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Mathematics and theNewTechnologies

Part III: The Cloud and the Web of

Proofs

Jean Paul Van Bendegem

“New technologies, new mathematics” might seem a defensible slogan, as
we try to show in this threefold set of papers and likewise “New mathemat-
ics, new philosophy of mathematics” will hardly be doubted by mathemati-
cians and philosophers alike, but the difficult question is whether transitivity
is applicable here so that we can conclude that new technologies also pro-
duce new philosophical questions and problems. The previous papers (Löwe
2014, this volume) and (Koepke 2014, this volume) support to some extent
the idea that transitivity is possible: the peer review process, automated
theorem proving, rewriting procedures, formal proof checking and so forth
are convincing examples. The same goes, I believe, for experimental mathe-
matics1 where number crunching can lead to unexpected results, that would
not have been available without the sheer computational power required,2 or
where the visualization of geometrical shapes can inform us about particular
properties of that shape.3 In this paper another example will be presented
that further supports the derived slogan. It will deal with networks and
knowledge distributed over such networks. More precisely, the use of blogs,
networks and discussion within an internet community or, as we refer to
it today, “in the cloud” will be discussed. Do such structures alter mathe-
matical practice—for that is what I will focus on rather than mathematical
results on their own4—and thereby introduce new philosophical questions

1See, e.g., (Baker 2008) and (Borwein & Devlin 2009).
2A famous example is Goldbach’s conjecture. This has been checked up into the

billions but, apart from the fact that the conjecture has been verified for all these numbers,
the graph of the function G(2n) = the number of ways 2n can be written as the sum of
two primes shows a clearly strictly increasing function. The shape of that graph could
generate some hypothesis about the behaviour of G.

3The best known examples of course being all fractal structures.
4I will not go into details here but the philosophy of mathematical practice is a rel-

atively new branch in the philosophy of mathematics that focuses on the whole mathe-

P. Schroeder-Heister, G. Heinzmann, W. Hodges, and P. E. Bour (eds.), Logic, Method-
ology and Philosophy of Science. Proceedings of the Fourteenth International Congress
(Nancy), 427–439. 2014.
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and problems? Before addressing the larger question, it will be helpful to
have a brief look at a particular example, namely the Polymath project.

1 Polymath: a short presentation5

In January 2009 mathematician Timothy Gowers, a Fields medalist, opened
a website (http://polymathprojects.org/), accessible for everyone, mathe-
maticians and non-mathematicians alike, announcing that he was searching
for a proof of a particular mathematical statement. The “invitation” was
to join him in that search. Anyone could post a message about almost ev-
erything on the condition that it was somehow related to the proof search.
In fact, a set of ground rules was announced to avoid the whole enterprise
becoming all too chaotic. The hope was to find a proof and, if that were
to occur, to publish the proof through the usual existing channels, namely
mathematical journals, using a pseudonym, itself not an uncommon prac-
tice. This description is not essentially different from normal mathematical
collaboration, except for the large number of people, including laypeople,
involved. It remains to be seen whether this means that this approach is
substantially new or just a matter of scale. That being said, let us first have
a look at the problem itself.

The problem Gowers launched on the website is known as the Density
Hales-Jewett Theorem (DHJ) for k = 3 at first, but later generalized to
arbitrary k. This problem is part of the field of Ramsey theory, involving the
combinatorics of colouring problems. The typical format of such problems
is that “Given a so-and-so structure of sufficiently large size, then there will
always be substructures that have a particular property”. We shall say that
such a property is unavoidable.

More specifically, DHJ for k = 3 states the following. Let the following
be given:

a set K = {1, 2, 3} (the parameter k is the size of K, #K = k)

a set N = Kn, i.e., the set of all words of length n, using K

Next we need four definitions:

A variable word is an element i of N where some places are replaced
by variables, thus k1k2 . . . kixki+2 . . . kn is a (one-place) variable word

A filled-in word is a variable word where all variables have been re-
placed by the same element of K

matical process and not merely the endresults. See for a first impression, (Mancosu 2008)
and (Van Bendegem 2004).

5This paper is related to (Allo et al. 2013). The Polymath project is more fully
discussed there and is presented in reduced form here.
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A combinatorial line is a non-empty subset I of N that contains all
filled-in words for all elements in K of a given variable word. Example:
if we take n = 6, then:

the subset {122132, 122232, 122332} is a combinatorial line, as is

the subset {112132,212232,312332}.

Define the density d of a subset M of N by d = #M/#N

The DHJ for k = 3 says this: For every d > 0, there exists an n such that
every subset M of N with density at least d contains a combinatorial line.

The “unavoidable” property here is the presence of a combinatorial line.
So the theorem says that no matter how low the density of a particular
subset, if the words made on the basis of the alphabet can be sufficiently
long, there will always appear a combinatorial line.

In addition, one very special feature needs to be mentioned, namely that
a proof already existed.6 However, this proof relied on methods and tech-
niques from domains far away from combinatorics, among other things, er-
godic theory. So, as often happens in mathematical research, although one
has a proof of the theorem, nevertheless this does not prevent mathemati-
cians from searching an alternative7 and, more importantly, an elementary
proof, i.e., a proof using the concepts, proof methods and techniques of the
domain itself.

What happened after the opening of the website? First, apart from Gow-
ers, mathematician Terence Tao (UCLA), also a Fields medalist, joined the
enterprise. After 6 weeks, 39 contributors had contributed 1228 comments
(after every 100 comments, summaries were made by Gowers to keep an
overview), not only a proof was found, but it became immediately clear
how it could be generalized for arbitrary k. The proof has been published
under the pseudonym: D.H. J. Polymath (which makes one think of course
of other fictitious names in the history of mathematics, the most famous
one no doubt being Nicolas Bourbaki).8 Surely the most striking feature of
the whole process is that “amateurs”, both inside and outside of the math-
ematical community (so, e.g., high school teachers are here considered to
be amateurs) could and did participate. Whether we should be as enthu-
siastic as Jacob Aron—see (Aron 2011)—in New Scientist and claim that
this will “democratise the process of mathematical discovery” or as Michael

6See (Furstenberg & Katznelson 1991).
7An extreme example is Pythagoras’ theorem for which at present some four hundred

proofs exist. The website www.cut-the-knot.org/pythagoras/index.shtml lists nearly
hundred basic variations.

8See (Polymath 2010).
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Nielsen (2012), who states that “The Polymath Project is a small part of a
much bigger story, a story about how online tools are transforming the way
scientists make discoveries” (Nielsen 2012, 3), is of course another matter.
The question to be dealt with here is whether philosophers of mathematics
should be as enthusiastic as Aron and Nielsen about this phenomenon.

2 Yes, but is it philosophically relevant?

The answer that will be given to the question in the title above is basically
one argument (scheme) that will be developed stepwise. Let us start with
some simple premises that no one will doubt (although at this stage no
statement has to be made about their philosophical relevance):

(P1) Resources required for problem-solving available to math-
ematicians are finite.

In most cases the major resource will be time but not exclusively so. It must
also involve, e.g., the (creative) capacities of the mathematicians involved
and the externally available computing power (think, e.g., of the already
mentioned rich area of experimental mathematics). All of these elements are
clearly finite. What I am appealing to here, is nothing but the economical
properties and aspects of problem-solving, that economists are perfectly
aware of, as they are aware of the finiteness of resources or, to use their
preferred term, the scarcity of goods.9

(P2) There exist (many) mathematical problems that are beyond
the resources of an individual mathematician or even a fixed
group of mathematicians.

This premise can be supported in different ways. The first one is quite
simply of an evidential nature. We have faced and are still facing with
mathematical problems that either involve the use of computer programs,
such as the four-colour theorem or the sphere packing problem, and pose a
problem as to their correctness (see (Koepke 2014, 409–426) of this set of
papers), or are amazingly long such as the well-known classification theorem
for finite simple groups, estimated at fifteen thousand pages (although since
then serious attempts are being done to reduce that number, down to some
five thousand pages). Of course, one might argue that no matter how we

9Economical features are to be found everywhere in mathematics if one cares to look
for it. Even a simple formula such as

n∑

i=1

i =
n(n+ 1)

2

reduces the computational power required to add the first n numbers.
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got there, we do in fact have a classification theorem so it must have been
in the range of what mathematicians can achieve after all. True, but it does
indicate that we did at least move beyond the individual mathematician’s
resources and had to move to the community or group level.

The second way—personally my favourite—is an “absolute” argument,
relying on a Gödelian argument. Take any mathematical theory M and its
language L in an axiomatic formulation. Look at all the statements whose
length is n, i.e., the statements that consist of n symbols. If there were a
computable function K(n) bounding those proofs for various n, then one
would indeed have a positive solution to the Entscheidungsproblem: de-
termine the length n of the statement, compute K(n), and then try all
proofs of length K(n). But since the Entscheidungsproblem is not solvable
in that way, the function K(n) cannot be bounded by any computable func-
tion. Therefore K(n) must have some enormous growth, when n becomes
very large. This can be interpreted as an indication, that already K(10)
K(20), . . . will be enormous. But this is only a heuristical argument, like
saying that certain computations take a long time because an algorithm is
(in the limit) exponentially complex. Such proofs, if encountered, will pose
a challenge to any group of mathematicians. The argument can be easily ex-
tended to mathematical communities in the sense that, if any mathematical
problem can be settled by a group of mathematicians with a size bounded
by some finite number and with finite resources, likewise bounded, then the
argument can be repeated. Such a group would become (in a sense) a de-
cision instrument. We repeat however that the argument can only be seen
as an additional argument for the first way to support the premise because
it could very well be that, for “modest” n, the problem does not really
manifest itself and hence its impact would be very small if non-existent.10

To the extent that these two premises are indeed acceptable and defen-
sible, the following intermediate conclusion is then rather straightforward:

(IC1) Given the finite resources available, some mathematical
problems will either not get solved or not get solved easily and/or
quickly.

This by itself is not sufficient to conclude that the resource boundedness
makes (parts of) mathematical practice philosophically relevant. After all,
we never get all mathematical problems solved anyway as there are an in-
finite number of them.11 The mere fact that at any specific time we have
only solved a finite number of mathematical problems cannot be a conclu-
sive argument at all. More is needed and that is the role the next three

10With thanks to Peter Koepke for having pointed out this possibility.
11To which should be added that most problems do not get solved for being not inter-

esting and not worth the waste of the mathematicians’ time.
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premises are supposed to play. All three of them are, I assume, simple and
straightforward and they too find their basis in the study of mathematical
practice.

(P3) In many cases, a solution to a mathematical problem in-
troduces new concepts.

A general argument in support of this premise is that any question or prob-
lem relies on some presuppositions some of which have to do with the math-
ematical structure the question or problem is about. Once one has the nat-
ural numbers, the prime number concept follows easily, whereas, e.g., the
concept of all natural numbers that in a decimal representation have seven
sevens in them seems not interesting at all.12 Or, to put it in different terms,
any mathematician when asked about a particular concept in his or her field
of expertise, will be able to answer the question what the relevance of that
concept is. Very often the answer will be that it allows you to formulate
this or that problem in a convenient, perhaps even explanatory13 way. This
characteristic of concepts can be extended to proofs as well.

(P4) In many cases, a solution to a mathematical problem in-
troduces new proof methods.

Mathematicians have a range of proof methods at their disposal that are
easily recognizable as they often have a specific name: proof by mathemat-
ical induction, proof by cases, proof by reductio (ad absurdum), proof by
infinite descent, [...] In many cases these proof methods were developed be-
cause of a particular problem and later on it turned out that the same proof
method could be applied to other problems. In that sense, an uninteresting
problem can nevertheless possess a quite interesting proof.

(P5) The development, relevance and use of concepts and proof
methods is one of the core themes in the philosophy of mathe-
matical practice and of mathematics.

This is, of course, the crucial premise to reach the conclusion. Apart from
the obvious empirical fact that the above statement is true—it is sufficient
to look at the literature in the philosophy of mathematics, both “purely”
philosophical and foundational, to see how much attention is given to these

12Which is not to say that all such questions and problems are irrelevant. Whether or
not the number π is a normal number, in the sense that all digits have the same frequency
of occurrence, is considered to be an interesting problem but is clearly connected to a
particular representation.

13See (Mancosu 2008) for a nice discussion about explanation in mathematics, an
important and difficult topic.
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topics, see (Rav 1999) for an excellent analysis—there is the negative ar-
gument: what else would philosophers of mathematics talk about? Both
elements, concepts and proof methods, belong to the essence of what it
is what mathematicians do and hence should be a topic of reflection for
philosophers.

If these three statements seem acceptable, then stringing them together,
we arrive at a second intermediate conclusion, namely:

(IC2) The fact that problems get solved, implies that their solu-
tions have a (potential) impact on the philosophy of mathemat-
ics.

Finally, if we put the two intermediate conclusions together, we arrive at
the final conclusion, which states that:

(C) The fact that we have to deal with finite resources for our
problem-solving capacities has a direct (potential) impact on
and is (potentially) relevant for the philosophy of mathematics.

A direct corollary of this conclusion is that:

(Cor) The ways in which finite resources are distributed over
a problem-solving community (of mathematicians) is directly
(potentially) relevant for the philosophy of mathematics.

All this being said, even if the reasoning presented in this section is accept-
able, it still remains to be shown that the Polymath case is such a case
that might change our views on certain philosophical questions. This raises
another question that I will briefly address in the next section, namely,
whether there are ways to investigate such a claim. In general: suppose
you are confronted with a particular way mathematicians have tried, suc-
cessfully or not, to solve a particular mathematical problem, should their
strategy invite us to have a different look at certain philosophical questions?
I think this question can be positively answered and, more specifically, what
I have in mind are formal models of shared or distributed knowledge.

3 Formal modelling as an additional argument

The literature on the topic of shared or distributed knowledge is quite ex-
tensive and I will not try to present a survey here. I will briefly comment
on some approaches that for different reasons are directly relevant, rang-
ing from multi-agent systems for obvious reasons, including argument and
dialogue structures to describe the interactions between the members of a
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community and a formal approach of Lakatos’ method of mathematical dis-
covery. Before doing that, let me sketch in a few words the informal idea.14

A network of mathematicians can be described as a Kripke model. We have
a set M of worlds, in this case the mathematicians and a relation R on
M ×M that tells us what the communication channels are between them.15

One thing stands out as quite obvious: given what R is, the community M
will be able to solve or not solve certain problems. Think of extreme cases:
surely if everybody is in touch with everybody else much more information
will flow between them, compared to a structure where one mathematician
is addressed by all others who themselves have no contact with one another,
corresponding to an inward-pointing star-like structure. Take a simple ex-
ample: suppose that a mathematical problem P can be decomposed into
two problems P1 and P2 such that solving both these subproblems solves
the original problem. In the first case all mathematicians can have a go at
the subproblems, whereas in the second case, if someone manages to solve
P1, someone else P2, then only the mathematician in the center will know
that the original problem has been solved, as the two mathematicians who
have solved the subproblems cannot communicate with one another. In
short, how the community is organized should make a difference as to their
problem-solving capacities, as is stated in (Cor) above.

An illustration of the first approach is the recent presentation of multi-
agent systems in Dunin-Keplicz and Verbrugge (2010). The reason for this
choice is that they discuss the specific situation where the agents are search-
ing for a proof (Dunin-Keplicz & Verbrugge 2010, 91–97). The language
they develop involves such elements as GOAL(agent, action), in the case of
theorem proving obviously GOAL(i, prove(theorem(T))), the beliefs each
agent has, expressed by a belief-operator BEL(agent, statement), involving
in this case whether or not the agent believes he or she can contribute to
the finding of the proof. On this basis the team leader can put together his
or her team and develop a plan that involves, among other things, ways of
dividing or splitting up the given problem. In their approach it basically
comes down to the reduction of the search for the full proof to the search for
proofs of a set of lemmas, the idea being that, once all lemmas have been
proven, thereby the original theorem has been proved. The execution of this

14I have been playing around with this informal idea for some time as early as 1985,
see (Van Bendegem 1985).

15There is an interesting link to be explored here, namely, the study of small worlds, see,
e.g., (Watts 1999). Here the object of study is to describe networks and develop measures
for the length of the chains that connect two members in the network. Small changes in
such a network can have a tremendous effect on the efficiency of communication in terms
of speed.
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plan also involves a means-and-ends analysis, in this case the possibility to
check a proof and establish its correctness. In their own words:

There is a division of the theorem T into lemmas such that for
each of them there exists a proof, constructed by the lemma
prover and checked by the proof checker. Also, there is a proof
of the theorem T from the lemmas, constructed by the theorem
prover, which has been positively verified by the proof checker.
(Dunin-Keplicz & Verbrugge 2010, 94)

Of special interest in their approach is that plans can always be reconfigured,
dependent on the state of affairs. In the case of theorem proving, one of the
obvious obstacles is that an agent who committed him- or herself to prove
one of the lemmas does not succeed (because of shortage of time or, in my
terms, because the economic resources have been exhausted). In that case
the commitments and beliefs of the agents involved are checked again to see
whether another agent can take over the task. Another obvious obstacle
is that the proof checker finds a mistake in the proposed proof. All taken
together, this model comes pretty close to real-life scenarios. This formal
description could be—up to a number of special issues that I will discuss a
bit further—easily applied to the Polymath Project, where we have clearly
two team leaders—Timothy Gowers and Terrence Tao—and where the other
participants believe they can contribute something to the overall problem.
It also raises the interesting question whether the Polymath Project should
maintain the social structure it has at present. The teamwork approach,
sketched very roughly here, suggests a regular update to see whether a
reorganisation at a certain point in time is needed or not.

An additional feature is that their framework also deals with dialogues
and argumentations, next to and apart from proofs. The main object is
to determine under what circumstances and conditions an agent i who be-
lieves A can persuade an agent j to accept A. One possibility is on the
basis of trust. But the object of a dialogue can also be to seek informa-
tion from an agent. What is worth mentioning is that the sources they
refer to concerning dialogue and argumentation theory are such authors as
Erik Krabbe and Douglas Walton.16 This is to be sure a quite different
approach than the recently developed one in terms of argumentation sys-
tems, see (Besnard & Hunter 2008) for an overview, where the focus is on
attacks and counterattacks, on the weight of an argument and, especially,
on conflicting arguments and how to resolve them. At present it seems less
clear how this could be easily applied to answer the main question of our

16Both authors have an impressive publication record so I will only mention a joint
work, namely (Walton & Krabbe 1995).



436 Jean Paul Van Bendegem

contribution, namely in what ways different social structures can lead to
different mathematical developments because of different problem-solving
capacities. I will not explore this road any further here.17

A few words should also be said about the “founding father” of the
study of mathematical practice, Imre Lakatos, whose Proofs and Refuta-
tions (1976) marked the beginning of the study of mathematics in its actual
historical development. Although his proposed method has been both criti-
cized and extended in several ways, it is worth mentioning that a few authors
have tried to formalize the Lakatosian method and to connect it with re-
cent developments in theory change and development ((Pease 2007)18 and
(Başkent 2012)).

Nevertheless in order to come to a comprehensive theory of how problems
are distributed and how they get solved in a group or community setting,
some additional features will have to be dealt with. To round off this section,
I just list three of them:

It must be clear that more complex structures are needed than the
lemma-theorem relationship. Especially the other direction, so to
speak, should be dealt with. Think of the case where several theo-
rems have been proved and a generalization is proposed that brings
the theorems together in an overarching framework but that requires
that several theorems have to be reformulated. This process of re-
formulation strikes us as an important element to understand how
mathematical change comes about.

What needs to be looked at as well are all possible relations be-
tween proofs. Sometimes analogies between different proof methods
are important—this, incidentally, were comments often made in the
Polymath project where suggestions were made to look at a particular
proof method as source of inspiration for the proof searched for—or
between the same proof method used in different mathematical con-
texts.

Above all, any such model should include concept formation. How
and why do certain concepts arise and others don’t? Do concepts
keep their relevance or do they in some cases “disappear”? Is it pos-
sible to define the fruitfulness of a concept? Typical examples are of

17Although it should be mentioned that Andrew Aberdein has been investigating for
some years now the use of argumentation theory in mathematics, see (Pease & Aberdein
2011) and (Aberdein & Dove 2013), but this deserves a separate treatment in another
paper.

18Of special interest is the fact that Pease has recently also contributed, together with
Ursula Martin to the study of the Polymath project. See (Pease & Martin to appear).
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course mathematical constants. To give but one specific example: all
mathematicians share the feeling of puzzlement that the number π
appears in the outcome of the summation of the inverse squares of the
natural numbers, namely π2/6.

4 Conclusion

What has been presented here is, first and foremost, a philosophical exer-
cise. Starting from a specific real-life case study I have tried to formulate a
general philosophical argument to show or at least support the hypothesis
that social structures do matter to the development of mathematics and
thereby also affect the problem agenda of the philosophers of mathematics.
That being said, it should not be excluded that laboratory experiments can
be done. Imagine two groups of students that have been evaluated before-
hand in such a way that, as far as mathematical capabilities are concerned,
they are sufficiently comparable, i.e., the individual characteristics do not
differentiate between them. Organize the two groups in a different social
structure, e.g., one group with a central authority to whom everybody has
to report and who is the only one to have an overview and one group where
everybody has access to everybody else. Although one might think that the
second group could, maybe should be more successful, this is not necessarily
so as they run the danger to get stuck in too many details that everybody
is offering to the whole group. This thought in itself makes the experiment
interesting and, as it happens, there are sources that can be used, namely
the work being done in experimental economics, especially where game the-
ory is concerned. This brings us back to cooperation, collaboration and
competition, basic social relations in any social group, including that of the
mathematicians.
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