nB is weakly meager.For the last statement, let g be suh a funtion and B be not weakly meager.Then there is an X 2 U� suh that 8b 2 X, !b \ B is not meager in !b. Sine!b \ B has the Baire property in !b, there is an sb 2 <!b suh that [sb℄ n B ismeager in !b. By normality of U�, there are a Y � X and s0 2 <! suh thatY 2 U� and sb = s0 for every b 2 Y . We use the following fat:Fat 3.3.14 (Folklore). Assume every set of reals has the Baire property. Thenthe meager ideal in the Baire spae is losed under any wellordered union.



94 Chapter 3. Games themselvesTake any b 2 Y . Sine [s0℄ \ !b is homeomorphi to the Baire spae, wean apply Fat 3.3.14 to the spae [s0℄ \ !b and hene there is an �b suh that[s0℄ \ !b \ g�1(�b) is not meager in [s0℄ \ !b. Sine the set [s0℄ \ !b \ g�1(�b)has the Baire property in [s0℄ \ !b, there is an sb 2 <!b suh that sb � s0 and[sb℄ng�1(�b) is meager in !b. By normality of U�, there are a Z 2 U� with Z � Yand an s1 � s0 suh that [s1℄ n g�1(�b) is meager in !b for eah b 2 Z. ThenB0 = B \ [s1℄ \ fx j g(x) = �ran(x)g is as desired. � (Sublemma 3.3.13)Now we prove Lemma 3.3.12. Let G be Coll(!; )-generi over V . Considerthe Boolean algebra P(!)=I. Then it is naturally foring equivalent to Coll(!; ):In fat, for s 2 <!, let i(s) = [s℄=I. Then by the third item of Sublemma 3.3.13,i is a dense embedding from Coll(!; ) to P(!)=I n f0g. De�ne U 0 as follows:For a subset B of ! in V , B is in U 0 if there is a p 2 G suh that [p℄ n B isweakly meager. By the generiity of G and the third item of Sublemma 3.3.13,U 0 is an ultra�lter on (!)V and U 0 ontains all the weakly omeager sets. Takean ultrapower Ult�L(R; S; f0 ; �); U 0� = �(!)V L(R; S; f0 ; �) \ V �=U 0 and let j bethe ultrapower map. (Note that we onsider L(R; S; f0 ; �)-valued funtions in Vwhih are not neessarily in L(R; S; f0 ; �).)We show that j is the desired map. We �rst hek  Lo�s's Theorem for thisultrapower. It is enough to show that for any B 2 U 0 and a funtion F from B toL(R; S; f0 ; �) suh that all the values of F are nonempty, then there is a funtionf on B in V suh that f(x) 2 F (x) for all x in B0. Sine there is a surjetion fromR � On to L(R; S; f0 ; �), we may assume that the values of F are sets of reals.But then by uniformization for every relation on the reals by Theorem 1.14.9, weget the desired f .Next, we hek the well-foundedness of Ult�L(R; S; f0 ; �); U 0�. By DC, weknow that the ultrapower Ult(V; U�) is wellfounded. Hene it suÆes to showthe following: For a funtion f : P!1() ! On, let gf : ! ! On be as follows:gf(x) = f�ran(x)�.Sublemma 3.3.15. The map [f ℄U� 7! [gf ℄U 0 is an isomorphism from �(P!1 ()On\V )=U�;2U�� to �(!On \ V )=U 0;2U 0�.Proof of Sublemma 3.3.15. We �rst show that if f1 2U� f2, then gf1 2U 0 gf2 .Sine f1 2U� f2, there is an X 2 U� suh that for any b in X, f1(b) 2 f2(b). Fixa b in X. Sine the set fx 2 !b j ran(x) = bg \ !b is omeager in !b, the setfx 2 !b j f1�ran(x)� 2 f2�ran(x)�g is omeager in !b. Hene for every b 2 X, theset fx 2 !b j gf1(x) 2 gf2(x)�g is omeager in !b and the set fx 2 ! j gf1(x) 2gf2(x)g is weakly omeager and hene is in U 0. Therefore, gf1 2U 0 gf2. In thesame way, one an prove that if f1 =U� f2, then gf1 =U 0 gf2 .Next, we show that the map is surjetive. Take any funtion g : ! ! On inV . We show that there is an f : P!1() ! On in V suh that gf =U 0 g. By thelast item of Sublemma 3.3.13 and the generiity of G, there is an Y in U 0 suhthat if x and y are in Y with the same range, then g(x) = g(y). Sine Y is in U 0,



D. Ikegami, Games in Set Theory and Logi 95there is a p 2 G suh that [p℄nY is weakly meager, hene there is an X in U� suhthat for all b in X, ([p℄nY )\!b is meager in !b. This means that g is onstant ona omeager set in [p℄ \ !b for eah b 2 X. Let �b be the onstant value for eahb 2 X and f be suh that f(b) = �b if b is in Y and f(b) = 0 otherwise. Then itis easy to hek that gf =U 0 g, as desired. � (Sublemma 3.3.15)We have shown that j is elementary and we may assume that the targetmodel of j is transitive. Then j is an elementary embedding from L(R; S; f0 ; �)to L�j(R); j(S); j(f0); j(�)�. Let M = L�j(R); j(S); j(f0); j(�)�. We �nally hekthat all the reals in V [G℄ are in M . Let x be a real in V [G℄ and � be a P-namefor a real in V suh that �G = x. We laim that [f� ℄U 0 = x, where f� is theBaire measurable funtion from St�Coll(!; )� to the reals indued by � fromLemma 2.1.2, whih ompletes the proof.Take any natural number n and set m = x(n). We show that [f� ℄U 0(n) = m.Sine x(n) = m, there is a p 2 G suh that p  �(�n) = �m. By the de�nition off� , for any x 2 [p℄, f� (x)(n) = mg. Sine p is in G, by the de�nition of U 0, theset fx j f� (x)(n) = m is in U 0, as desired. � (Lemma 3.3.12)We now �nish the proof of Theorem 3.3.10. Let us keep using M to denoteL�j(R); j(S); j(f0); j(�)�. We �rst laim that S and j[S℄ are in M . Sine  isountable in V [G℄, there is a real x oding S in V [G℄. But by Lemma 3.3.12,suh an x is in M . Hene S is also in M . Sine  is ountable in V [G℄, there isan a 2 P!1(R) suh that �[a℄ = S and hene j(�)[a℄ = j[S℄ in V [G℄. But sinej(�) 2M and a 2M by Lemma 3.3.12, j[S℄ = j(�)[a℄ is also in M , as desired. ByLemma 3.3.11 and elementarity of j, the following is true in M : For any a losedunder j(f), j(S)�a is an 1-Borel ode and Bj(S)�a � Bj(S). Also, by elementarityof j, 9RBj(S) is a well-founded relation on a set of reals in M . Set a = j[S℄.Sine a is losed under j(f), in M , j(S)�a is an 1-Borel ode, Bj(S)�a � Bj(S),and 9RBj[S℄ is also a wellfounded relation on a set of reals in M . Sine j[S℄ isountable in M , the relation 9RBj[S℄ is �11 and hene by Kunen-Martin Theorem(see [66, 2G.2℄), its rank is less than !1 in M whih is the same as + in V .Finally, sine S and j[S℄ are equivalent as Borel odes, 9RBS has length less than!1 in M and sine M has more reals than V , �9RBS�V � �9RBS�M . Therefore,the length of �9RBS�V is less than !M1 = (+)V , as desired.Beker proved the following:Theorem 3.3.16 (Beker). Assume AD, DC, and the uniformization for everyrelation on the reals. Suppose that the onlusion of Theorem 3.3.10 holds, i.e.,let A be a subset of R3 and assume 9RA is a well-founded relation on a set ofreals. Suppose A has a strong 1-Borel ode S and let  be an ordinal less than� suh that the tree of S is on . Then the length of 9RA is less than +. Thenevery set of reals is Suslin.



96 Chapter 3. Games themselvesProof. See [9℄.We try to simulate Beker's argument, make a small onjeture, and redueConjeture 3.3.1 to the small onjeture.As preparation, we prove a weak version of Moshovakis' Coding Lemma. Letus introdue some notions for that. Let A be a set of reals. Let IND(A) be theset of all pos�1n(A)-indutive sets of reals for some natural number n � 1. Forthe de�nition of pos�1n(A)-indutive sets, see [66, 7C℄. All we need is as follows:Fat 3.3.17. For any set of reals A, IND(A) is the smallest Spetor pointlassontaining A and losed under 9R and 8R.Proof. The argument is the same as [66, 7C.3℄.Theorem 3.3.18 (Weak version of Moshovakis' Coding Lemma). Assume Bl-AD.Let < be a strit wellfounded relation on a set A of reals with rank funtion� : A !  onto and let � be a Spetor pointlass ontaining < and losed under9R and 8R. Then for any subset S of , there is a set of reals C 2 � suh that�[C℄ = S.By Fat 3.3.17, IND(<) satis�es the onditions for �.Proof. The argument is based on Moshovakis' original argument [66, 7D.5℄.Let S be a subset of . We show that for any � � , there is a set of realsC� 2 � with �[C�℄ = S \ � by indution on �.It is trivial when � = 0 and it is also easy when � is a suessor ordinalbeause � is a boldfae pointlass. So assume � is a limit ordinal and the abovelaim holds for eah � < �. We show that there is a C 2 � with �[C℄ = S \ �.Sine � is !-parametrized and losed under reursive substitutions, we havefGn � R � Rn j n � 1g given in Lemma 1.7.1. Let G2a = fx 2 R j (a; x) 2 G2gfor eah real a. For a real a, we say G2a odes a subset S 0 of S if G2a � A and�[G2a℄ = S 0.Let us onsider the following game G�: Player I and II hoose 0 or 1 one byone and they produe reals a and b separately and respetively. Player II wins ifeither (G2a does not ode S \ � for any � < �) or (G2a odes S \ � for some � < �and G2b odes S \ � for some � < � with � > �). By Bl-AD, one of the playershas an optimal strategy in this game.Case 1: Player I has an optimal strategy � in G�.For a real b, let �b be the mixed strategy for player II suh that player IIprodues b with probability 1 no matter how player I plays. Sine � is optimalfor player I, for eah real b, for ��;�b-measure one many reals a, G2a odes S \ �for some � < �. Fix a real b. We use the following fat analogous to Fat 3.3.14:Fat 3.3.19 (Folklore). Let � be a Borel probability measure on the Baire spaeand assume every set of reals is �-measurable. Then the set of �-null sets is losedunder wellordered unions.



D. Ikegami, Games in Set Theory and Logi 97Sine every set of reals is Lebesgue measurable by Theorem 1.14.8, every setof reals is ��;�b-measurable. By Fat 3.3.19, there is a unique �b < � suh thatfor ��;�b-positive measure many reals a, G2a odes S \ �b and the set of reals asuh that G2a odes S \ � for some � < �b is ��;�b-measure zero. Let C be thefollowing: A real x is in C if there is a real b suh that for ��;�b-positive measuremany reals a, they ode the same subset S 0 of , and no proper subsets of S 0 anbe oded by ��;�b-positive measure many reals, and x 2 G2a for some real a suhthat G2a odes S 0. Sine � is losed under 9R and 8R, C is in �(�). By indutionhypothesis, for any � < �, there is a real b suh that G2b odes S \ �. Sine � isoptimal, C odes S \ �, as desired.Case 2: Player II has an optimal strategy � in G�.Let (a; x) 7! fag(x) be the partial funtion from R�R to R whih is universalfor all the partial funtions from R to itself that are �-reursive on their domain.For reals a and w, de�ne a set of reals Aa;w as follows: a real x is in Aa;w if thereexists z < w suh that fag(z) is de�ned and �fag(z); x� 2 G2. It is easy to seethat Aa;w is in �. By Lemma 1.7.1, there is a �-reursive funtion � : R�R ! Rsuh that Aa;w = G2�(a;w) for eah a and w.For eah real a and w, de�ne a set of reals Ca;w as follows: A real x is in Ca;wif for ���(a;w);� -positive measure many b, they ode the same subset S 0 of , noproper subsets of S 0 an be oded by ��;�b-positive measure many reals, and x isin G2b for some real b suh that G2b odes S 0. It is easy to see that Ca;w is in �.Hene by Lemma 1.7.1, there is a �-reursive funtion �0 : R � R ! R suh thatCa;w = G2�0(a;w) for eah a and w.Sine the funtion (a; w) 7! �0(a; w) is �-reursive in � and total, by ReursionTheorem 1.7.3, we an �nd a �xed a� suh that for all w, fa�g(w) = �0(a�; w).Let g(w) = fa�g(w).Claim 3.3.20. For eah w 2 A with �(w) < �, there is some �(w) < � with�(w) < �(w) suh that G2g(w) odes S \ �(w).Proof of Claim 3.3.20. We show the laim by indution on w. Suppose it is donefor all x < w. Then Aa�;w odes S \ � where � = supf�(x) j x < wg � �(w).Sine � is optimal for II, Ca�;w odes S \ � for some � > �. Sine G2g(w) = Ca�;w,setting �(w) = �, �(w) > �(w) and G2g(w) odes S \ �(w). � (Claim 3.3.20)Let C = Sw2A;�(w)<�G2g(w). Then by Claim 3.3.20, C odes S \ � and C is in�, as desired.We also need a weak version of Wadge's Lemma: Let A be a set of reals. Fora natural number n � 1, a set of reals B is �1n in A if B is de�nable by a �1nformula in the struture A2A that is the seond order struture with A as an unaryprediate with a parameter x for some real x. A set of reals B is projetive in Aif B is �1n(A) for some n � 1.



98 Chapter 3. Games themselvesLemma 3.3.21 (Weak version of Wadge's Lemma). Assume Bl-AD. Then forany two sets of reals A and B, either A is �12 in B or B is �12 in A.Proof. Reall the Wadge game GW(A;B) from x 1.15. By Bl-AD, one of theplayers has an optimal strategy in GW(A;B). Assume player II has an optimalstrategy � in GW(A;B). Then for any real x,x 2 A () ��x;��f(x0; y) j x0 = x and y 2 Bg� = 1:It is easy to see that the right hand side of the equivalene is �12 in B. If playerI has an optimal strategy in GW(A;B), then one an prove that B is �12 in A inthe same way and hene B is �12 in A.For the rest of this setion, we assume Bl-ADR and DC. We �x a set of realsA and give a senario to prove that A is Suslin. We �x a simple surjetion � fromthe reals to f0; 1g, e.g., x 7! x(0).Claim 3.3.22. There is a sequene �(�n; <n; n; ) j n < !� suh that for all n,1. �n is a Spetor pointlass losed under 9R and 8R, �n � �n+1, and A 2 �0,2. every relation on the reals whih is projetive in a set in �n an be uni-formized by a funtion in �n+1,3. <n is in �n and a strit wellfounded relation on the reals with length n andevery set of reals whih is projetive in a set in �n has a strong 1-Borelode whose tree is on n+1.Proof of Claim 3.3.22. We onstrut them by indution on n. For n = 0, let �0be any Spetor pointlass losed under 9R and 8R ontaining A whih exists byFat 3.3.17, and <0 be any strit wellfounded relation on the reals in �0. Thenthey satisfy all the items above.Suppose we have onstruted (�n; <n; n) with the above properties. We on-strut �n+1; <n+1, and n+1 . First note that there is a set Bn of reals whihis not projetive in any set in �n by uniformization for every relation on thereals. Then by Lemma 3.3.21, every set projetive in a set in �n is �12 in Bn.Let Hn and H 0n be universal sets for �12(Bn) sets of reals and �12(Bn) subsets ofR2 , respetively. By uniformization, there is a funtion fn uniformizing H 0n. ByTheorem 3.3.7, there is a  < � suh that Hn has a strong 1-ode whose tree ison . Let n+1 = , <n+1 be a strit wellfounded relation on the reals with lengthn+1, and let �n+1 be a Spetor pointlass losed under 9R and 8R ontaining�n [ fHn; H 0n; fn; <n+1g. We show that they satisfy all the items above for n+ 1.The �rst item is trivial. The seond item is easy by noting that if fn uniformizesH 0n then (fn)a uniformizes (H 0n)a for any real a. The third item follows from thatif Hn has a strong 1-ode whose tree is on n+1, then (Hn)a has a strong 1-odewhose tree is on n+1for every real a. � (Claim 3.3.22)



D. Ikegami, Games in Set Theory and Logi 99Note that in the proof of Claim 3.3.22, we have essentially used DC.We �x �(�n; <n; n) j n < !� as above and let �In = �2n;�IIn = �2n+1; <In beindued by �, <IIn=<2n+1, In = ! and IIn = 2n+1, Let �In = � and �IIn be thesurjetion between the reals onto n2n+1 indued by <2n+1. Let �IIn be the funtiona 7! �IIn [Gna ℄ where Gn is a universal set for �IIn sets of reals (we do not use �In).Then by Theorem 3.3.18, �IIn is a surjetion from the reals onto nIIn . Considerthe following game ĜA: Player I plays 0 or 1 and player II plays reals one by onein turn and they produe a real z and a sequene t 2 !R, respetively. SettingTn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn, Tn+1�n = Tm�n, andz 2 A () Sn2! Tn+1�n is illfounded, where Tm�n = fs�n j s 2 Tmg. This isan integer-real game in the sense player I hooses integers and player II hoosesreals.We introdue an integer-integer game ~GA simulating the game ĜA. In thegame ~GA, players hoose pairs of 0 or 1 one by one and produe a pair of re-als (x0; y0) and (a0; b0) in ! rounds respetively. From (x0; y0) and (a0; b0), we\deode" a real z and an !-sequene of reals t respetively as follows: For eahpointlass � above, we �x a set U� universal for relations in �. Setting F0 = U�I0x0 ,F0 is a funtion from the reals to perfet sets of reals (or odes of them) (other-wise player I loses). Let Px0 = F (x0). Then y0 is an element of Px0 (otherwiseplayer I loses) and is identi�ed with a triple (u0; x1; y1) of reals by looking at aanonial homeomorphism between Px0 and R3 . Then setting F1 = U�I1x1 , F1 is afuntion from the reals to perfet trees on 2 (or odes of trees) (otherwise playerI loses). Let Px1 = F (x1). Then y1 is an element of Px1 (otherwise player I loses)and is identi�ed with a triple (u1; x2; y2) of reals by looking at a anonial homeo-morphism between Px1 and R3 . Continuing this proess, one an unwrap (xn; yn)and obtain (un; xn+1; yn+1) for eah n and get an !-sequene (un j n < !). Letz(n) = �(un). In the same way, one an obtain an !-sequene (tn j n < !) of realsfrom (a0; b0). Setting Tn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn,Tn+1�n = Tm�n, and z 2 A () Sn2! Tn+1�n is illfounded.Beker proved the following:Lemma 3.3.23.1. If player I has a winning strategy in the game ~GA, then player I has awinning strategy � in the game ĜA suh that � is a ountable union of setsin �IIn for some n as a set of reals.2. If player II has a winning strategy in the game ~GA, then player II has awinning strategy in the game ĜA.Proof. See [9, Lemma A & B℄.We show and onjeture the following: Let B � !R. A mixed strategy � forplayer I is weakly optimal in B if for any s 2 REven , the set fx j �(s)(x) 6= 0g is



100 Chapter 3. Games themselves�nite and for any !-sequene y of reals, ��;�y(B) > 1=2. One an introdue theweak optimality for mixed strategies for player II in the same way. Note that ifplayer I has an optimal strategy in some payo� set, then player I has a weaklyoptimal strategy in the same payo� set. The same holds for player II.Lemma 3.3.24. If player I has an optimal strategy in the game ~GA, then playerI has a weakly optimal strategy � in the game ĜA suh that � is a ountableunion of sets in �IIn for some n as a set of reals.Conjeture 3.3.25. If player II has an optimal strategy in the game ~GA, thenplayer II has a weakly optimal strategy in the game ĜA.Proof of Lemma 3.3.24. We �rst topologize the set Prob(R) of all Borel proba-bilities on the reals. Consider the following map � : Prob(R) ! <!2[0; 1℄: Given aBorel probability � on the reals, for any �nite binary sequene s, �(�)(s) = �([s℄).We topologize <!2[0; 1℄ by the produt topology where eah oordinate [0; 1℄ isequipped with the relative topology of the real line and we identify Prob(R) withits image via � and topologize it with the relative topology of <!2[0; 1℄. Then thespae Prob(R) is ompat.Claim 3.3.26. For any set B of reals, the map � 7! �(B) is a ontinuous mapfrom Prob(R) to [0; 1℄.Proof of Claim 3.3.26. This is easy when B is losed or open. In general, itfollows from the following equations: For any � 2 Prob(R),�(B) = supf�(C) j C � B and C is losedg= inff�(O) j O � B and O is openg: � (Claim 3.3.26)Next, we introdue a omplete metri d on Prob(R) ompatible with thetopology we onsider. Let (sn j n 2 !) be an injetive enumeration of �nite binarysequenes. For � and �0 in Prob(R), d(�; �0) = Pn2! j�([sn℄) � �0([sn℄)j=2n+1.Then d is a omplete metri ompatible with our topology. Sine Prob(R) isompat, the map � 7! �(A) is uniformly ontinuous with the metri d. Henethere is an � > 0 suh that if d(�; �0) < �, then j�(A)� �0(A)j < 1=2. Let us �x asequene (�n j n 2 !) of positive real numbers suh that Pn2! �n=2n+1 < �. Forany �nite binary sequene s0, let ns0 be the natural number suh that sn0s = s0.Let � be an optimal strategy for player I in the game ~GA. We show thatthere is a weakly optimal strategy ~� for player I in the game ĜA. Given a reala. Consider the funtion F 0a : R ! 2[0; 1℄ as follows: Given a real b, F 0a (b)(i) =��;�(a;b)�f(x0; y0) j �(u0) = ig� for i = 0; 1, where y0 is identi�ed with (u0; x1; y1)as disussed. Sine every set of reals has the Baire property, F 0a is ontinuous ona omeager set. Then there is a perfet set P of reals suh that for any b and b0



D. Ikegami, Games in Set Theory and Logi 101in P , jF 0a (b)(i)� F 0a (b0)(i)j < �n(i) . Sine the set X0 = f(a; P ) j (8b; b0 2 P ) (8i <2) jF 0a (b)(i)�F 0a (b0)(i)j < �n(i)g is projetive in �I0, there is a real a0 suh that thefuntion f0 = U�II0a0 uniformizes X0. Let ~�(;)(0) = maxfF 0a0(b)(0) j b 2 f0(a0)gand ~�(;)(1) = 1� ~�(;)(0). We have spei�ed ~� for the �rst round.Next, suppose player II played a real t0 for her �rst round. We deide theprobability ~�(t0) on 2. Let a be a real. Consider the funtion F 1a : R ! 2[0; 1℄ asfollows: For a real b, F 1a (b)(i) = ��;�(a0;(t0;a;b))�f(x0; y0) j �(u1) = ig� for i = 0; 1,where y1 = (t1; x2; y2) as disussed. Then the funtion F 1a is ontinuous on aomeager set. Then there is a perfet set P of reals suh that for any b and b0in P , jF 1a (b)(i) � F 1a (b0)(i)j < minf�ns_hii j s 2 12g for i = 0; 1. Sine the setX1 = f(a; P ) j (8b; b0 2 P ) (8i < 2) jF 1a (b)(i)�F 1a (b0)(i)j < minf�ns_hii j s 2 12ggis projetive in �I1 , there is a real a1 suh that the funtion f1 = U�II1a1 uniformizesX1. Let ~�(t0)(0) = max fF 1a1(b)(i) j b 2 f1(a1)g and ~�(t0)(1) = 1� ~�(t0)(0).Continuing this proess, we an speify ~� with the following property: Forany natural number m and m-tuple reals (t0; : : : ; tm�1), j~�(t0; : : : ; tm�1)(i) �Fmam(b)(i)j < minf�ns_hii j s 2 m2g for eah b 2 fm(am). Also we have spei-�ed the reals am and bm for all m < !.We show that ~� is weakly optimal in the game ĜA. Let (tn j n < !) be an!-sequene of reals suh that the tree Sn<! Tn+1�n is illfounded. We show thatthe probability of the payo� set via �~�;�(tnjn<!) is greater than 1=2. (The asewhen the tree is wellfounded is dealt with in the same way.)First note that together with (tn j n < !), ~� produes a Borel probability �on the reals suh that for any �nite binary sequene s, �([s℄) = Qi<m ~�(tj j j <i)�s(j)�, where m is the length of s. Sine the tree from (tn j n < !) is illfounded,it suÆes to show that �(A) > 1=2. On the other hand, the measure ��;�(a0;b0)indues a Borel probability measure � on the reals as follows: For a �nite binarysequene s, �([s℄) = ��;�(a0;b0)�f(x0; y0) j (8i < m) �(ti) = s(i)g�, where m isthe length of s. By the property of ~�, d(�; �) < �. Hene j�(A) � �(A)j < 1=2.Sine � is optimal for player I in the game ~GA and the tree from (tn j n < !) isillfounded, �(A) = 1. Therefore, �(A) > 1=2, as desired.From Lemma 3.3.24 together with Theorem 3.3.10, one an onlude the fol-lowing:Lemma 3.3.27. There is no optimal strategy for player I in the game ~GA.Proof. To derive a ontradition, suppose player I has an optimal strategy in thegame ~GA. Then by Lemma 3.3.24, player I has a weakly optimal strategy � inthe game ĜA suh that � is in a ountable union of sets in �In for some n as a setof reals.Consider the following set:X = f(t; s) 2 !R � <!R j ��;�t�f(z; t0) j t0 = t and z 2 Ag� > 1=2 and(8i < s) �js(0)j<II0 ; : : : ; js(i)j<IIi � 2 Ti+1�ig;



102 Chapter 3. Games themselveswhere js(i)j<IIi is the rank of s(i) with respet to the wellfounded relation <IIi andTi = �IIi �t(i)�. For (t; s) and (t0; s0) in X, (t; s) < (t0; s0) if t and t0 ode the sametree T and s odes a node in T extending a node oded by s0. Note that forany (t; s) in X, if T is the tree oded by t, T is wellfounded beause � is weaklyoptimal in the game ĜA. Hene (X;<) is a strit wellfounded relation on X. Let! = supfIIn j n 2 !g. By DC, the o�nality of � is greater than !. Hene! < �. Note that for any ordinal � < +! , there is a wellfounded tree T odedby some real t as in the de�nition of X suh that the length of T is �. Hene thelength of (X;<) is +! .Sine � is a ountable union of sets in �In for some n as a set of reals, the set< on X is in 9RV!W!Sn2! �In, i.e., it is a projetion of a ountable intersetionof ountable unions of sets in �In for some n. Sine every set in �In has a strong1-Borel ode whose tree is on IIn for every n, every set in V!W!Sn2! �In hasa strong 1-Borel ode whose tree is on +! . By Theorem 3.3.10, the lengthof < must be less than +! , whih is not possible beause it was equal to +! .Contradition!We lose this setion by proving that Conjeture 3.3.25 implies Conjeture 3.3.1.Proof of Conjeture 3.3.1 from Conjeture 3.3.25. By Lemma 3.3.27, player I doesnot have an optimal strategy in the game ~GA. Hene by Bl-AD, player II hasan optimal strategy in the game ~GA. By Conjeture 3.3.25, player II has aweakly optimal strategy � in the game ĜA. Note that � an be seen as areal beause eah measure on the reals given by � is with �nite support bythe weak optimality of � . For eah �nite binary sequene s with length n, letts = fu 2 nR j (8i < n) ��(s�i)��u�(i�1)���s(i)� 6= 0g, where (s�i)��u�(i�1)�is the onatenation of s�i and u�(i � 1) bit by bit. For eah �nite binary se-quene s, we identify ts with a set of n-tuples of natural numbers via a map �sby using the isomorphisms between (a;<R) and (n;2) for a �nite set of reals aand a natural number, where <R is a standard total order on the reals. For anyreal x, tx = Sn2! tx�n is a tree on natural numbers and (�s j s 2 <!!) indues ahomeomorphism �x between [tx℄ and [ft0 2 <!R j ��x;� ([t0℄) 6= 0g℄. Consider thefollowing tree:T = f(s; t; u) 2 [n2!(n2� n! � n!) j t 2 �s(ts) and �8i < lh(s)� u(i) = jxij<IIi g;where xi is the t(i)th real of the set of suessors of (xj j j < i) in ts�i. Thenby the weak optimality of � , the following holds: Setting B = f(x; y) 2 R � !! j(9f 2 !!) (x; y; f) 2 [T ℄g, for any real x,x 2 A () ��x;���x[Bx℄� > 1=2() (9T 0 : a tree on 2) [T 0℄ � Bx and ��x;���x�[T 0℄�� > 1=2:



D. Ikegami, Games in Set Theory and Logi 103Sine B is Suslin, the set f(x; T 0) j [T 0℄ � Bxg is also Suslin. Hene A isSuslin, as desired.We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, ADholds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds.3.4 Toward the equionsisteny between ADRand Bl-ADRIn the last setion, we have disussed the possibility of the equivalene betweenADR and Bl-ADR under AD+DC. Solovay proved the following:Theorem 3.4.1 (Solovay). If we have ADR and DC, then we an prove theonsisteny of ADR. Hene the onsisteny of ADR+DC is stritly stronger thanthat of ADR.Proof. See [78℄.Hene assuming DC to see the equivalene between ADR and Bl-ADR is notoptimal. One an ask whether they are equivalent without DC. So far we do nothave any senario to answer this question. Instead, one ould ask the equion-sisteny between ADR and Bl-ADR. In this setion, we disuss the followingonjeture:Conjeture 3.4.2. ADR and Bl-ADR are equionsistent.Woodin onjetured the following:Conjeture 3.4.3 (Woodin). Assume the following:1. The priniple DCR holds,2. Every Suslin & o-Suslin set of reals is determined, and3. There is a �ne normal measure on P!1(R).Then either there is an inner model of ADR or there is an inner model M of AD+suh that M ontains all the reals and �M = �V .We show that Conjeture 3.4.3 implies Conjeture 3.4.2.Proof of Conjeture 3.4.2 from Conjeture 3.4.3. First note that the assumptionsin Conjeture 3.4.3 hold if we assume Bl-ADR. Hene by Conjeture 3.4.3, thereis an inner model of ADR or there is an inner model M of AD+ suh that Montains all the reals and �M = �V . If there is an inner model of ADR, then weare done. Hene we assume that there is an inner model M of AD+ suh that Montains all the reals and �M = �V .



104 Chapter 3. Games themselvesWe show that ADR holds in V . First we laim that M ontains all the setsof reals. Suppose not. Then there is a set of reals A whih is not in M . Thenby Lemma 3.3.21, every set of reals in M is �12(A). Then �M must be less than�V beause one an ode all the prewellorderings by reals using A in V , whihontradits the ondition of M . Hene every set of reals is in M . Sine we haveuniformization for every relation on the reals in V , it is also true in M . We usethe following fat:Fat 3.4.4. Assume AD+. Then the following are equivalent:1. The axiom ADR holds, and2. Every relation on the reals an be uniformized.By Fat 3.4.4, sine every relation on the reals an be uniformized in M , Msatis�es ADR. Sine P(R) \M = P(R), ADR holds in V , as desired.3.5 QuestionsWe lose this hapter by raising questions.The equivalene between ADR and Bl-ADR under ZF+DC As disussedin x 3.3, it is enough to show Conjeture 3.3.25 to prove the equivalene betweenADR and Bl-ADR. In the proof of Lemma 3.3.24, in eah round, we shrank the re-als into a perfet set suÆiently enough so that the strategy we onstruted givesus a measure on the reals whih is lose enough to the measure derived from agiven optimal strategy and the opponent's moves, whih yields the weak optimal-ity of the strategy. But the same argument does not work for Conjeture 3.3.25beause one annot shrink the reals into a perfet set to get the ontinuity of agiven funtion from R to R[0; 1℄. Nonetheless, we an proeed the similar argu-ment to the oded spae Qn2! P(nIIn ) from the spae !R by using the fat thatthe meager ideal on the reals is losed under any wellordered union and deidingthe probability on the spae Qn2! P(nIIn ) is enough to determine the probabilityof the payo� set. Although the details of the argument seem ompliated and itis not yet done, we believe it is possible and it is not so diÆult.The equionsisteny between ADR and Bl-ADR By the argument in x 3.4,it is enough to show Conjeture 3.4.3 to prove the equionsisteny between ADRand Bl-ADR. It seems possible beause Bl-ADR gives us a generi embeddingsimilar to the one obtained by an !1-dense ideal on !1, CH and \The restritionof the generi embedding given by the ideal to On is de�nable in V ". Let us seemore details. If one takes a generi �lter G of the partial order <!R ordered byreverse inlusion, then this �lter generates an ultra�lter U 0 extending the dual



D. Ikegami, Games in Set Theory and Logi 105�lter of the meager ideal in !R in the same way as we have seen in Lemma 3.3.12.If one takes the generi ultrapower of V via U 0 and lets M be the target modelof the ultrapower embedding j, then  Lo�s's Theorem holds for M if the o�nalityof � is !, the reals in V belongs to M as an element (as a real), M ontains allthe reals in V [G℄ and j�On is de�nable in V (the last statement is ensured by theexistene of a �ne normal measure U in Theorem 3.1.2, in fat, the ultrapowerembedding via U 0 agrees with j on ordinals as we have seen). In general, M isnot well-founded (in the ase of(�) = !). But � is always in the well-foundedpart of M . Together with the determinay of Suslin & o-Suslin sets of reals, thisseems enough to proeed the Core Model Indution up to � = �!, i.e., a minimalmodel of ADR.A stronger weak Moshovakis' Lemma As we have seen in x 3.3, a weak ver-sion of Moshovakis's Lemma 3.3.18 holds assuming Bl-AD. One an ask whetherone an prove a stronger version of Moshovakis's Lemma formulated in [66,7D.5℄ from Bl-AD. If this is possible, it would be plausible to show that the setof strong partition ardinals is unbounded in � and that every Suslin set of realsis determined from Bl-AD.





Chapter 4 Games and Large Cardinals
In this hapter, we investigate the upper bound of the onsisteny strength of theexistene of alternating hains with length !, whih are essential objets provingprojetive determinay from Woodin ardinals.4.1 The onsisteny strength of the existene ofalternating hainsIn late 1980s, Martin and Steel [60℄ proved that if there are n Woodin ardi-nals and a measurable above them, then every �1n+1 set of reals is determined foreah natural number n, where they introdued the notion of iterations trees whihoriginally omes from the development of the inner model theory for strong ardi-nals. To build the inner model theory above one strong ardinal, one would haveto iterate premie not only linearly but in more ompliated way whih wouldgive us tree strutures labeled with extenders that they all iteration trees. Thisgeneralization gives us another diÆulty when we iterate premie more than !times: In a limit stage, there ould be many o�nal branhes in the tree we haveonstruted and we have to hoose one of them so that the diret limit throughthat branh will be wellfounded. This problem ours when we reah the regionof Woodin ardinals and Martin and Steel used this obstale to prove projetivedeterminay by oding one seond-order existential quanti�er by the existene ofo�nal wellfounded branh of suitable iteration trees (in their ase, they arrangedthe iteration trees in suh a way that the wellfounded branh is always unique).Alternating hains are the simplest iteration trees with this obstale: They areiteration trees with length ! suh that their tree struture is given as follows: Forall natural numbers n;m,mTn () m = 0 or n�m is a positive even number.107



108 Chapter 4. Games and Large CardinalsOdd Even
2n + 1 ���� ���� 2n+ 23 ���� ���� 41 � � 2�EEEEEEEEE yyyyyyyyy0Figure 4.1: An alternating hain with length !This is the simplest tree struture with two o�nal branhes. Let us allthese two branhes Even (= f2n j n 2 !g) and Odd (= f2n + 1 j n 2 !g [f0g). Sine these two branhes are ompletely symmetri with respet to the treestruture, there is no anonial way to hoose one of them so that the hosen oneis wellfounded. This gives us the basi idea of how to ode ertain information viaiteration trees. Atually, in the proof of projetive determinay, Martin and Steelreplaed the odd part by <!! and ensured that the branh Even is ill-foundedand that exatly one of the o�nal branhes is wellfounded. This is how theyode a real via a wellfounded o�nal branh.But the above argument works only when there is only one wellfounded o-�nal branh in the iteration tree. So the question is: Is there any iteration treewith length ! with more than one wellfounded branhes? Martin and Steel [61℄(independently by Woodin) proved that if there is a Woodin ardinal, then thereare a ountable transitive model M of (a large enough fragment of) ZFC andan alternating hain on M suh that both branhes are wellfounded. Conversely,they proved that if there is an iteration tree with limit length and two o�nal well-founded branhes, then there is a transitive model of ZF whih satis�es \Thereis a Woodin ardinal". Hene there is a tight onnetion between Woodin ardi-nals and the existene of iteration trees with more than one o�nal wellfoundedbranhes. In fat, what they proved is stronger:Theorem 4.1.1 (Martin and Steel). Suppose there is an iteration tree T withlimit length and two o�nal branhes b and . Let Æ be the supremum of thelength of extenders used in T and � be an ordinal with � > Æ and � is in thewellfounded part of both Mb and M where Mb and M are the diret limit of



D. Ikegami, Games in Set Theory and Logi 109models in T through b and  respetively. Then L�(V MbÆ ) � \Æ is Woodin".Proof. See [62, Corollary 2.3℄.This theorem gives us more information: Note that V MbÆ = V MÆ and it isalways a subset of the wellfounded part of both models. Sine every wellfoundedpart of a model of KP is also a model of KP, we have the following: If one of Mband M is wellfounded and � is the least ordinal that is not in the wellfoundedpart of one of Mb and M and � > Æ, then L�(V MbÆ ) � \KP + Æ is Woodin".Hene we get the Woodin-in-the-next-admissibleness from the assumption, herewe say Æ is Woodin-in-the-next-admissible if there is an ordinal � > Æ suh thatL�(VÆ) � \KP+Æ is Woodin". Andretta [2℄ proved the following stronger onverse:Theorem 4.1.2 (Andretta). Suppose Æ is Woodin-in-the-next-admissible. Thenfor any tree order on ! with an in�nite branh, there is an iteration tree suh thatfor any in�nite branh b of the tree, Æ! is in the wellfounded part of Mb, whereÆ! is the supremum of the length of extenders in the iteration tree.Proof. See [2, Theorem 1.3℄.Hene Woodin-in-the-next-admissible ardinals are intimately orrelated toiteration trees with more than one o�nal branhes. The natural question wouldbe: What if we do not demand that Æ! is in the wellfounded part of Mb? In thissetion, we partially answer this question in the ase of alternating hains. In fat,we do not need Woodin-in-the-next-admissible ardinals to onstrut alternatinghains:Theorem 4.1.3. Suppose Æ is an ordinal suh that Æ is �2-Woodin and VÆ ��2 V .Then there is an alternating hain with length !.The assumption of the above theorem (whih we will explain later) is muhweaker than Woodin-in-the-next-admissibleness. Hene we do not need Woodin-in-the-next-admissibleness just to onstrut alternating hains.Let us prepare for introduing the notions in the above theorem. For a tran-sitive model M of ZFC and an ordinal � in M , we write M j� for abbreviatingV M� . Furthermore, for a subset A of M , Thy�(M ;2; A) denotes the �-theory ofM with parameters in A where � is �n for some natural number n � 1. Also, fora set A and an ordinal �, A � � denotes A \ V�.Let � < Æ be ordinals and � be �n for some natural number n � 1. We say� is <Æ-�-strong if it is <Æ-A-strong where A = Thy�(V jÆ;2; V jÆ), i.e., for anyordinal � < Æ there is a non-trivial elementary embedding j : V !M with ritialpoint � where M is transitive suh that V� �M , j(�) > � and A � � = j(A) � �.If Æ is a limit of inaessible ardinals, suh an embedding an be easily oded byan extender in VÆ. An ordinal Æ is �-Woodin if it is a limit of <Æ-�-strongs.Note that if Æ is a limit of <Æ-strong ardinals, then Æ is �1-Woodin and VÆis a �1 elementary substruture of V . Hene we annot replae �2 with �1 in



110 Chapter 4. Games and Large CardinalsTheorem 4.1.3 beause if we ould, then we ould run the argument in a mousebelow 0 j� with a ardinal Æ whih is a limit of <Æ-strong ardinals, whih isimpossible by [73, Lemma 2.4℄.Also note that �n-Woodinness for a natural number n is muh weaker thanWoodin-in-the-next-admissibleness. In fat, if Æ is Woodin-in-the-next-admissible,then for any natural number n � 1, Æ is a limit of <Æ-strong ardinals � suh thatthe set of <�-An-strong ardinals is stationary in � where An = Thy�n(V jÆ;2; V jÆ), whih immediately gives us that the set of �n-Woodin ardinals Æ0 withVÆ0 ��n V� is stationary in �. Hene the assumption of Theorem 4.1.3 is muhweaker than Woodin-in-the-next-admissibleness.Proof of Theorem 4.1.3. We will onstrut �(�n; En; �n) j n < !� with the fol-lowing properties:(1)n Thy�2�M2njÆ;2;M2nj�2n� = Thy�2�M2n _�1j�n;2;M2n _�1j�2n�,(2)n �2n is <Æ-�2-strong in M2n,(3)n Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1� = Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�, and(4)n �2n+1 is <�n+1-�2-strong in M2n+1,where n _�1 = maxfn� 1; 0g, M0 = V and Mn+1 = Ult(Mn _�1; En) for eah n 2 !.At the same time, we will arrange that �n+1 is less than the strength and thelength of En for eah n 2 !, whih will ensure that eah Mn is well-founded bythe result of Martin and Steel [61, Theorem 3.7℄.Also note that all the extenders we will use belong to VÆ. Sine Æ is a limit ofinaessible ardinals, Æ will not move under any embedding we will onsider.Let �0 = Æ. Then (1)0 is true. Sine Æ is �2-Woodin in V , we an pik �0 < Æsuh that �0 is <Æ-�2-strong in V , hene (2)0 is also true.Suppose we have onstruted (�i j i � 2n); (Ei j i < 2n); (�i j i � n) with theproperties (1)n and (2)n. We will �nd �2n+1; E2n; �n+1; �2n+2 and E2n+1 with theproperties (3)n; (4)n; (1)n+1 and (2)n+1.Sine Æ = �0;2n(Æ) is �2-Woodin in M2n, we an pik �2n+1 > �2n suh that�2n+1 is <Æ-�2-strong in M2n. By (2)n, �2n is <Æ-�2-strong in M2n. Hene we anpik E2n 2 M2n suh that E2n is an extender with ritial point �2n and lengthand strength greater than �2n+1 + 3 in M2n, suh that �E2n(A) � (�2n+1 + 3 ) =



D. Ikegami, Games in Set Theory and Logi 111A � (�2n+1 + 3) in M2n, where A = Thy�2�M2njÆ;2;M2njÆ�. ThenThy�2�M2n+1j�2n _�1;2n+1(�n);2;M2n+1j�2n+1 + 3�=�2n _�1;2n+1�Thy�2�M2n _�1j�n;2;M2n _�1j�2n�� � �2n+1 + 3=�E2n�Thy�2�M2njÆ;2;M2nj�2n�� � �2n+1 + 3=Thy�2�M2njÆ;2;M2nj�2n+1 + 3�:Now the following is true in M2n witnessed by � = Æ:(�) There is an ordinal � suh that B = Thy�2�V j� + 1;2; V j�2n+1 + 1� and�2n+1 is <�-�2-strong and � is �2-Woodin,where B = Thy�2�M2njÆ+1;2;M2nj�2n+1+1�. Note that this statement is �2 inM2n with parameters B and �2n+1 beause the statement \�2n+1 is <�-�2-strongand � is �2-Woodin" is de�nable in V j� if � is a limit of inaessibles, whih isalso �2 de�nable.Sine VÆ is a �2-elementary substruture of V , M2njÆ = M2nj�0;2n(Æ) is a �2-elementary struture of M2n. Hene (�) is also true in M2njÆ. But by the previousalulation, (�) is also true in M2n+1j�2n _�1;2n+1(�n).Let �n+1 be a witness for (�) in M2n+1j�2n _�1;2n+1(�n). Then it follows thatThy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1�= Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�;that is (3)n. Also we have that �n+1 is �2-Woodin and �2n+1 is <�n+1-�2-strongin M2n+1, that is (4)n. Sine �n+1 is �2-Woodin in M2n+1 and �n+1 > �2n+1, wean pik �2n+2 < �n+1 large enough and suh that �2n+2 is <�2n+1-�2-strong inM2n+1.By (4)n, we an take E2n+1 2 M2n+1 suh that E2n+1 is an extender withritial point �2n+1 and length and strength greater than �2n+2 + 3 in M2n+1 suhthat �E2n+1(A0) � �2n+2 + 3 = A0 � �2n+2 + 3, where A0 = Thy�2�M2n+1j�n+1;2;



112 Chapter 4. Games and Large CardinalsM2n+1j�n+1�. ThenThy�2�M2n+2jÆ + 1;2M2n+2j�2n+2 + 1�=�2n;2n+2�Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�� � �2n+2 + 1=�E2n+1�Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1�� � �2n+2 + 1=Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+2 + 1�;and by this alulation, we obtain Thy�2�M2n+2jÆ;2;M2n+2j�2n+2� =Thy�2�M2n+1j�n+1;2;M2n+1j�2n+2� and �2n+2 is <Æ-�2-strong in M2n+2, whihare (1)n+1 and (2)n+1 respetively, as desired.Note that in the above onstrution, we have arranged that �n+1 < �2n _�1;2n+1(�n)for eah n 2 !. Hene MOdd is always ill-founded.4.2 QuestionsWe lose this hapter with asking one question.Question 4.2.1. What is the onsisteny strength of the existene of alternatinghains with length !?



Chapter 5Wadge reduibility for the real line
In this hapter, we study the Wadge reduibility for the real line and show thatthe Wadge's Lemma fails and that the Wadge order for the real line is ill-founded.This situation is ompletely di�erent from the ase of the Baire spae as givenin x 1.15 and it is not possible to get the same kind of game haraterization ofontinuous funtions from the real line to itself as in the ase of the Baire spae.Throughout this hapter, we work in ZF+DC. In ase we need more assump-tions, we expliitly mention them. In this hapter, R denotes the real line, notthe Baire spae or the Cantor spae.5.1 Wadge reduibility for the real lineIt was probably known to the Polish shool of mathematiians before the Wadgereduibility was introdued that Wadge's Lemma for the Wadge order �RW fails:Let A be a subset of the real line and assume A and A are dense. Then Aannot be a ontinuous preimage of any nowhere dense subset of the real line. Inpartiular, there are subsets A and B of the real line suh that neither A �RW Bnor B �RW A holds (e.g., A = Q , B = any nowhere dense, non-�02 set).We say that a subset A of the real line is non-trivial if it is neither the emptyset ; nor the whole spae R. We remark that the ondition for A in the aboveremark is not neessary:Proposition 5.1.1. Let A, B be subsets of the real line and assume A is non-trivial and dense and B is nowhere dense. Then A annot be a ontinuous preim-age of B.Proof. Toward a ontradition, suppose there is a ontinuous funtion f : R ! Rsuh that A = f�1(B). Sine A is non-trivial, f is not a onstant funtion. Henethe range of f ontains an interval. But sine A is dense and f is ontinuous, therange of f is inluded in the losure of B, whih ontradits the fat that B isnowhere dense. 113



114 Chapter 5. Wadge reduibility for the real lineNote that the failure of Wadge's Lemma for the real line ours for subsets ofthe real line whih are the di�erene of the two open sets (see Corollary 5.1.7).Next, we disuss the failure of the wellfoundedness of the Wadge order �RW,whih was proved by Peter Hertling in his Ph.D. thesis [32℄. We prove the fol-lowing stronger result:Theorem 5.1.2. There is an embedding i from (P(N);��n) to (P(R);�RW) suhthat the range of i onsists of subsets of real numbers whih are the di�erene ofopen sets, where a ��n b if a n b is �nite for subsets a; b of N and N = ! n f0g.Proof. Let us start with an easy observation:Observation 5.1.3. Let a; b; ; d; e; f; g be real numbers with a < b <  < dand e < f < g and h be a ontinuous funtion from the real line to itself withh(b) 2 [e; f), h�[a; b)� \ [e; f) = ;, h�[b; )� \ [f; g) = ;, h�[; d)� \ [e; f) = ; andh�[b; )� + (e� �; e) for any � > 0. Then h(b) = e, h() = f and h�[b; )� = [e; f).This observation allows us to enode subsets of N into sets formed from asequene of half-open intervals by suitably inserting points between them.Let us disuss this idea in detail. We �rst onstrut inreasing sequenes ofreal numbers ha�; b� j � < !!i and hn j n 2 Ni with the following properties:For � < !!, a limit , and a natural number n � 1,a� < b� < a�+1;supfa� j � < g < a; andsupfa� j � < !ng < n < a!n ;where !! and !n are ordinals given by ordinal exponentiation. Hene the pointn is inserted after the �rst !n many intervals. Now de�ne i : P(N) ! P(R) asfollows: For a subset x of N ,i(x) = [�<!![a�; b�) [ fn j n 2 N n xg:It is easy to see that eah i(x) is the di�erene of two open sets. For simpliity,let a� = supfa� j � < g. The sets are onstruted in suh a way that i(x) �RWi(y) for all x � y � N . To see this, we onstrut a ontinuous funtion f : R ! Rsuh that f�1�i(y)� = i(x). For eah n 2 N , we pik a real number dn betweenn and a!n . Note that i(x) � i(y) and i(x) n i(y) = fn j n 2 y n xg. Now de�nef(t) = t unless t 2 [a�!n ; a!n ℄ and n 2 y nx. If t 2 [a�!n ; a!n ℄ and n 2 y nx, then wemap the interval [a�!n ; n℄ to [a�!n ; a!n ℄ by preserving the order, mapping the endpoints to the end points. We further map [n; dn℄ to [dn; a!n ℄ with f(n) = a!nand f(dn) = dn by swithing the order around and then map [dn; a!n ℄ to itselfby the identity funtion. This ompletes our onstrution of f and it is easy tohek that f is as desired.By modifying the above argument, we get the following:



D. Ikegami, Games in Set Theory and Logi 115Claim 5.1.4. If x ��n y (i.e., x n y is �nite), then i(x) �RW i(y).Proof of Claim 5.1.4. Let n = max(x n y) + 2. De�ne g : R ! R as follows: g isequal to f above on [a�!n ;1) and sine the order type of the set fa� j !n�1 �� < !ng is !n, we an de�ne g on (�1; a�!n ℄ to (dn�1; a�!n℄ in the same way aswe did before so that g�1(i(y)) = i(x) (the point is that there is no point m ini(y) inserted between a!n�1 and a�!n). This g is the witness for i(x) �RW i(y).Claim 5.1.5. If i(x) �RW i(y), then x ��n y.Proof of Claim 5.1.5. Suppose i(x) �RW i(y) via h : R ! R. If h(a�) = n forsome � and n, then h(b�) = n by ontinuity, whih is absurd. Hene for eah� < !! there is some � < !! suh that h(a�) 2 [a�; b�). Let �0 and n0 be suhthat h(a0) 2 [a�0 ; b�0) and �0 < !n0.We prove that h(a�) = a�0+�, h(b�) = b�0+� and h�[a�; b�)� = [a�0+�; b�0+�)for every � < !! by indution on �.The ase � = 0 is done by Observation 5.1.3 for a = a0� 1; b = a0;  = b0; d =a1; e = a�0 ; f = b�0 and g = a�0+1.If � is a suessor ordinal, let � = � + 1. By indution hypothesis, h(b�) =b�0+�. By Observation 5.1.3 for a = a�; b = b�;  = a�+1; d = b�+1; e = b�0+�; f =a�0+�+1 and g = b�0+�+1, h(a�+1) = a�0+�+1 and h�[b�; a�+1)� = [b�0+�; a�0+�+1).Again by Observation 5.1.3 for a = b�; b = a�+1;  = b�+1; d = a�+2; e =a�0+�+1; f = b�0+�+1 and g = a�0+�+2, h(b�+1) = b�0+�+1 and h�[a�+1; b�+1)� =[a�0+�+1; b�0+�+1).If � is a limit ordinal, then by the ontinuity of h, we have h(a�� ) = a��0+�.If � is not of the form !n for some n, by the same argument as when � isa suessor ordinal, we an onlude that h(a�) = a�0+�, h(b�) = b�0+�, andh�[a�; b�)� = [a�0+�; b�0+�). If � is of the form !n for some n, then there are twoases: When n 2 x, there is no inserted point in i(x) between a�� and a�. Henethere is no inserted point in i(y) between a��0+� and a�0+�, otherwise h would notredue i(x) to i(y). By the same argument as before, h(a�) = a�0+�, h(b�) = b�0+�and h�[a�; b�)� = [a�0+�; b�0+�). When n =2 x, there is an inserted point n in i(x).But no matter whether there is an inserted point in i(y) between a��0+� and a�0+�,h will map [a�� ; a�℄ to [a��0+�; a�0+�℄ and h(a�) = a�0+� by the similar argumentas before. Hene h(a�) = a�0+�, h(b�) = b�0+�, and h�[a�; b�)� = [a�0+�; b�0+�).Therefore, h(a�) = a�0+�, h(b�) = b�0+� and h maps [a�; b�) to [a�0+�; b�0+�)for eah �. The above argument (for the limit ase) also shows that if there isno inserted point in i(x) between a�!n and a!n , then there is no inserted point ini(y) between a��0+� and a�0+�, whih implies that x n y � n0 by the de�nition ofi. Hene x ��n y as desired.The above two laims omplete our proof.It is easy to onstrut a desending sequene of subsets of N with length !with respet to ��n. Hene,



116 Chapter 5. Wadge reduibility for the real lineCorollary 5.1.6 (Hertling). The Wadge order �RW is ill-founded.Corollary 5.1.7. There are two sets A and B whih are the di�erene of twoopen sets suh that neither A �RW B nor B �RW A holds.Proof. Let Even and Odd be the set of even natural positive numbers and theset of odd natural numbers respetively and set A = i(Even) and B = i(Odd)where i is from the proof of Theorem 5.1.2. By Theorem 5.1.2, A �RW B. Heneit suÆes to show that B �RW A.Suppose B �RW A. Then there is a ontinuous funtion f from R to itselfsuh that f�1(A) = B. We show that this is impossible. Note thatA = (�1; a0) [ [�<!![b�; a�+1) [ [limit[a� ; a) n fn j n =2 Eveng! :Sine a0 is in B, f(a0) = b� for some � < !! or f(a0) = a� for some limit. In the former ase, by the ontinuity of f , f(a�! ) = a��+! while a�! =2 B anda��+! 2 A, a ontradition. In the latter ase, if  6= !n for any odd n, thenby the same argument as the former ase, f(a�! ) = a�+! and we an derive aontradition. If  = !n for some odd n, then we annot redue [a0; b0) to a halfinterval inside A with a� being the left endpoint beause n is not in A in thisase.We now investigate the lower levels of the Wadge order on the real line andompare it with the ones of the Wadge order on the Baire spae. The �rst obviousobservation is as follows: The empty set ; and the whole spae R are the onlyminimal elements with respet to �RW, i.e., for any subset A of the real line, eitherA = ;, A = R, or ;;R <RW A. This statement holds for any topologial spae.Reall that a subset A of the real line is non-trivial if A is neither the empty setnor the whole spae. Non-trivial subsets are non-trivial in the sense of the Wadgeorder on the real line.The next observation is that losed sets and open sets on the real line behavein the same way as those in the Baire spae with respet to Wadge reduibility:Proposition 5.1.8 (Folklore). Any two non-trivial open sets are Wadge equiva-lent. The same holds for non-trivial losed sets.Proof. It is enough to see that (0; 1) �RW U for any non-trivial open set U .The fat (0; 1) �W U is easy to see: U onsists of disjoint open intervals andwe let (a; b) be one of them, then we an easily map (0; 1) into a subset of (a; b)and the omplement of (0; 1) to the point a ontinuously (when a = �1, wemap (0; 1) to a subset of (a; b) and the omplement of (0; 1) to the point b). Thisontinuous funtion witnesses (0; 1) �RW U .For U �W (0; 1), if f(an; bn) j n 2 !g is a set of pairwise-disjoint open intervalswith U = Sn2!(an; bn), then we an ontinuously map (an; bn) into a subset of



D. Ikegami, Games in Set Theory and Logi 117(0; 1) for eah n and the omplement of U into the point 0 in the same way asabove. This ontinuous funtion witnesses U �RW (0; 1).The assertion for losed sets follows from the observation that if A �RW B,then A �RW B.As we have seen in Theorem 5.1.2, one we go up to the sets obtained by thedi�erene of two open sets, then there are a lot of subsets of the real line whihare not Wadge omparable eah other while sets of reals in the Baire spae arealmost Wadge omparable in the sense of Theorem 1.15.1. Hene the agreementof the real line and the Baire spae with respet to Wadge reduibility is limitedto losed sets and open sets.Sine R is onneted, there is no lopen subset of the real line exept ; andthe whole spae R. Hene non-trivial open sets annot be redued to non-triviallosed sets and vie versa, i.e., non-trivial losed sets are not omparable to non-trivial open sets with respet to �RW. Also they are minimal in the sense thatthere is no subset of the real line between the empty set (or the whole spae)and losed sets (or open sets) with respet to the Wadge order. We say thata subset A of a topologial spae X is <XW-minimal if ; <XW A and there is noB with ; <XW B <XW A. Non-trivial open sets and non-trivial losed sets are<RW-minimal and in the ase of the Baire spae, the <!!W -minimal sets are exatlythe non-trivial lopen sets by Wadge's Lemma, in partiular every set of reals isWadge omparable to a lopen set in the Baire spae. But as we have seen in theparagraph after Proposition 5.1.1: The rationals Q are not omparable to anynon-trivial losed set and to any non-trivial open set. We now onsider whihsubsets of the real line are not omparable to non-trivial open sets or non-triviallosed sets.De�nition 5.1.9. For A � R, we onsider the following two onditions for A:� (I1): Every point in A is an aumulation point in A from both sides, i.e.,for any point x in A any open set U with x 2 U , there are points y; z in Asuh that y < x < z.� (I2): If A ontains a bounded interval (a; b), then a; b belong to A.We say A satis�es (I) if A satis�es the onditions (I1) and (I2).Any ountable dense subset and its omplement satisfy the ondition (I).Proposition 5.1.10. For any non-trivial subset A of R, the following are equiv-alent:1. The set A satis�es the ondition (I1),2. The omplement of A satis�es the ondition (I2), and3. Any non-trivial losed set is not Wadge reduible to A.Hene A is not omparable to any non-trivial open set and any non-triviallosed set if and only if A satis�es the ondition (I). In partiular, if A satis�es(I), so do the omplement of A and any ontinuous preimage of A.



118 Chapter 5. Wadge reduibility for the real lineProof. We show the impliation 1 to 2 by ontraposition. Suppose that theomplement of A does not satisfy the ondition (I2). Then there is an interval(a; b) whih is inluded in A but either a or b does not belong to A, i.e., belongsto A. We may assume a is in A. Then the point a is a ounter-example of theondition (I1) for A.We show the impliation 2 to 3 by ontraposition. Suppose F �RW A for somenon-trivial losed set F via a ontinuous funtion f . By Proposition 5.1.8, wemay assume F  = (0; 1). Then f [(0; 1)℄ is a subset of A. Sine f is ontinuousand 0; 1 do not belong to A, f [(0; 1)℄ is an interval ontained in A suh that atleast one of the end-points of it does not belong to A. This shows the negationof 2.We show the impliation 3 to 1 by ontraposition. Suppose there is a pointx in A suh that x is not an aumulation point of A from the right side, i.e.,there is a b in A suh that (x; b) is ontained in A. By the same argument as inProposition 5.1.8, we an redue (0; 1) to A. Hene the omplement of (0; 1) isWadge reduible to A as desired.The subsets of the real line whih are not Wadge omparable to any non-trivialopen set and to any non-trivial losed set annot be very simple:Proposition 5.1.11. Let A be a non-trivial subset of R satisfying (I). Then Ais not �02.Proof. Let A be as above and F be the boundary of A, i.e., A \ A. We use thefollowing fat:Fat 5.1.12. If A is �02, then either A \ F or A \ F is not dense in F .Proof. See [53, pp. 98, 99, 258, 417℄.Hene it suÆes to show that A \ F and A \ F are dense in F . By Propo-sition 5.1.10, it suÆes to see that A \ F is dense in F . We show that for anyopen interval U with U \ F 6= ;, U \ F \ A 6= ;.Take any suh U . Sine U \F 6= ;, there is a point x whih is in U and F . Ifx is in A, then x 2 U \ F \ A and we are done.So suppose x is not in A. Sine x 2 F � A, there is a point y in A suh thaty 2 U . Consider the onneted omponent Cy ontaining y in A. It will remainonneted in R. Hene Cy is a singleton or an interval. If Cy is a singleton namelyfyg, then we are done beause y 2 U \ F \ A.So suppose Cy is an interval with endpoints a and b (a or b might be �1 or1). Sine x is not in A and x is in U , Cy + U . Therefore either a or b belongsto U . Assume a is in U . Then sine (a; b) � A, by the ondition (I2) for A, abelongs to A and also to A. Hene a is in U \ F \ A and U \ F \ A 6= ;.



D. Ikegami, Games in Set Theory and Logi 119Sine Q and the omplement of it satisfy the ondition (I), the above propo-sition is optimal with respet to the omplexity.We now investigate the Wadge struture below the rationals Q . The �rstobservation is a trivial appliation of a bak-and-forth argument:Proposition 5.1.13 (Folklore). Any ountable dense subset of the real line isWadge equivalent to the rationals.Proof. Let A be any ountable dense subset of the real line. By a standard bak-and-forth argument, there is an order isomorphism i between (A;<) and (Q ; <).Let �{ be the anonial order isomorphism from R to itself extending i, i.e., for areal number r, �{(r) = supfi(a) j a 2 A and a < rg:This is well-de�ned and �{ is homeomorphism beause the topology of the real lineis the order topology with its natural order. It is easy to hek that �{�1(Q) = Aand �{(A) = Q . Hene A �W Q .It is natural to ask whether Q is <RW-minimal. The answer is \No":Proposition 5.1.14. The rationals Q is not <W-minimal.Proof. We will show that there is a ontinuous funtion f : R ! R suh thatf�1(Q) is nowhere dense. By Proposition 5.1.1, Q is not Wadge-reduible tof�1(Q). Hene f�1(Q) <W Q . Therefore, it suÆes to onstrut suh a ontinu-ous funtion f .Let g : [0; 1℄ ! [0; 1℄ be the Cantor funtion, i.e.,g Xn2! 2an3n+1! = Xn2! an2n+1on the Cantor set and g is onstant on eah open interval disjoint from the Cantorset in suh a way that g is ontinuous. Let h : R ! R be the ontinuous extensionof g obtained by translation, i.e.,h(x) = g(x� n) + n if n � x < n+ 1 for some integer n.Let f = h +p2. Then f is ontinuous and surjetive. Sine the preimage ofthe irrationals of g is a subset of the Cantor set, it is nowhere dense. Hene thepreimage of the irrationals of h is nowhere dense, whih implies that the preimageof the rationals of f (i.e., f�1(Q )) is nowhere dense.In the above proof, the set f�1(Q) is ountable and satis�es the ondition (I).Hene there are two ountable sets with the ondition (I) suh that they are notWadge equivalent.



120 Chapter 5. Wadge reduibility for the real lineWe do not know whether there is a <RW-minimal set below Q with respet tothe Wadge order.We now disuss long asending and desending sequenes of subsets of the realline with respet to the Wadge order. In the ase of the Baire spae, by Boreldeterminay proved by Martin, all the Borel sets are almost prewellordered andthe supremum of the rank of them is an ordinal between !1 and !2 by the work ofWadge. Assuming AD, all the sets of reals in the Baire spae are prewellorderedand the supremum of the rank of them is equal to �, where � is the supremumof the ordinals whih are the surjetive images from the reals. Under AD we anprove that � is quite huge, e.g., it is a limit of measurable ardinals. Hene onean onstrut a very long asending sequene of sets of reals in the Baire spaewith respet to the Wadge order while there is no in�nite desending sequeneby Theorem 1.15.2.By Theorem 5.1.2, it is natural (and easier) to onsider long asending anddesending sequenes of sets of natural numbers with respet to ��n when wedisuss long asending and desending sequenes of subsets of the real line withrespet to the Wadge order. Sine (P(N);��n) and (P(N);��n) are isomorphi,it suÆes to onsider only asending sequenes.Proposition 5.1.15. For any ountable ordinal �, there is an asending sequeneof sets of natural numbers with length � with respet to ��n.Proof. Let � be any ountable ordinal. Fix a bijetion � between � � N and Nand for eah � < �, let a� = f�(�; n) j n 2 Ng. Then fa� j � < �g is a pairwisedisjoint family of in�nite subsets of N . For � < �, set b� = S�<� a�. Then thesequene hb� j � < �i is the desired sequene.Corollary 5.1.16. For any ountable ordinal �, there are asending and desend-ing sequenes of subsets of the real line with length � with respet to the Wadgeorder.Note that by Theorem 5.1.2, the above sequenes onsist of sets that are thedi�erene of two open sets. Given a ountable ordinal � � 1, by replaing half-open intervals with proper �0� sets whih are dense and o-dense in a half openinterval in the onstrution of i in Theorem 5.1.2, one ould embed (P(N);��n)into proper �0� sets of the real line with respet to the Wadge order, whereproper �0� sets are �0� sets whih are not �0� sets and sets are o-dense if theiromplements are dense. HeneCorollary 5.1.17. For any ountable ordinals � � 2 and �, there are asendingand desending sequenes of proper �0� subsets of the real line with length � withrespet to the Wadge order.We do not know whether one ould onstrut an asending (or desending)sequene of subsets of the real line with length !1 with respet to the Wadge order



D. Ikegami, Games in Set Theory and Logi 121without using the Axiom of Choie. In the presene of the Axiom of Choie, it ispossible by the following well-known result:Proposition 5.1.18 (AC, folklore). There is an asending sequene of sets ofnatural numbers with length !1 with respet to ��n. Moreover, if Martin's Axiom(MA) holds, then there is an asending sequene of sets of natural numbers withlength ontinuum.Proof. We �rst show the former statement. Given a ��n-inreasing sequenehan j n 2 !i of in�nite and o-in�nite sets of natural numbers, it is easy to �ndan in�nite and o-in�nite set of natural numbers a suh that an ��n a for eahn. Using this, we an reursively onstrut a ��n-inreasing sequene of naturalnumbers with length !1.For the seond statement, by [65, Theorem 4.23℄, MA implies that there is a��n-inreasing sequene of sets of natural numbers with length ontinuum.Corollary 5.1.19 (AC). Let � be any ountable ordinal with � � 1. Then thereare asending and dereasing sequenes of proper �0� subsets of the real line withlength !1 with respet to the Wadge order. Moreover if MA holds, then thereare asending and dereasing sequenes of proper �0� subsets of the real line withlength ontinuum with respet to the Wadge order.Before losing this setion, we ome to the question whether there is a maximalset in �0� sets for a ountable ordinal � � 1 with respet the Wadge order. Inthe ase of the Baire spae, any proper �0� set is maximal in �0� sets by Wadge'sLemma. In the ase of the real line, this fails dramatially:Proposition 5.1.20 (AC). There is a family fA� j � < !1g of sets, eah beingthe di�erene of two open sets in the real line suh that there is no subset B ofthe real line suh that A� �RW B for every � < !1.Proof. For eah ountable ordinal �, let A� be the union of a sequene of half-open intervals with order type � (we need AC to pik up suh an !1-sequene ofsequenes of half-open intervals). The following is the key point:Claim 5.1.21. If A� �RW B via f , then f(A�) is the disjoint union of �-many halfopen intervals inside B. Hene there is a sequene of disjoint half open intervalsinside B with length at least �.Proof of Claim 5.1.21. We show the statement by indution on � < !1. Thease � = 0 is trivial. If � is a suessor ordinal and � = � + 1 for some �, thenby indution hypothesis, f(A� n I�) is the disjoint union of �-many half openintervals inside B, where I� is the last half-open interval in A�. By argumentslike in Observation 5.1.3, f(I�) is a half open interval disjoint from f(A� n I�).Hene f(A�) is the disjoint union of �-many half open intervals as desired. The� is a limit ordinal is also trivial.



122 Chapter 5. Wadge reduibility for the real lineHene if A� �RW B for every � < !1, then B must ontain �-many half openintervals for every � < !1. But any subset of the real line annot ontain !1-manyhalf open intervals. Hene there is no B suh that A� �RW B for every � < !1.5.2 Conlusion and QuestionsAlthough we often identify the real line with the Baire spae in set theory, ontin-uous funtions are sensitive objets and give us two ompletely di�erent aspetsof Wadge reduibility (i.e., ontinuous redution) in the Baire spae and the realline. It is known that Wadge's Lemma for the real line dramatially fails whileit holds for the Baire spae. We showed that the Wadge order for the real lineis ill-founded while it is known that the Wadge order for the Baire spae is well-founded. We also investigated several properties of the Wadge order for the realline and ompare it with the one for the Baire spae.Let us �nish this hapter by raising questions:The Wadge order below the rationals Q . As we have seen, the rationalsQ is Wadge inomparable to non-trivial losed sets and open sets and Q is not<RW-minimal by Proposition 5.1.14. But we do not know how the struture of theWadge order below Q looks like.Question 5.2.1. Is there a <RW-minimal set below Q?Long asending and desending sequenes of the Wadge order withoutAC. As mentioned, we an produe asending and desending sequenes of theWadge order with an unountable length assuming the Axiom of Choie. Howabout without AC?Question 5.2.2. Can we prove the existene of asending and desending se-quenes of the Wadge order for the real line with length !1 without using AC?The Wadge order for Polish spaes. We have investigated the Wadge orderfor the real line. For this analysis, the onnetedness of the spae was essential.The question is how far an we generalize the above results for onneted Polishspaes. Some work by Philipp Shliht [74℄ deals with related issues.



Chapter 6Fixed-Point Logi and Produt Closure

Standard �rst-order logi has some simple but important losure properties. First,it is losed under relativization: Given a formula  with one free variable, forevery formula �, there is a formula (�) whih says that � holds in the sub-model onsisting of all objets satisfying  . Also useful is losure under prediatesubstitutions: Given unary prediate letter P and a formula  with one freevariable, for every formula �, there is a formula [ =P ℄� whih says that � holdsin the model that interprets P as the set of all objets satisfying  in the originalmodel and the rest of the interpretation is the same as the original one. Moreover,it is losed under some kind of produt onstrution whih allows us to interpretthe rationals Q by the integers Z as a de�nable subset of the Cartesian produt(Z� Z).The three mentioned properties also hold in many languages extending �rst-order logi, for example LFP(FO), �rst-order logi with added �xed-point oper-ators. In this hapter, we de�ne a preise sense of `produt losure' in terms ofmodal languages whih originally omes as an extension of publi announementin epistemi logi where we formulate logi of knowledge and information ow.Then we investigate the produt losure of modal �xed-point logis inludingPDL and the modal �-alulus.There are ertain in�nite games, alled parity games, whih serve as the gamesemantis for modal �xed-point logis, and the history-free determinay of paritygames is important for the semantis of modal �xed-point logis. The proofs ofthis hapter ould be reformulated in terms of parity games, but this would notbe to the bene�t of the larity of the argument, so we deided not to do it.123



124 Chapter 6. Fixed-Point Logi and Produt Closure6.1 Basi notions and bakgroundBasi settingWe assume that readers are familiar with basis of modal logi (e.g., given in [14℄).We �rst �x our setting throughout this hapter. In the modal logis we are goingto work with, we have Boolean onnetives (negation, disjuntion, onjuntion,and impliation) and modal operators ([i℄ and hii) for i 2 I where I is a �xed�nite set throughout this hapter (we do not use �rst-order quanti�ers in ourmodal languages). Hene Kripke models are of the form (M; fRigi2I ; V ) whereM is the universe of the struture, Ri is an aessibility relation (i.e., a binaryrelation on M) for eah i 2 I, and V is the valuation for the struture (i.e.,V : Prop ! P(M) and Prop is a �xed ountable in�nite set of all propositionalletters). The semantis of the propositional letters, Boolean onnetives, andmodal operators for Kripke models are standard. Let us review it only for modaloperators: For i 2 I, a formula �, a Kripke model M = (M; fRigi2I ; V ) and aworld s 2M , M; s � [i℄� () for all t; if sRit; then M; t � �;M; s � hii� () for some t; sRit and M; t � �:Relativization and publi announementNext, we introdue the relativization of a given Kripke model via a formula. Fora Kripke model M = (M; fRigi2I; V ) and a formula P , onsider the followingKripke model MjP : The universe is the set of all worlds s in M with M; s � P(denoted by M jP ), and all the relations and the valuation are the restrition ofthe original ones to the new universe, i.e., for eah i 2 I, R0i = Ri\ (M jP �M jP )and V 0(p) = V (p) \M jP . For eah formula P , we add the new modal operator[!P ℄ with the following semantis: Given a Kripke model M with a world s anda formula �, M; s � [!P ℄� () if M; s � P; then M jP; s � �:The dual modal operator h!P i an be introdued in the standard way.For a modal logi L, let Lrel be the least modal logi ontaining L and theoperators [!P ℄ for eah formula P in Lrel (i.e., losed under the operation mappingpairs (P; �) to formulas [!P ℄�). A modal logi L is losed under relativization ifany formula in Lrel is semantially equivalent to some formula in L.Philosophially speaking, we regard I as the set of agents and modalities [i℄as what agent i knows or what is true to the best of i's information via theaessibility relation Ri, i.e., given a formula �, the formula [i℄� means \Theagent i knows �". From this point of view, the formula [!P ℄� means \After the`event' P happens, � holds" beause the new aessibility relation R0i is restrited



D. Ikegami, Games in Set Theory and Logi 125to the worlds in M jP where the formula P is true. Hene eah agent i in I is`announed' the `event' P in the new model MjP . In this way, we express thepubli announement of the event P to eah agent and this is why we all thebasi modal logi with operators [!P ℄ publi announement logi.Many modal logis are not only losed under relativization but also have sim-ple reursive translations from formulas in the expanded languages to semantiallyequivalent formulas in the original languages. For example, let the basi modallogi be the smallest modal logi in the setting we have �xed at the beginning (i.e.,it has Boolean onnetives, modal operators [i℄; hii for i 2 I, and propositionalletters in Prop). Then the following equivalenes (so-alled redution axioms)give us the translation witnessing its losure under relativization:[!P ℄p $ P ! p for propositional letter p;[!P ℄:� $ P ! :[!P ℄�;[!P ℄(� ^  ) $ [!P ℄� ^ [!P ℄ ;[!P ℄[i℄� $ P ! [i℄(P ! [!P ℄�):Is this always the ase? No. For example, let us add the following modaloperators CG for G � I to the basi modal logi expressing ommon knowledge(e.g., everyone knows that everyone knows that, and so on: : :). Formally, for anyformula � and Kripke model M = (M; fRigi2I ; V ) with world s,M; s � CG� () for all worlds t reahable from s by some �nitesequene of [i2GRi steps, M; t � �:This amounts to adding an operator of reexive-transitive losure over the unionof all individual aessibility relations. This in�nitary operation takes us fromthe basi modal language into a fragment of so-alled propositional dynami logi(PDL) that we will de�ne later. It an be shown that this fragment does not havethe relativization property: Indeed, the formula [!p℄CGq is not de�nable withoutmodalities [!p℄. Van Benthem, van Eijk and Kooi [11℄ proved this unde�nabil-ity and go on to propose riher epistemi languages, using riher fragments ofPDL whih do have relativization losure, using so-alled `onditional ommonknowledge' CG(�;  ) whih says that � is true in every world reahable with stepsstaying inside the  -worlds.Event models and produt updateIn publi announement [!P ℄, all the agents obtain the same amount of informa-tion, namely P . In real-life senarios, di�erent agents often have di�erent powersof observation. Produt update was introdued to model these situations. Wework with event models



126 Chapter 6. Fixed-Point Logi and Produt ClosureE = (E; fRigi2I;PRE),where E is a �nite set of \events", Ri is an aessibility relation on E for theagent i (hene Ri � E�E), and PRE is a preondition funtion that maps eventse 2 E to preondition formulas PREe (i.e., formulas in a given modal logi) whihmust hold in order for the event to our. For a formula P , the basi event modelEP is as follows: It has only one event e0 and Ri = f(e0; e0)g and PREe0 = P .This event model will play the same role as the operator [!P ℄ does.Given an event model E = (E; fRigi2I ;PRE), \produt update" turns aKripke model M into another Kripke model M � E as follows: The universeof M � E (we write jM � Ej) is the set of all pairs (s; e) in M � E suhthat (M; s) � PREe, the new aessibility relation satis�es (s; e)Ri(t; f) if bothsRit and eRif for eah i 2 I, and the new valuation is the same as M, i.e.,V (p) = f(s; e) 2 jM� Ej j s 2 V (p)g for eah p in PROP. Note that if E is EPfor some formula P , then M�EP is naturally isomorphi to MjP .The produt model M�E with a world (s; e) reords the information of di�er-ent agents after some event e has taken plae in the epistemi setting representedby E. The unertainty among new worlds (s; e); (t; f) an only ome from oldunertainty among s; t via indistinguishable events a; b.Given an event model E with an event e, we introdue the modal operator[E; e℄ as follows: For a formula � and Kripke model M with world s,M; s � [E; e℄� () if M; s � PREe; then M� E; (s; e) � �:The dual modal operator hE; ei an be introdued in the standard way. It is easyto see that if E is EP for some formula P , then the modal operator [EP ; e0℄ isreally the same as [!P ℄.We now introdue the produt update losure of modal logis. For a modallogi L, let Lp be the least modal logi ontaining L and the operators [E; e℄ foreah event model E with an event e whose preondition funtion maps events toformulas in Lp. A modal logi L is losed under produt update if any formula inLp is semantially equivalent to a formula in L.As is expeted, the basi modal logi is losed under produt update by thefollowing equivalenes:[E; e℄p $ PREe ! p for propositional letter p;[E; e℄:� $ PREe ! :[E; e℄�;[E; e℄(� ^  ) $ [E; e℄� ^ [E; e℄ ;[E; e℄[i℄� $ PREe ! ^eRif in E[i℄[E; f ℄�:This is due to Baltag, Moss and Soleki [8℄.But again, the situation gets more ompliated when we add ommon knowl-edge operators CG for G � I. In this ase, no redution to the language without



D. Ikegami, Games in Set Theory and Logi 127[E; e℄ modalities is possible. This problem an be solved by moving to proposi-tional dynami logi (PDL) whih allows more modalities [�℄ than just the basimodalities [i℄ for i 2 I. The set of suh �s (alled programs in the ontext ofPDL) is the smallest set satisfying the following: It ontains i for all i 2 I andthe tests ?� for eah formula � in the language, and is losed under the opera-tions \unions" �1 [ �2, \ompositions" �1; �2 and \Kleene iterations" ��. Morepreisely, in the language of PDL, the set of formulas � and the set of programs� are simultaneously and reursively de�ned in the following way:� ::= p (p 2 PROP) j :� j � ^ � j � _ � j [�℄� j h�i�;� ::= i (i 2 I) j?� j � [ � j �; � j ��:Semantis of formulas in PDL are given by assigning the relations R� on theuniverse of a given Kripke model to eah program � given the relations Ri for eahi 2 I and interpreting [�℄� and h�i� in exatly the same way as for formulas [i℄�and hii� with using R� instead of Ri. Given a Kripke modelM = (M; fRigi2I; V ),the relations R� are reursively de�ned as follows:R?� = f(s; s) j (M; s) � �g;R�1[�2 = R�1 [ R�2;R�1;�2 = f(s; t) j (9u 2M) (s; u) 2 R�1 and (u; t) 2 R�2g;R�� = R��;where R�� is the reexive and transitive losure of R�.Theorem 6.1.1 (Van Benthem and Kooi [13℄). The modal logi PDL is losedunder produt update.The produt update losure of PDL was �rst proved by van Benthem andKooi [13℄ using �nite automata to serve as \ontrollers" restriting state sequenesin produt modelsM�E. The seond proof of this fat was given by van Benthem,van Eijk and Kooi [11℄ where they use Kleene's Theorem for regular languagesonneting the theory of �nite automata with PDL. The third proof, whih wepresent here, is given by van Benthem and the author [12℄ where they regard PDLas a weak fragment of the modal �-alulus (whih we de�ne in the next setion).In this hapter, we strengthen the last point of view: We give a uniform proofof the produt update losure for three �xed-point logis: The modal �-alulus,PDL and the ontinuous fragment of the modal �-alulus (CF). We �rst give theproof for the modal �-alulus as a proto-type and then apply the same argumentfor the other two logis using Venema's haraterization of PDL as a fragment ofthe modal �-alulus.



128 Chapter 6. Fixed-Point Logi and Produt Closure6.2 The ase for the modal �-alulusIn this setion, we introdue the modal �-alulus and prove its produt updatelosure. In the syntax of the modal �-alulus, we add two �xed-point operators� and � to the basi modal logi whih denote the \least �xed-point" and the\largest �xed-point" respetively. More preisely, the set of formulas in the modal�-alulus is reursively de�ned as follows:� ::= p (p 2 PROP) j :� j � ^ � j hii� j �x:�(x);where any ourrene of the variable x (whih is formally an element of PROP) ispositive in �(x), if the number of negation symbols binding the ourrene is even.(We say it is negative if the number is odd.) As is usual, one an de�ne � _  tobe :(:� ^ : ), [i℄� to be :hii:�, and �x:�(x) to be :�x::�(:x) respetively.Formulas �(x) with only positive ourrenes of the proposition letter x de�nea monotoni set transformation from P(M) to itself in any Kripke model M :FM� (X) = fs 2M j (M[x := X℄; s) � �g;where the model M[x := X℄ is obtained by replaing V (x) with X and giving thesame struture for the rest as M, i.e., the universe of M[x := X℄ is M , RM℄x:=X℄i =RMi , VM[x:=X℄(p) = X if p = x, and otherwise VM[x:=X℄(p) = VM(p). Note thatthe map FM� is monotone in the sense that X � Y implies that FM� (X) � FM� (Y ).The formula �x:�(x) de�nes the smallest �xed-point of this transformationand �x:�(x) de�nes the greatest �xed-point of FM� , i.e., the subsets X, Y of Msuh that FM� (X) = X;FM� (Y ) = Y and X is the smallest set with this propertyand Y is the largest set with this property respetively. Both exist for monotonemaps by the Tarski-Knaster theorem (for the proof, see, e.g., the Handbook artileby Brad�eld and Stirling [18℄). This means that the semantis of �x:�(x) is givenas follows: (M; s) � �x:�(x) if s is in the least �xed-point of the operator FM� .The semantis of �x:�(x) is de�ned in the same way with the greatest �xed-point of the operator FM� . For onveniene, we assume that eah ourrene of a�xed-point operator binds a unique proposition letter.Now we are ready to prove the produt update losure for the modal �-alulus.Theorem 6.2.1. The modal �-alulus is losed under produt update.Proof. We prove the statement by indution on the omplexity of formulas. Weonly onsider the least �xed-point ase �x:�(x) beause the greatest �xed-pointase an be redued to the ones for the negation and for the least �xed-point andother ases have been dealt for the basi modal logi in the last setion.Our main task is to analyze �xed-point omputations in produt models M�E in terms of similar omputations in the original model M. The followingidea turns out to work here. Let X be a subset of M � E. Modulo the event



D. Ikegami, Games in Set Theory and Logi 129preonditions possibly ruling out some pairs, we an desribe X, without loss ofinformation, in terms of the sequene of its projetions to the events in E, viewedas a �nite set of indies. Thus, we an desribe the omputation in M � E bymeans of a �nite set of omputations in M . The following set of de�nitions andobservations makes this preise.Take any Kripke model M and any event model E. Let n be the number ofelements of E and let E = fejg1�j�n. There are anonial mappings � : P(M)n !P(jM� Ej) and � : P(jM�Ej) ! P(M)n with � Æ � = id:�( ~X) = [1�j�n(Xj � fejg) \ (jM� Ej);�(Y ) = fYjg1�j�n;where Yj = fx 2M j (x; ej) 2 Y g:Given a positive formula �(x) in the modal �-alulus, let FM�E� : P(jM�Ej)! P(jM�Ej) be the monotone funtion indued by �(x). De�ne F �(x) : P(M)n !P(M)n as follows: F �(x) = � Æ FM�E� Æ �:We laim that FM�E� is monotone if and only if F �(x) is monotone. Sup-pose FM�E� is monotone. Sine �; � are monotone and ompositions of monotonefuntions are monotone, F �(x) is also monotone. To prove the onverse, supposeF �(x) is monotone. Pik any X; Y 2 P(jM � Ej) with X � Y . First note thatFM�E� (X) � FM�E� (Y ) holds if and only if � Æ FM�E� (X) � � Æ FM�E� (Y ) holds.Hene all we have to hek is � Æ FM�E� (X) � � Æ FM�E� (Y ). But� Æ FM�E� (X) = � Æ FM�E� �� Æ �(X)� = � Æ FM�E� Æ ���(X)�= F �(q)��(X)� � F �(q)��(Y )� = � Æ FM�E� Æ ���(Y )�= � Æ FM�E� �� Æ �(Y )� = � Æ FM�E� (Y );where the above inlusion follows from the monotoniity of F �(x) and �.Moreover, there is a further anonial orrespondene : if ~X is an F �(x)-�xed-point, then �( ~X) is an FM�E� -�xed-point, and if Y is an FM�E� -�xed-point, then�(Y ) is an F �(x)-�xed-point. Sine � and � preserve inlusions, the least F �(x)-�xed-point orresponds to the least FM�E� -�xed-point in the following way: If ~Xis the least F �(x)-�xed-point, then �( ~X) is the least FM�E� -�xed-point. Also if ~Yis the least FM�E� -�xed-point, then �(~Y ) is the least FM�E� -�xed-point.Remark 6.2.2 (Relating �xed-point omputations in di�erent models). The ar-gument above may be seen as a speial ase of the following \Transfer Lemma":Given two omplete latties E and F , a funtion f : E ! F and an ordinal �, f is



130 Chapter 6. Fixed-Point Logi and Produt Closurealled �-sup-ontinuous (resp., �-inf-ontinuous) if for any nondereasing (resp.,noninreasing) sequene hx� j � < �i of elements of E,_F f(fx� j � < �g) = f  _E fx� j � < �g!(resp., VF f(fx� j � < �g) = f (VEfx� j � < �g).Lemma 6.2.3 (Transfer Lemma). Let E and F be two omplete latties. Letf : E ! F be a mapping that is �-inf-ontinuous and �-sup-ontinuous for anyordinal � and suh that f(?E) = ?F and f(>E) = >F .Let g : E ! E and h : F ! F be two monotoni mappings suh that f Æ g =h Æ f . Let a and b be the least and the greatest �xed points of g and let a0 andb0 be the least and the greatest �xed points of h. Then a0 = f(a) and b0 = f(b).Proof. See [3, Lemma 1.2.15℄.This lemma only uses our � funtion, while we added the funtion � for larity,to restrit an input to the inverse image of � | whih is why the equation �Æ� = idholds. For further bakground on this kind of argument, f. [17℄.So far, we have seen that the least FM�E� -�xed-point an be orrelated withthe least F �(x)-�xed-point via � and �. Our next task is to show that [E; e℄ �x:�(x)is atually de�nable in the modal �-alulus. For that purpose, �rst note that[E; ej℄ �x:�(x) de�nes the jth oordinate of the least FM�E� -�xed-point. By thede�nition of �, it is also the jth oordinate of the least F �(x)-�xed-point. It iseasy to see that the modal �-alulus is losed under simultaneous �xed-pointoperators by using the following lemma repeatedly:Lemma 6.2.4 (Gauss elimination priniple). Let E; F be omplete latties andf1; f2 be monotone operators from E � F to itself. Let � denote the least �xedpoint, � denote the greatest �xed point and � be � or �. Let g1 : F ! F besuh that g1(y) = �x:f1(x; y) and let (a; b) = �(x; y):�f1(x; y); f2(x; y)�. Thenb = �y:f2(g1(y); y) and a = g1(b).Proof. See [3, Proposition 1.4.7℄.Hene if we an express F �(x) by a formula of the modal �-alulus withpositive variables, then [E; ej℄ �x:�(x) is de�nable in the modal �-alulus andwe are done.To prove this, we generalize the syntati analysis to formulas with manyvariables ~x = x1; : : : ; xm. For any formula �(~x) in the modal �-alulus, de�neFM�E�(~x) : P(jM� Ej)m ! P(jM�Ej) as follows:FM�E�(~x) (~Y ) = f(s; a) j �(M� E)[xk := Yk℄; (s; a)� � �(~x)g;where ~Y 2 (jM�Ej)m.



D. Ikegami, Games in Set Theory and Logi 131Claim 6.2.5. For any formula �(~x) in the modal �-alulus, there are formulas~ �(~y) suh that F �(~x) = FM~ � and(�) For any 1 � k � m, if all the ourrenes of xk in � are positive (resp.,negative), then for eah 1 � j; j 0 � n, all the ourrenes of yk;j in ( �)j0 arepositive (resp., negative),where F �(~q) : P(M)m�n ! P(M)n is de�ned as follows:F �(~q)( ~X) = ��FM�E�(~x) �(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��:Proof of Claim 6.2.5. In the following de�nitions, we only display the essentialargument variables needed to understand the funtion values. We prove thestatement by indution on the omplexity of �. We identify formulas with theirtruth sets. Also, if ~ is a sequene of formulas,  j is the jth oordinate of ~ .� Case 1: � = p (p is not in ~q).F �(~x) = �p ^ PREe1 ; : : : ; p ^ PREen�:Hene ( �(~x))j = p ^ PREej . It is easy to hek (�).� Case 2: � = xk (xk is the kth oordinate of ~x).F �(~x)( ~X) = fXk;j ^ PREejg1�j�n:Hene ( �(~x))j = yk;j ^ PREej , where yk;j is the jth variable in the kth blokorresponding to xk. It is also easy to hek (�).� Case 3: � = �1 ^ �2. F �(~x) = ~ �1 ^ ~ �2 :Hene ~ �(~x) = ~ �1 ^ ~ �2 . It is easy to hek (�).� Case 4: � = :�0. F �(~x) = f:( �0)j ^ PREejg1�j�n:Hene ( �(~x))j = :( �0)j ^ PREej . It is easy to hek (�) by our indutivehypothesis, and the simultaneous de�nition for positive and negative ourrenes.� Case 5: � = hii�0:For any 1 � j � n and s 2M ,s 2 �F �(~x)( ~X)�j ()(1 � 9j 0 � n) (9t 2M) �sRit ^ ejRiej0 ^ t 2 �F �0(~x)( ~X)�j0�:



132 Chapter 6. Fixed-Point Logi and Produt ClosureTo see that this is true, observe that the ondition t 2 �F �0(~x)( ~X)�j0 implies(t; ej0) 2 jM � Ej beause t must be the j 0th oordinate of an image of � by thede�nition of F �0(~x). Therefore, we an put� �(~x)�j = _ejRiej0hii� �0(~x)�j0:� Case 6: � = �x0:�0, where all the ourrenes of x0 are positive in �0.F �(~x)( ~X) =n�FM�E�x0:�0(x0;~x)�(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��jo1�j�n=( �x0 7! FM�E�0(x0;~x)��(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)���!j)1�j�n=� ~X 0 7! FM~ �0 ( ~X 0; ~X)��;where (F (�))� is the least F -�xed-point. In the above equations, the �rst equalityis by the de�nition of F �(~x), the seond is by the de�nition of FM�E�x0:�0(x0;~x), and thethird follows from the indution hypothesis and the fat that the simultaneous�xed points are invariant under the order of appliations of single �xed points.By the indution hypothesis, all the ourrenes of y0j are positive in ( ~�0)j0 forany 1 � j; j 0 � n, where ~y0 orresponds to x0. Sine the modal �-alulus is losedunder simultaneous �xed-point operators, we an put ~ �(~x) = �~x0: ~ �0(~x), whihis also in the modal �-alulus. Sine �-operators do not hange the positivity(negativity) of variables not bounded by them, (�) also holds in this ase.The proof of the last ase explains why we needed to `blow-up' in the numberof variables in Claim 6.2.5. Also, we proved the laim for arbitrary formulas (notonly for positive ones) beause otherwise we annot use the indution hypothesisin Case 4 (if a variable is positive in �, then it must be negative in �0).As in the ase for the basi modal logi, we also have a reursive translationfor [E; ej℄�x:�(x) by taking the jth oordinate of the simultaneous �xed-pointexpression �~y:~ �(~y). Sine our proof is e�etive, we an e�etively ompute theshape of the translation (or the redution axiom).6.3 The ase for PDLIn this setion, we prove that PDL is also losed under produt update usingVenema's haraterization of PDL as a fragment of the modal �-alulus. Let us�rst see this haraterization.



D. Ikegami, Games in Set Theory and Logi 133Given a �nite subset P of PROP, we de�ne the ompletely additive fragmentwith respet to P (denoted by PDL0(P )) as follows:� ::= p (p 2 P ) j  j  ^ � j � _ � j hii� j �x:�0(x);where  belongs to the P -free fragment of the modal �-alulus (i.e., none of thevariables in P has a free ourrene in  ), and �0 2 PDL0(X [ fxg) and x is notin P . (Hene, to be rigorous, the logis PDL0(P ) (P � PROP and P is �nite)are simultaneously reursively de�ned with the above rules).We de�ne PDL0 to be the fragment of the modal �-alulus where the use ofthe least �xed-point operator is restrited to the ompletely additive fragment.Formally, � ::= p (p 2 PROP) j :� j � _ � j hii� j �x: (x);where  2 PDL0 \ PDL0(fxg).Theorem 6.3.1 (Venema [85℄). The modal logi PDL is e�etively equivalent tothe fragment PDL0, i.e., there is an e�etive translation from formulas in PDL toones in PDL0 suh that it preserves the truth values of the formulas in any Kripkemodel and vie versa.With the help of this theorem, we an apply the same argument for the produtupdate losure of PDL. As mentioned in the last paragraph of x 6.1, Theorem 6.1.1is due to van Benthem and Kooi [13℄ and is not new. We will give a new proof ofthis known result.Proof of Theorem 6.1.1. We will show that the fragment PDL0 is losed underprodut update instead of PDL itself. The proof is basially the same as the asefor the modal �-alulus. We show the statement by indution on the omplexityof formulas. As before, we only onsider the �xed-point ase. From now on, we�x the event model E.In the proof for the ase of the modal �-alulus, one of the points was thelosure under simultaneous �xed-point operators. Here is the orresponding fatin the ase for the fragment PDL0, whih is easy to hek:Remark 6.3.2. Let X, fy1; : : : ; yng be disjoint �nite subsets of PROP. Then if�1(y1, : : : ; yn), : : : ; �n(y1; : : : ; yn) are in PDL0\PDL0(X[fy1; : : : ; yng), then eahoordinate of the following formula is in PDL0 \ PDL0(X):�0BBB� y1y2...yn
1CCCA �0BBB� �1(y1; : : : ; yn)�2(y2; : : : ; yn)...�n(y1; : : : ; yn) 1CCCA



134 Chapter 6. Fixed-Point Logi and Produt ClosureBy the same argument as in the ase for the modal �-alulus, if we anexpress F �(q) by formulas in PDL0 \ PDL0(x1; : : : ; xn) for some fresh variablesx1; : : : ; xn for any formula �(q) in PDL0 \PDL0(fqg), we are done. The followinglaim with the above remark is enough for that:Claim 6.3.3. Let �(~q) be a formula in PDL0 \ PDL0(~q) where ~q is a sequene ofvariables (possibly not in �) with length m and every variable in ~q does not ourin any preondition formula inE. Take fresh variables xk;j (1 � k � m; 1 � j � n)whih do not appear in any preondition formula in E or in � or in ~q. Thenthere is a sequene ~ �(~q) of formulas in PDL0 \ PDL0(~x) with length n suh thatF �(~q) = FM~ �(~q) for any Kripke model M and(��) for a natural number k with 1 � k � m, if there is a j suh that xk;j is freein the jth oordinate of ~ �(~q), then qk is also free in �(~q).Proof of Claim 6.3.3. In the following de�nitions, we only display the essentialargument variables needed to understand the funtion values. We prove thestatement by indution on the omplexity of �, following the rules in PDL0. Weidentify formulas with their truth sets. Also, if ~ is a sequene of formulas,  j isthe jth oordinate of ~ .� Case 1: � = p (p is not in ~q).F �(~q) = �p ^ PREe1 ; : : : ; p ^ PREen�:Hene ( �(~q))j = p^PREej . Then this is in PDL0. Sine eah xk;j does not appearin any preondition formula in E, ( �(~x))j is also in PDL0(~x). Sine eah xk;j doesnot appear in the formula p ^ PREej , the ondition (��) is immediate.� Case 2: � = qk (qk is the kth oordinate of ~q).F �(~q)( ~X) = fXk;j ^ PREejg1�j�n:Hene ( �(~q))j = xk;j ^ PREej , where xk;j is the jth variable in the kth blokorresponding to qk. By the same reasoning as in Case 1, PREej is in PDL0 \PDL0(~x) and hene xk;j ^ PREej is also in PDL0 \ PDL0(~x). It is easy to hek(��).� Case 3: � = :�0. F �(~q) = f:( �0)j ^ PREejg1�j�n:Hene ( �(~q))j = :( �0)j ^ PREej and this is in PDL0. Note that in this ase,any free variable in �0 is not in ~q (otherwise � would not belong to PDL0(~q)). Bythe indution hypothesis, the ondition (��) is true for ~ �0 . Hene there is nofree variable in ( �0)j whih is of the form xk;j and the formula :( �0)j is also in



D. Ikegami, Games in Set Theory and Logi 135PDL0(~x) and so :( �0)j ^ PREej is in PDL0 \ PDL0(~x) as desired. It is easy tohek the ondition (��).� Case 4: � = �1 _ �2. F �(~q)( ~X) = ~ �1 _ ~ �2 :Hene ~ �(~q) = ~ �1 _ ~ �2 and this is in PDL0 \ PDL0(~q) and (��) is immediatelytrue for this formula.� Case 5: � = hii�0:For any 1 � j � n and s 2M ,s 2 �F �(~q)( ~X)�j ()(1 � 9j 0 � n) (9t 2M) �sRit ^ ejRiej0 ^ t 2 �F �0(~q)( ~X)�j0�:To see that this is true, observe that the ondition t 2 �F �0(~q)( ~X)�j0 implies(t; ej0) 2 jM�Ej. Therefore, we an put� �(~q)�j = _ejRiej0hii� �0(~q)�j0;whih is in PDL0 \ PDL0(~x) and it is easy to hek (��).� Case 6: � = �q0:�0.We may assume that q0 is not in any formulas we are onerned exept � and�0 and q0 is free in �0. Sine � is in PDL0\PDL0(~q), �0 is in PDL0\PDL0(~q[fq0g).F �(~q)( ~X) =n�FM�E�q0:�0(q0;~q)�(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��jo1�j�n=( �q0 7! FM�E�0(q0;~q)��(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)���!j)1�j�n=�~Y 7! FM~ �0 (~Y ; ~X)��;where (F (�))� is the least F -�xed-point.By Remark 6.3.2, we an put ~ �(~q) = �~y:~ �0(~y), whih is in PDL0 \ PDL0(~x),where ~y are variables orresponding to ~Y in the above equations, . It is easy tohek (��).
6.4 The ase for CFOne of the speial properties of formulas in PDL (or PDL0) is that when it givesthe least-�xed point of a monotone operator (i.e., �x:�(x) 2 PDL0 for some �(x)),



136 Chapter 6. Fixed-Point Logi and Produt Closurewe an ompute the least �xed-point of the operator by applying it ! many timesfrom ; (or ?). This is based on the fat that the only �xed-point operator in PDLis the star operation i.e., � 7! �� and this orresponds to the omplete additivityof the formulas to whih we an apply �xed-point operators in PDL0 as we haveseen in the last setion. If we look at the property of the star operation in PDL,we will reah the notion of ontinuity of the monotone operators: A funtionF : P(X) ! P(X) is ontinuous if the value F (A) is overed by F (C)s for C � Awhih is �nite for any A 2 P(X), i.e.,F (A) = [fF (C) j C � A and A is �niteg:This is equivalent to saying that F is Sott ontinuous, i.e., F is ontinuous if weendow (P(X);�) with the Sott topology where open sets are subsets U of P(X)whih are upward losed (i.e., if A 2 U ; A � B, then B 2 U) and interset withevery direted subset D of P(X) with SD 2 U (a subset D of P(X) is direted iffor any two elements A;B of D there is an element C of D suh that A;B � C).Note that if F is ontinuous, then F is monotone.Given a propositional letter x, a formula �(x) in modal logi is ontinuousin x if the operator FM� : P(M) ! P(M) indued by �(x) is ontinuous for anyKripke model M. It is routine to hek that every formula �(x) in PDL0(fxg) isontinuous in x. Also every monotone operator indued by a ontinuous formulagives us the least �xed-point within ! steps.Fontaine [26℄ syntatially haraterized ontinuous formulas in the modal �-alulus with the ontinuous fragment of the modal �-alulus with respet to a�nite subset P of PROP (denoted by CF(P )). The formulas in CF(P ) are de�nedas follows: � ::= p (p 2 P ) j  j � _ � j � ^ � j hii� j �x:�(x);where  is any formula in the modal �-alulus without any free variable in Pand �(x) is a formula in CF(P [ fxg) and x is not in P . Fontaine proved that aformula in the modal �-alulus is ontinuous in p if and only if it is equivalentto a formula in CF(fpg).We will de�ne the ontinuous fragment CF of the modal �-alulus in thesame way as PDL0 and will prove its produt update losure. Formulas in CF arede�ned as follows:� ::= p (p 2 PROP) j :� j � _ � j hii� j �x: (x);where  2 CF \ CF(fxg).It is easy to see that PDL (or PDL0) is a fragment of CF and this inlusionis strit: The formula � = �x:�hii(p ^ x) ^ hii(q ^ x)� is in CF but not in PDL.This is due to van Benthem [10℄.Theorem 6.4.1. The modal logi CF is losed under produt update.Proof. The argument is exatly the same as the ase for PDL (or PDL0).



D. Ikegami, Games in Set Theory and Logi 1376.5 Conlusion and questionsWe introdued the produt onstrution of Kripke models with event modelsgeneralizing the idea of publi announement in epistemi logi and proved thatthree modal logis are losed under produt update using the �xed-point theory.There ould be several ways to extend this work whih we will list below:Connetions with automata theory. In many �xed-point logis, there isa one-to-one e�etive translation from formulas to `equivalent' some kinds ofautomata (f. [84℄). By using this translation, it is possible to prove the produtupdate losure of the modal �-alulus in terms of automata. But so far theargument is nothing but the ombination of the translation and our argumentwhih is more ompliated than the proof in this hapter. We wonder if there is anatural (and elegant) argument for the produt update losure starting from anautomaton and translating it to another automaton expressing the formula afterthe update. This would give us more intuitive idea about what is going on whenwe update a urrent Kripke model with an event model.The produt update losure for a general �xed-point logi. Modal �xed-point logis �t with oalgebras and our work an be oalgebraially expressed witha funtor whih is essentially the same as the power set funtor on the ategory ofsets. There is a general framework of developing modal �xed-point logi via oal-gebras so-alled \oalgebrai logi" (f. [84℄). It would be interesting if we ouldprove the produt update losure for a general �xed-point logi whih is oalge-braially de�ned. The �rst step would be to formulate the produt onstrutionwe gave in terms of oalgebras.General losure properties of a general �xed-point logi. If one ouldformulate the produt onstrution in terms of oalgebras, it would probably besome funtor from the ategory of F -oalgebras to itself where F is the funtorfor the given oalgebrai logi. If this is the ase, one ould extrat the propertiesof the funtor and of F that we need to prove the produt losure. This wouldgive us the possibility of exploring the losure of general operations in a generaloalgebrai logi.
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Samenvatting
In dit proefshrift bekijken we vershillende soorten oneindige spelen en aanver-wante onderwerpen in de verzamelingenleer en de wiskundige logia. Hoofdstuk1 is gewijd aan de algemene inleiding en tehnishe ahtergrondinformatie. Hetvervolg is als volgt opgezet:Hoofdstuk 2: Het is bekend dat de Baire-eigenshap een zogeheten regu-lariteitseigenshap is van verzamelingen re�ele getallen, en dat deze eigenshapgekarakteriseerd kan worden door middel van Banah-Mazur-spelen. Wij karak-teriseren vrijwel alle bekende regulariteitseigenshappen van verzamelingen re�elegetallen via de Baire-eigenshap van bepaalde topologishe ruimtes en we ge-bruiken Banah-Mazur-spelen om de algemene equivalentiestellingen aangaanderegulariteitseigenshappen, absoluutheid van foring en transendentie-eigenshappenover bepaalde anonieke binnenmodellen te bewijzen. Met behulp van deze equiv-alentieresultaten beantwoorden we een aantal open vragen uit de verzamelingen-leer van re�ele getallen.Hoofdstuk 3: We bespreken het verband tussen Gale-Stewart-spelen enBlakwell-spelen. De eerste zijn oneindige spelen met volledige informatie enkomen uit de verzamelingenleer, de tweede zijn oneindige spelen met onvolledigdeinformatie en komen uit de speltheorie. Het al dan niet gedetermineerd zijn vanGale-Stewart-spelen is een belangrijk onderwerp in de verzamelingenleer en wekunnen ons evengoed over het gedetermineerd zijn van Blakwell-spelen buigen.We vergelijken het Gedetermineerdheidsaxioma voor re�ele getallen (ADR) met hetBlakwell-Gedetermineerdheidsaxioma voor re�ele getallen (Bl-ADR). We latenzien dat de onsistentiekraht van Bl-ADR strikt groter is dan die van het Gede-termineerdheidsaxioma (AD) in x 3.1. In x 3.2, laten we zien dat Bl-ADR vrijwelalle bekende regulariteitseigenshappen van implieert voor alle verzamelingenre�ele getallen . In x 3.3, bespreken we de mogelijkheid dat ADR en Bl-ADRequivalent zijn onder Zermelo-Fraenkel verzamelingenleer verrijkt met het Ax-ioma van Afhankelijke Keuze (ZF+DC). In x 3.4, bespreken we de mogelijkheidvan equionsistentie van ADR en Bl-ADR.147



148 SamenvattingHoofdstuk 4: We bestuderen het verband tussen het gedetermineerd zijnvan Gale-Stewart-spelen en grote kardinaalgetallen. Iteratiebomen zijn belang-rijke objeten bij het bewijzen het gedetermineerd zijn van Gale-Stewart-spelenuitgaande van grote kardinaalgetallen, en alternerende ketens van lengte ! zijn debelangrijkste iteratiebomen die te maken hebben met het gedetermineerd zijn vanGale-Stewart-spelen. We onderzoeken de bovengrenzen van de onsistentiekrahtvan het bestaan van alternerende ketens met lengte !.Hoofdstuk 5: Wadge-redueerbaarheid is een manier om de omplexiteitvan deelverzamelingen van een topologishe ruimte te meten via de ontinue re-dutie van een deelverzameling van een topologishe ruimte naar een andere inde beshrijvende verzamelingenleer. Wadge-redueerbaarheid orrespondeert metmany-one-redueerbaarheid in reursietheorie. Met behulp van de karakteriseringvan Wadge-redueerbaarheid voor de Baire-ruimte door middel van Wadge-spelenkan de elegante theorie van de Wadge-redueerbaarheid voor de Baire-ruimte ont-wikkeld worden (denk aan bijna-lineariteit, welgefundeerdheid), als we het gede-termineerdheidsaxioma (AD) aannemen. We bestuderen Wadge-redueerbaarheidvoor de re�ele rehte, welke niet op een soortgelijke manier gekarakteriseerd kanworden door middel van oneindige spelen. We laten zien dat het Wadge Lemmaniet opgaat voor de re�ele rehte en dat de Wadge-ordening voor de re�ele rehteniet welgefundeerd is, en we onderzoeken andere eigenshappen van de Wadge-ordening voor de re�ele rehte.Hoofdstuk 6: Modale dekpuntslogia's zijn modale logia's met dekpunts-operatoren, welke meerdere wenselijke eigenshappen gemeen hebben met eersteorde-logia. We de�ni�eren een produtonstrutie van een gebeurtenismodel eneen Kripke-model, en we bespreken het gesloten zijn onder het nemen an pro-duten van modale dekpuntslogia's. We laten zien dat PDL, de modale �-alulus en een fragment van de modale �-alulus gesloten zijn onder het nemenan produten.



Abstrat
In this dissertation, we disuss several types of in�nite games and related top-is in set theory and mathematial logi. Chapter 1 is devoted to the generalintrodution and preliminaries. The rest is organized as follows:Chapter 2: It is known that the Baire property is one of the nie propertiesfor sets of reals alled regularity properties and that it an be haraterized byBanah-Mazur games. We haraterize almost all the known regularity proper-ties for sets of reals via the Baire property for some topologial spaes and useBanah-Mazur games to prove the general equivalene theorems between regular-ity properties, foring absoluteness, and the transendene properties over someanonial inner models. With the help of these equivalene results, we answersome open questions from set theory of the reals.Chapter 3: We disuss the onnetion between Gale-Stewart games andBlakwell games where the former are in�nite games with perfet informationoming from set theory and the latter are in�nite games with imperfet informa-tion oming from game theory. The determinay of Gale-Stewart games has beenone of the main topis in set theory and one ould also onsider the determinayof Blakwell games. We ompare the Axiom of Real Determinay (ADR) and theAxiom of Real Blakwell Determinay (Bl-ADR). We show that the onsistenystrength of Bl-ADR is stritly greater than that of the Axiom of Determinay(AD) in x 3.1 and that Bl-ADR implies almost all the known regularity propertiesfor every set of reals in x 3.2. In x 3.3, we disuss the possibility of the equiva-lene between ADR and Bl-ADR under the Zermelo-Fraenkel set theory with theAxiom of Dependent Choie (ZF+DC). In x 3.4, we disuss the possibility of theequionsisteny between ADR and Bl-ADR.Chapter 4: We work on the onnetion between the determinay of Gale-Stewart games and large ardinals. Iteration trees are important objets toprove the determinay of Gale-Stewart games from large ardinals and alternatinghains with length ! are the most fundamental iteration trees onneted to thedeterminay of Gale-Stewart games. We investigate the the upper bound of the149



150 Abstratonsisteny strength of the existene of alternating hains with length !.Chapter 5: Wadge reduibility measures the omplexity of subsets of topo-logial spaes via the ontinuous redution of a subset of a topologial spae toanother one in desriptive set theory orresponding to many-one reduibility inreursion theory. With the help of the haraterization of the Wadge reduibil-ity for the Baire spae in terms of Wadge games, one an develop the beautifultheory of the Wadge reduibility for the Baire spae (e.g., almost linearity, well-foundedness) assuming the Axiom of Determinay (AD). We study the Wadgereduibility for the real line whih annot be haraterized by in�nite games in asimilar way. We show that the Wadge Lemma for the real line fails and that theWadge order for the real line is illfounded and investigate more properties of theWadge order for the real line.Chapter 6: Modal �xed point logis are modal logis with �xed point oper-ators and they enjoy several nie properties as �rst-order logi has. We de�ne aprodut onstrution of an event model and a Kripke model and disuss the prod-ut losure of modal �xed point logis. We show that PDL, the modal �-alulus,and a fragment of the modal �-alulus are produt losed.
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