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Cells can detect chemical and mechanical information

by signal specific receptors on the cell surface.

Cells signal to interact with their environment

and with neighboring cells, for instance by

- diffusive signals

- spatially localised signals, e.g. bound

to the extra cellular matrix (ECM)

- cell surface bound signals
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The reaction of cells to external signals often result in

macroscopic structure formation on the population level.

The understanding of pattern formation

in wildtype populations and mutant populations

can thus reveal basic underlying principles

of cellular signalling, motion, and growth.
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1 Turing Pattern,
Diffusion Driven Instabilities

- two or more chemicals,

- with different rates of diffusion

- chemical interaction of activator-inhibitor type

It is suggested that a system of chemical substances, called

morphogens, reacting together and diffusing through a tissue,

is adequate to account for the main phenomena of morphogenesis.

A. M. Turing (1952): The chemical basis for morphogenesis.

Phil. Trans. Roy. Soc. Lond., 237, 37–72.
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[Compare the book by Edelstein-Keshet]

Consider two morphogens C1, C2

∂tC1 = D1∆C1 + R1(C1, C2)

∂tC2 = D2∆C2 + R2(C1, C2)

For constant steady states C̄1, C̄2 we have

R1(C̄1, C̄2) = 0 = R2(C̄1, C̄2).

To study the effects of small inhomogeneous perturbations

Ĉ1(t, x), Ĉ2(t, x) of these constant states let

Ĉ1(t, x) = C1(t, x) − C̄1 and Ĉ2(t, x) = C2(t, x) − C̄2
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Linearising around C̄1, C̄2 we obtain

∂tĈ1 = D1∂xxĈ1 + a11Ĉ1 + a12Ĉ2

∂tĈ2 = D2∂xxĈ2 + a21Ĉ1 + a22Ĉ2

where

aij =
∂Ri

Cj

(C̄1, C̄2) .

Calculate the so-called characteristic equation with the ansatz

Ĉ1(t, x) = α1 cos(qx) exp(σt) , Ĉ2(t, x) = α2 cos(qx) exp(σt)
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Then

α1σ = −D1q
2α1 + a11α1 + a12α2

α2σ = −D2q
2α2 + a21α1 + a22α2

This equation is linear in α1, α2. Non-zero solutions only exist,

if the determinant of the matrix M with coefficients

M11 = σ + D1q
2 − a11 , M12 = −a12

M21 = −a21 , M22 = σ + D2q
2 − a22

equals zero, i.e.

σ2 + σ(−a22 + D2q
2 − a11 + D1q

2)

+[(a11 − D1q
2)(a22 − D2q

2) − a12a21] = 0
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For D1 = D2 = 0 we have

σ1,2 =
a11 + a22

2
±

√

(a11 + a22)2

4
− (a11a22 − a12a21)

The system is stable (Re(σ) < 0) when

a11 + a22 < 0

a11a22 − a12a21 > 0

Pattern Formation and Turing Pattern in Developmental Cell Systems 7



'

&

$

%

Consider the analogous conditions for D1, D2 6= 0,

to see how diffusion can destabilise the system

a11 + a22 − D2q
2 − D1q

2 < 0

(a11 − D1q
2)(a22 − D2q

2) − a12a21 > 0

The violation of any of these inequalities

leads to diffusion driven instabilities.

Since D1, D2 > 0, only the second inequality can be violated.

For z = q2 its left hand side can be written as

H(z) = D1D2z
2 − (D1a22 + D2a11)z + (a11a22 − a12a21)

where H(z) is a parabola with minimum in

zmin =
1

2

(

a22

D2

+
a11

D1

)
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A minimal condition for H(z) to have negative values is, that

H(zmin) < 0 or

a11D1 + a22D2 > 2
√

D1D2

√
a11a22 − a12a21 > 0 (1)

For wavenumbers close to q2
min the rate of growth

of the perturbations, i.e. σ, is positive.

Thus necessary and sufficient conditions

for diffusion driven instabilities are:

the stability conditions for the ordinary differential equations

and (1).
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Interpretation

Due to condition a11 + a22 < 0 at least

one of the two coefficients a11 and a22 has to be negative.

Suppose a22 is negative, i.e. ∂R2/∂C2 < 0.

This means, that the second chemical inhibits its own rate formation

and thus is called inhibitor.

Due to condition a11D2 + a22D1 > 0 we obtain

that a11 has to be positive, i.e. ∂R1/∂C1 > 0.

This means, that the first chemical promotes or activates

its own formation and thus is called activator.
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Thus a11a22 < 0.

Therefore condition a11a22 − a12a21 > 0

can only be met, if a12a21 < 0.

We also have a11 + a22D1/D2 < 0. Thus D1 6= D2,

since otherwise a11 + a22 · 1 < 0.

This means, that the diffusion coefficients of the two chemicals

must be dissimilar for a diffusive instability to occur.

Further calculations reveal that the range of inhibition

is larger than the range of activation and that D2 > D1.
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So due to a random perturbation of the constant steady states

a small peak concentration of the activator is created

at some location.

This causes an enhanced production of the inhibitor.

Since the inhibitor diffuses away more rapidly than the activator,

it can not control the local activator production

and the initial peak will grow.

The region near this peak contains sufficient levels of inhibition

to prevent further peaks of activation close by.

Pattern Formation and Turing Pattern in Developmental Cell Systems 12



'

&

$

%

See

http://www.ncbi.nlm.nih.gov/projects/genome/guide/img/

dictyEM.jpg

Selforganisation of Dictyostelium discoideum, (Dd)
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See

http://cmgm.stanford.edu/devbio/kaiserlab/

About Myxococci ...

Selforganization and rippling in populations of myxobacteria.
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Turings Idea for Direct Cell-Cell Interaction

Countermigrating traveling waves in myxobacteria

A simple model with symmetry [Lutscher-S.]

∂tu + ∂xu = −F (u, v)u + F (v, u)v

∂tv − ∂xv = F (u, v)u − F (v, u)v

The turning rates are assumed to be general and depend on both,

the left and right moving part of the population.

In this case linearisation does not show patterns.

[Primi-S.-Velázquez]

Without the above given symmetry, 3 equations of this type

are sufficient to obtain patterns with a defined wavelength.

Pattern Formation and Turing Pattern in Developmental Cell Systems 15



'

&

$

%

Systems with symmetry

∂tu1 + ∂xu1 = −T1(u1, u2, v1, v2) + T2(v1, v2, u1, u2)

∂tu2 = T1(u1, u2, v1, v2) − T2(u1, u2, v1, v2)

∂tv1 − ∂xv1 = T2(u1, u2, v1, v2) − T1(v1, v2, u1, u2)

∂tv2 = T1(v1, v2, u1, u2) − T2(v1, v2, u1, u2)

Example with a defined wavelength:

T1 = F1(u1 + u2 + v1 + v2, u1, v1, v2)

T2 = F2(u1 + u2 + v1 + v2, u2)

u1 can become u2 in dependence of the total population,

its own kind and the countermigrating part of the population.

u2 can turn its direction, in dependence of the total population.
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If u2, v2 move, but with a different speed than u1, v1,

then inhibiting effects are needed

in order to obtain a defined wavelength.

For the given situation inhibition is not a reasonable mechanism.
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2 Test Experiment for the Model

Mix wildtype with mutants, which do not produce

the surface bound C-signal.

Upon contact of a wildtype with a countermigrating mutant,

the wildtype does not change direction, whereas the mutant does.

→ The more mutants, the larger the wavelength.

Too many mutants make the pattern disappear.

u1 → u2 → u3 → v1 → v2 → v3, all move with the same speed.

λ = u1 + u2 + u3 + v1 + v2 + v3 + ū1 + ū2 + ū3 + v̄1 + v̄2 + v̄3 ,

where ūj , v̄j describe the respective mutant populations.

T1 = F1(λ, u1) , T2 = u2F2(v1 + v2 + v3) , T3 = f3u3

T̄1 = F1(λ, ū1) , T̄2 = ū2F2(v1 + v2 + v3) , T̄3 = f3ū3
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T1 = F1(λ, u1) , T2 = u2F2(v1 + v2 + v3) , T3 = f3u3

T̄1 = F1(λ, ū1) , T̄2 = ū2F2(v1 + v2 + v3) , T̄3 = f3ū3

Interpretation:

u1 needs a minimal total population density to start C-signalling,

i.e. to become excited and able to turn.

The excited bacteria u2 receive the C-signal

upon contact with countermigrating wildtype cells.

u3 turns with a certain probability.

The mutants ū2 need contact with the countermigrating

wildtypes v1, v2, v3 in order to be able to turn.
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