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Mathematics and theNewTechnologies

Part II: Computer-Assisted Formal

Mathematics and Mathematical

Practice

Peter Koepke

1 Introduction

Formal mathematics denotes the programme to carry out all of (pure) math-
ematics in complete formality: to express notions and statements in a sym-
bolic language and to prove statements by derivations in a symbolic calculus .
Due to the complexities of full formalizations this programme was at first
merely an attractive vision, going back to ideas like Gottfried Leibniz’s
characteristica universalis and calculus ratiocinator . It was theoretically
vindicated by Kurt Gödel’s completeness theorem (Gödel 1929). In recent
years, however, formal mathematics is becoming practically feasible, using
computer support and automatic theorem proving.

Formal mathematics harmonizes with philosophical standpoints that view
mathematics as a deductive science, and in particular with formalism. Ad-
vances in formal mathematics provide a body of actual formalizations , as
opposed to the theoretical formalizability usually considered in formalism.
This may shift the balance between various philosophies of mathematics
towards formalism. Advances will also provide proof checking and proving
tools for the mathematical practitioner, and they will influence the mathe-
matical practice.

So the argument between conventional philosophies of mathematics and
the Philosophy of Mathematical Practice may be dependent on concrete
answers to questions like: Which proofs can be generated automatically?
Can ordinary mathematical proofs, or intelligent but limited modifications
thereof, be checked automatically? Can one make the application of formal
mathematics just as natural as the use of other mathematical software like
computer algebra systems or the LATEX typesetting software?

P. Schroeder-Heister, G. Heinzmann, W. Hodges, and P. E. Bour (eds.), Logic, Method-
ology and Philosophy of Science. Proceedings of the Fourteenth International Congress
(Nancy), 409–426. 2014.
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So before embarking on philosophical speculations we try to give an im-
pression of the potential of formal mathematics by appraising its current
state and likely midterm developments. After a general introduction, we
list important formal mathematics systems, in which substantial mathe-
matical results have been proved or proof-checked. These systems use input
and output languages reminiscent of programming languages. We suggest to
improve the naturalness of formal mathematics by using (controlled) natural
languages instead. The exploratory systems SAD and Naproche implement
some of these ideas.

We expect that by combining best methods from a variety of systems
formal mathematics will become stronger and in particular acceptable and
applicable in ordinary mathematical work. This will also have significant
philosophical implications.

2 Formal mathematics

Formal mathematics emerged alongside formal logic and modern abstract
mathematics. In The Principles of Mathematics (Russell 1938, Preface to
the First Edition, v) Bertrand Russell enunciates the standpoint of logicism:

[...] that all pure mathematics deals exclusively with concepts
definable in terms of a very small number of fundamental logical
concepts, and that all its propositions are deducible from a very
small number of fundamental logical principles [...].

He then formulates the programme of formal mathematics , to be pursued
in a subsequent volume (Russell 1938, Preface to the First Edition, p. vi):

The second volume [...] will contain chains of deductions, from
the premisses of symbolic logic through Arithmetic, finite and
infinite, to Geometry, [...].

This programme was partially realized by A. N. Whitehead and Russell
in Principia Mathematica (Whitehead & Russell 1910-1913). Gödel begins
his article on the incompleteness theorems by describing the state of formal
mathematics at the time (Gödel 1931, 144, translation: 145):

Die Entwicklung der Mathematik in der Richtung zu größerer
Exaktheit hat bekanntlich dazu geführt, daß weite Gebiete von
ihr formalisiert wurden, in der Art, daß das Beweisen nach
einigen wenigen mechanischen Regeln vollzogen werden kann.
Die umfassendsten derzeit aufgestellten formalen Systeme sind
das System der Principia Mathematica (PM) einerseits, das
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Zermelo-Fraenkelsche (von J. v. Neumann weiter ausgebildete)
Axiomensystem der Mengenlehre andererseits. Diese beiden
Systeme sind so weit, daß alle heute in der Mathematik angewen-
deten Beweismethoden in ihnen formalisiert, d.h. auf einige
wenige Axiome und Schlußregeln zurückgeführt sind.

The development of mathematics toward greater precision has
led, as is well known, to the formalization of large tracts of it,
so that one can prove any theorem using nothing but a few me-
chanical rules. The most comprehensive formal systems that
have been set up hitherto are the system of Principia mathe-
matica (PM) on the one hand and the Zermelo-Fraenkel axiom
system of set theory (further developed by J. von Neumann) on
the other. These two systems are so comprehensive that in them
all methods of proof today used in mathematics are formalized,
that is, reduced to a few axioms and rules of inference.

First-order set theory and in particular the Zermelo-Fraenkel system ZFC
with the axiom of choice is commonly accepted as the natural foundation of
modern structure-orientated mathematics. There is a considerable degree
of agreement between ontology and semantics since many basic notions are
defined set-theoretically, e.g.:

A group is a set together with [...].

By Gödel’s completeness theorem (Gödel 1929) there is complete agree-
ment between syntax and semantics: every proof can be replaced by a formal
derivation (in set theory). These observations underpin the programme of
formal mathematics: to actually produce formal derivations from informal
proofs.

3 On the feasibility of formal mathematics

Principia Mathematica turned out to be a project of unexpected dimensions
and difficulties. Only a small part of the intended matter could be covered.
Russell wrote in his autobiography (Russell 1998, 155):

[...] my intellect never recovered from the strain.

Nicolas Bourbaki who worked towards a complete and systematic expo-
sition of mathematics claimed the unfeasibility of complete formalizations
(Bourbaki 2004, 10, 11):

[...] such a project is absolutely unrealizable: the tiniest proof
at the beginnings of the Theory of Sets would already require
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several hundreds of signs for its complete formalization. [...]
formalized mathematics cannot in practice be written down in
full [...].

But with the advent of electronic computers, the practical side of long
repetitive tasks appeared in a different light. In 1962, John McCarthy wrote
(McCarthy 1962):

Checking mathematical proofs is potentially one of the most in-
teresting and useful applications of automatic computers. Com-
puters can check not only the proofs of new mathematical theo-
rems but also proofs that complex engineering systems and com-
puter programs meet their specifications. Proofs to be checked
by computer may be briefer and easier to write than the infor-
mal proofs acceptable to mathematicians. This is because the
computer can be asked to do much more work to check each
step than a human is willing to do, and this permits longer and
fewer steps. [...] The combination of proof-checking techniques
with proof-finding heuristics will permit mathematicians to try
out ideas for proofs that are still quite vague and may speed up
mathematical research.

4 Practical systems for formal mathematics

McCarthy’s prediction is being realized in formal mathematics. Since the
1950’s there have been a number of formal mathematics systems, differing in
purpose, techniques, and scope. Automatic theorem provers are intended to
find formal deductions for hypotheses given to the system. There are general
purpose automated theorem provers for arbitrary (first-order) statements,
and specialized provers optimized for specific areas. It was soon realized
that automated theorem provers were hardly able to match the abilities
of expert mathematicians in finding successful strategies and constructions
for proofs of non-trivial statements. This gave rise to systems where human
users provide clues for the proof-finding algorithm, either in advance in some
dedicated proof language or interactively.

In this section we briefly describe a selection of important formal math-
ematics systems which are geared towards wide coverage, ordinary math-
ematical argumentation, and proving prominent theorems. These systems
require expert users to master their idiosyncratic languages and commands,
and to understand the underlying logical and software mechanisms.

Automath (Automath) was a pioneering large-scale project in formal
mathematics, begun in 1967 by Nicolaas de Bruijn. de Bruijn explained
in (de Bruijn 1994, 215):
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[...] the Automath project tries to bring communication with
machines in harmony with the usual communication between
people.

L. S. van Benthem Jutting (van Benthem Jutting 1977) demonstrated the
applicability of Automath to substantial mathematical theories by tran-
scribing the Grundlagen der Analysis of Edmund Landau (Landau 1930)
into Automath. Automath contained many important ideas and techniques
which were taken over by other projects.

Some parts of formal mathematics have developed in parallel with gen-
eral computer science. So Automath employed a LISP-like input language,
which by today’s standards would hardly considered to be “readable”.

The problem of “readability” in formal mathematics was addressed by the
Mizar system (Mizar), which has been developed by Andrzej Trybulec since
about 1975. The Mizar language is related to the ALGOL programming
language and intends to capture several features of the common mathemat-
ical language. Moreover Mizar allows a more natural proof style by bridging
“obvious” proof steps with the aid of an integrated automated prover. The
system accepts simple transformations and deductions which are common in
ordinary proofs without further justification. Most importantly, Mizar com-
prises a vast library of checked proof texts which can be used as lemmas for
further proving. The library contains material from many fields of math-
ematics, including the Banach Fixed Point Theorem for compact spaces,
Fermat’s Little Theorem, the Fundamental Theorem of Algebra, the Fun-
damental Theorem of Arithmetic, the Gödel Completeness Theorem, the
Jordan Curve Theorem, and many more.

Whereas Mizar uses a fixed first-order logic and Zermelo-Fraenkel set
theory, the Isabelle project (Isabelle) initiated by Larry Paulson only has
a minimal inbuilt logic and can be configured to work with different logics
and background theories. One of the largest Isabelle formalizations is that
of Gödel’s theorem of the relative consistency of the axiom of choice by
Paulson (Paulson 2003). Many other substantial theorems have been redone
in Isabelle like the elementary proof of the Prime Number Theorem by
Jeremy Avigad et al. (Avigad et al. 2007).

The system Coq (Coq) is built on type theory and intuitionistic logic. The
most spectacular Coq formalizations are the proof of the Four Colour Theo-
rem by G. Gonthier (Gonthier 2008), and, very recently, the Feit-Thompson
theorem (Gonthier 2012) which is an important part of the classification of
finite simple groups.

Higher order logic is the basis of the HOL Light system (HOL light) by
John Harrison, in which Harrison has proved theorems like the Fundamental
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Theorem of Calculus, Brouwer’s Fixpoint Theorem, and the Prime Number
Theorem, using an analytical proof.

5 Enhancing the naturalness of formal mathematics

Although formal mathematics theoretically has a universal potential, it has
not yet entered mathematical practice. Freek Wiedijk (Wiedijk 2007) states:

The other reason that there has not been much progress on
the vision from the QED manifesto is that currently formalized
mathematics does not resemble real mathematics at all . Formal
proofs look like computer program source code.

An average mathematician does not use any of the existing formal math-
ematics systems since they do not go along with the usual, or “natural”
mathematical experience.

The naturalness of mathematical texts depends on many factors which
are related to human abilities and expectations in various areas. Fields of
mathematics have developed their own sublanguages of the mathematical
language with specific symbols, methods and implicit background assump-
tions. A text may be directed at an audience with a specific background
knowledge and sophistication. These factors will also be appreciated differ-
ently by different individuals. So we can only discuss some general aspects
of formal systems which affect naturalness.

5.1 Mathematical aspects

Mathematical theories strongly influence their style of presentation. Obvi-
ously a theory is more adequate for a natural formalization if it is highly
formal anyway. If a theory is based on intuitively well-understood concepts
from, e.g., geometry, physics, or social interaction, then the presentation
tends to appeal to those intuitions in plain but linguistically involved nat-
ural language which may be difficult to analyze. If a theory is built up
axiomatically or algebraically the development is usually more formal. In
the course of unfolding a theory new intuitions evolve and are employed. So
the beginnings of a theory will be more adequate for natural formalizations
than advanced parts.

Mathematical texts combine logical arguments with numerical and sym-
bolic computations. Up to now the techniques of formal mathematics have
emphasized logical arguments, so one should prefer “logical” theories. Set
theory in some appropriate axiomatization is a powerful system for the
general formalization of mathematics, and has been used in several formal-
ization projects, e.g., by Mizar.
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5.2 Linguistic aspects

The language of mathematics combines natural language with mathematical
formulas. Most natural language words and constructs retain their original
meanings, but there are some exceptions and extensions. Through defini-
tions, a word like “ring” may get a new, mathematical semantics, which is
completely determined by a formal definition. The word, however, retains
its standard grammar as a neuter noun with plural form “rings”. Usually the
choice of defined words is not completely arbitrary, but takes into account
natural language intuitions, systematics, and conventions. Also completely
new words, patterns of words, and phrases may be introduced.

Concerning the meanings of grammatical constructs, the standard math-
ematical language tries to be complete and unambiguous. Whereas the
coordination with “or” is in natural language often understood as “either-
or”, the usual mathematical interpretation is the inclusive “or”; an exclusive
“or” has to be made explicit by “either-or” and other means. The tendency
to avoid ambiguities facilitates the linguistic analysis of the mathematical
language.

Mathematical exactness requires an analysis of every sentence of a text.
The analysis must be intelligable for a human author so that the author can
keep control over the process. This necessitates the use of a grammar-based
deep linguistic analysis instead of, e.g., stochastic methods.

A mathematical text is a discourse in the language of mathematics, i.e.,
a structured sequence of sentences. Discourse representation theory (see
Kamp & Reyle 1993) provides means to transform a given discourse into
a logical representation which retains important structural elements of the
text like the scopes of certain constructs or the interdependencies of sen-
tences through pronouns and other anaphora.

One is lead to the definition of controlled natural languages (CNL) which
are subsets of the natural language of mathematics with a strict formal
grammar and formal semantics. A powerful controlled languages with an
associated computer implementation is the language Attempto Controlled
English (ACE) which combines a rich “natural” language with mechanisms
of interest for mathematical applications.

5.3 Internal representations

Attempto Controlled English translates input texts into discourse represen-
tation structures as an intermediate layer between natural input and its
first-order equivalent. There are, however, aspects of proofs which standard
discourse representation theory does not model properly, like the order of
statements or the scope of assumptions. This motivates the introduction of
proof representation structures (PRS) which are enriched discourse repre-
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sentation structures able to represent various argumentative and procedural
aspects. PRS seem to be crucial data structures to connect natural and for-
mal proofs.

A PRS should contain information on the visibility of relevant assump-
tions for every statement in the proof. Immediately preceding statements or
distinguished main lemmas or theorems are the most probable and “visible”
preconditions for a statement so that these should be attempted with higher
priority for the proof of the current statement. A good design of visibility
criteria can help the automated prover and make proofs more natural in the
sense that “obvious” potential premises are selected by the system in a way
similar to the tactics of a human prover.

5.4 Logical aspects

In principle all mathematical statements can be translated into first-order
statements about sets and the membership-relation. Standard set-theoretic
formalizations of mathematical notions like the coding of integers by von
Neumann ordinals introduce exponential growth and may not be practically
feasable. Therefore intermediate logics should be used which are close to
the “natural logic” of mathematical input texts. This requires an efficient
(weak) type system so that complex objects or notions can be atomic at
some higher level of the type system. This was already described by Bour-
baki (Bourbaki 2004, 10):

[...] it is imperative to condense the formalized text by the intro-
duction of a fairly large number of new words (called abbreviating
symbols) and additional rules of syntax (called deductive crite-
ria). By doing this we obtain languages which are much more
manageable than the formalized language in its strict sense. Any
mathematician will agree that these condensed languages can
be considered as merely shorthand transcriptions of the original
formalized language.

5.5 Automated theorem proving

Proofs come with a certain step size or granularity depending on the style of
proof. Proof checking amounts to the justification of each proof step, either
by the argumentative abilities of a human (expert) reader, or by interpolat-
ing proof steps by a formal derivation in case of automated proof checking.
Ideally automated theorem provers (ATP) like Otter or Vampire should be
able to interpolate proof steps of a natural granularity. Experiments with
existing formal mathematics systems indicate that this is possible at least
in certain contexts.
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5.6 Typesetting

Mathematical texts stand out by the elaborate typography for formulas.
Systems like TEX and LATEX enable mathematicians to do mathematical
typesetting without expert help. These systems have become de facto stan-
dards in mathematical publishing and can be considered “natural” formats
for communicating mathematics. Natural formal mathematics should ac-
cept those formats.

6 Examples of natural formal mathematics systems

6.1 System for Automated Deduction: The SAD project

The SAD project (SAD) is based on a controlled natural language for mathe-
matics called ForTheL (Formula Theory Language), which goes back to the
1960’s and was further developed by Alexander Lyaletski, Andrei Paske-
vich, and Konstantin Verchinine (Verchinine et al. 2007). SAD is designed
to approximate parts of common mathematical language and argumenta-
tion. Several frequent and useful phrases and methods of proof have been
implemented with appropriate first-order semantics. The language includes
a soft type system which is akin to the naive typing often found in math-
ematical texts. The proof checking process is devided into two layers: a
reasoner attempts to identify inferences which to humans appear immedi-
ate or trivial; if the reasoner fails, the proof search is delegated to some
automated theorem prover. Although SAD is only a small prototypical sys-
tem, it allows for surprisingly natural mathematical texts. The following is
an excerpt from a proof that the square root of a prime number is irrational:

Theorem Main.

For all nonzero natural numbers n,m,p if p * (m * m)

= (n * n) then p is compound.

Proof by induction. Let n,m,p be nonzero natural

numbers.

Assume that p * (m * m) = (n * n). Assume that p is

prime. Hence p divides n * n and p divides n. Take

q = n / p.

Then m * m = p * (q * q). Indeed p * (m * m) = p *

(p * (q * q)). m < n. Indeed n <= m => n * n <= m

* m.

Hence p is compound.

qed.

The frugal ASCII appearance of ForTheL texts can easily be improved
by putting a LATEX layer on top of the language. Here is an original excerpt
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from an SAD + LATEX proof of the infinitude of prime numbers which comes
rather close to textbook versions:

Theorem 1. The set of prime numbers is infinite.

Proof. Let A be a finite set of prime numbers. Take a function
p and a number r such that p lists A in r steps. ranp ⊆ +.
∏r

i=1 pi 6= 0. Take n =
∏r

i=1 pi + 1. n is nontrivial. Take a
prime divisor q of n.

Let us show that q is not an element of A. Assume the contrary.
Take i such that (1 ≤ i ≤ r and q = pi). pi divides

∏r
i=1 pi (by

MultProd). Then q divides 1 (by DivMin). Contradiction. qed.

Hence A is not the set of prime numbers. �

6.2 Natural Proof Checking :
The Naproche project

Whereas SAD achieves an impressive but limited degree of linguistic nat-
uralness with a carefully crafted small controlled language, the Naproche
project (Naproche) aims at an analysis and formal approximation of exten-
sive parts of the full natural language of mathematics. The project set out
by analysing mathematical texts using annotations, formal grammars and
discourse representations (see Koepke & Schröder 2002; 2003; Cramer &
Schöder 2012; Cramer et al. 2011). The fact that formal semantics in lin-
guistics usually leads to representations in first-order logic is advantageous
for mathematical texts (see Cramer et al. 2009). In the Naproche software,
first-order representations are transformed into queries to automatic theo-
rem provers (ATP) in order to check whether statements in mathematical
texts are logical consequences of previously established facts (see Cramer
et al. 2010a;b).

The grammars and formats of the linguistic analysis define a controlled
language of accepted sentences, the Naproche language. Like Automath,
the Naproche project also takes Landau’s Grundlagen (Landau 1930) as a
benchmark text to be reformulated and checked. This has been done for
the first two chapters of the book, and we give a sample of a representative
theorem and the beginning of its proof, taken from the translation (Landau
1966):

Theorem 4, and at the same time Definition 1:

To every pair of numbers x, y, we may assign in exactly one way
a natural number, called x + y (+ to be read ”plus”), such that
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1. x + 1 = x′ for every x,

2. x + y′ = (x + y)
′
for every x and every y.

x + y is called the sum of x and y, or the number obtained by
the addition of y to x.

Proof: A) First we will show that for each fixed x there is at
most one possibility of defining x+y for all y in such a way that

x + 1 = x′

and

x + y′ = (x + y)′ for everyy.

Let ay and by be defined for all y and be such that

a1 = x′, b1 = x′,

ay′ = (ay)′, by′ = (by)′ for everyy.

Let M be the set of all y for which

ay = by.

I)

a1 = x′ = b1;

Hence 1 belongs to M.

II) If y belongs to M then

ay = by,

hence by Axiom 2

(ay)′ = (by)′,

therefore

ay′ = (ay)′ = (by)′ = by′ ,

so that y′ belongs to M.

Hence M is the set of all natural numbers; i.e., for every y we
have

ay = by.
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The argument, proving the uniqueness of an addition function on the
natural numbers, is rather subtle since it uses higher-order arithmetic. This
requires some (background) theory of sets and functions, which is not made
explicit in the Landau text. The Naproche system includes such a back-
ground theory (Cramer 2012) so that the proofs get cleaner and don’t have
to appeal to “the possibility to define” certain terms. Here is a checked
rendering of the Landau argument in the current version of the Naproche
system:

Theorem 4: There is precisely one function x, y 7→ x + y such
that for all x, y, x + y is a natural number and x + 1 = x′ and
x + y′ = (x + y)′.
Proof:
A) Fix x. Suppose that there are functions y 7→ ay and y 7→ by
such that a1 = x′ and b1 = x′ and for all y, ay′ = (ay)′ and
by′ = (by)′.
Let M be the set of y such that ay = by.
a1 = x′ = b1, so 1 belongs to M.
If y belongs to M, then ay = by, i.e., by axiom 2 (ay)′ = (by)′,
i.e., ay′ = (ay)′ = (by)′ = by′ , i.e., y′ belongs to M. So M

contains all natural numbers. Thus for all y, ay = by.
Thus there is at most one function y 7→ x+y such that x+1 = x′

and for all y, x + y′ = (x + y)′.

Note that this text can be seen as a stricter version of Landau’s argument.
Due to the natural language features of Naproche and the built-in function
theory the reformulated text is as short and readable as the original.

7 Perspectives of formal mathematics

Against the background of the state of formal mathematics as sketched
above I propose a sequence of theses, leading from safe ones already sub-
stantiated to more speculative ones. In section 4 we saw:

1. Formal mathematics has become an established and active research
area.

2. Formal mathematics is already covering a wide range of substantial
mathematical results.

There are singular points where current mathematical research uses for-
mal mathematics, e.g., the flyspeck project (flyspeck) of Thomas Hales to
construct a formal proof of the Kepler conjecture, or the work of Vladimir
Voevodsky in homotopy theory, using the Coq proof assistant. Thus:
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3. Formal mathematics is beginning to interact with research mathemat-
ics.

4. Formal mathematics could become part of mathematical practice.

In line with Wiedijk’s analysis of the current role of formal mathematics
we hold that:

5. The acceptance of formal mathematics in mathematical practice will
depend on the naturalness of its application.

Section 5 identified areas and proposed methods for the improvement
of naturalness. This will involve the combination of best methods from
various, already existing systems:

6. The naturalness of strong formal mathematics can be increased con-
siderably.

Therefore:

7. Formal mathematics will become part of mathematical practice.

But it seems too early to make predictions on the degree of coverage
and acceptance of formal mathematics tools in the day to day work of fu-
ture mathematicians. Some practioners of formal mathematics like Jeremy
Avigad, Kevin Donnelly, David Gray, and Paul Raff hold (Avigad et al.
2007):

On a personal note, we are entirely convinced that, although
there is a long road ahead, formal verification of mathematics
will inevitably become commonplace. Getting to that point will
require both theoretical and practical ingenuity, but we do not
see any conceptual hurdles.

On the other hand one can expect resistance by mathematicians who feel
that they would lose the traditional freedom of mathematical presentation,
which can be very sloppy and even formally false in “inessential” or “triv-
ial” places. To allay the reservations of traditional mathematicians, formal
mathematics systems have to offer rich and natural interfaces, and there
has to be reasonable added value for the user.
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7.1 A scenario: Formal mathematics and textbook mathematics

Many attempts in formal mathematics are directed towards a register of
mathematical discourse described as textbook mathematics . This involves
extensive texts, a systematic development of some limited area of mathe-
matics, and a rather detailed renderings of proofs. The prerequisites of such
texts should be simple, and everything else is introduced within the text,
preferably in a Definition–Theorem–Proof style.

Let us assume that formal mathematics is able, within the next decade,
to handle some such texts: experts which understand the mathematics and
the formal mathematics system reformulate chapters of textbooks into texts
which are very similar in typesetting, language, and logical structure to the
original text, but which are also checked for correctness by the system. The
feasibility of this scenario will depend on the kind of mathematics to be
handled (see 5.1).

What are the consequences of such developments? Obviously one could
then have textbooks, which are readable like standard textbooks, but which
are completely correct (we don’t want to discuss the remote possibilities of
computer and software faults at this place). This may be a relief to authors
and referees. A referee could concentrate on main ideas instead of checking
tedious details. On the other hand the demand for formalization may force
some mathematically unnatural or superfluous issues into the presentation.
Computer proof checking will provide possibilities to explore logical depen-
dencies within the text which are not explicitely mentioned: the automated
checker can produce a log of its proof (a “proof object” of some kind) which
can be searched for information generated during checking. So the checkable
textbook text is like a surveyable surface, under which one could explore
different layers of logical detail.

Most mathematical research articles combine some high level reasoning
with extensive low level arguments, often of some “combinatorial” kind.
Although the high level reasoning may be far above the abilities of formal
mathematics systems, combinatorial arguments sometimes have a textbook
style as described above. One might consider writing “textbook arguments”
with the help of formal mathematics systems to assist authors, referees, and
readers. Often the high level reasoning is familiar to experts and proceeds
along established intuitions of the field. By contrast, combinatorial argu-
ments are sometimes difficult to grasp and intuite, so that a validity check
may be welcomed by everybody involved. In this way, formal mathematics
designed for the textbook level might also enter research mathematics.

The introduction of such techniques will depend on decisions and trends
within the wider mathematical community. As an example, the systems TEX
and LATEX could manifest themselves since they gave authors support and
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control of a process that previously could only be managed by a longwinded
iterative process of approximations to the desired typeset result. Further
benefits were given by the small footprint of the data files, the openness of
the formats, the quality of the software, and other factors. Within a few
years TEX and LATEX have become a de facto standard which is now made
essentially mandatory by publishers.

8 Philosophical perspectives

The development of formal mathematics may be viewed as a strengthen-
ing of the formalist position. The above proof of the infinitude of primes
is not only a text that communicates number theoretic ideas to a fellow
mathematician, and which could be fully formalized. In a rich formal sys-
tem, including automated theorem proving, the text is already a formal
text. Does this indicate some analogy with Richard Montague’s English as
a Formal Language (Montague 1974)?

In the discussion of informal versus formal proofs their seemingly huge
dissimilarity is a decisive aspect. Hannes Leitgeb (Leitgeb 2009) writes:

why not think of ”formally provable(-in-T)” (for some instan-
tiation of ”T”) as a Carnapian explication of ”informally prov-
able”? The answer is simple: because it is not. According to
Carnap, whatever explicates an explicandum must be as similar
as possible to the latter, but as our comparison from above has
shown, formal provability and informal provability are just too
dissimilar to satisfy this criterion.

But if in the case of the infinitude of primes T is taken to be the above-
mentioned system SAD + LATEX informal and formal proof may coincide
so that at least in certain situations “formally provable(-in-T)” might be a
Carnapian explication of “informally provable”!

Strengthening formalism will affect the balance between the main posi-
tions in the philosophy of mathematics and may have far-reaching conse-
quences. In his MSc thesis (Tanswell 2012) Fenner Tanswell has argued
that Naproche could be a tool for overcoming the philosophical objections
to formalism and develop a new type of formalism.

On the other hand it may be too early to start this discussion in detail. So
let me just mention one issue with respect to the Philosophy of Mathemati-
cal Practice: The current way of checking mathematical correctness, rather
than being meticulous logical checking, has been described by philosophers
of mathematical practice as a complicated process based on a network of
trust in intuitions, published papers, authorities, refereeing processes, etc.
This system will change once formal certificates are available for parts of the
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mathematical research and dissemination process. Initially certificates will
be seen as a welcome extra justification, until they will become mandatory,
at least for certain kinds of arguments. Does this mean that certain observa-
tions of the Philosophy of Mathematical Practice concerning the shakyness
of the present network of trust will become outdated in the long run?
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Koepke, P. & Schröder, B. (2003). ProofML – eine Annotationssprache für
natürliche Beweise. LDV Forum, 18, 428–441.

Landau, E. (1930). Grundlagen der Analysis. Leipzig: Akademische Verlagsge-
sellschaft.

Landau, E. (1966). Foundations of Analysis. New York: Chelsea Pub., 3rd edn.,
translated into English by F. Steinhardt.

Leitgeb, H. (2009). On formal and informal provability. In New Waves in Philos-
ophy of Mathematics, Bueno, O. & Linnebo, Ø., eds., Basingstoke; New York:
Palgrave Macmillan, 263–299.

McCarthy, J. (1962). Computer programs for checking mathematical proofs. In
Recursive Function Theory: Proceedings of the Fifth Symposium in Pure Math-
ematics, Decker, J. C. E., ed., American Mathematical Society, 219–227.

Mizar. http://mizar.uwb.edu.pl.



426 Peter Koepke

Montague, R. (1974). English as a formal language. In Formal Philosophy: Se-
lected Papers of Richard Montague, Thomason, R. H., ed., New Haven: Yale
University Press, 247–270.

Naproche. http://naproche.net.

Paulson, L. C. (2003). The relative consistency of the axiom of choice mechanized
using Isabelle/ZF. LMS Journal of Computation and Mathematics, 6, 198–248,
doi:10.1112/S1461157000000449.

Russell, B. (1938). The Principles of Mathematics. W. W. Norton, 2nd edn., 1st
ed., Cambridge: University Press, 1903.

Russell, B. (1998). Autobiography. Hoboken: Taylor & Francis.

SAD. http://nevidal.org.

Tanswell, F. (2012). Proof and Prejudice: Why Formalising doesn’t make you a
Formalist. Msc thesis, Universiteit van Amsterdam, ILLC Publications MoL-
2012-07.

van Benthem Jutting, B. (1977). Checking Landau’s “Grundlagen” in the Au-
tomath system. Ph.D. thesis, Eindhoven University of Technology.

Verchinine, K., Lyaletski, A., & Paskevich, A. (2007). System for automated de-
duction (SAD): A tool for proof verification. In Automated Deduction – CADE-
21, Lecture Notes in Computer Science, vol. 4603, Pfenning, F., ed., Berlin
Heidelberg: Springer, 398–403, doi:10.1007/978-3-540-73595-3 29.

Whitehead, A. N. & Russell, B. (1910-1913). Principia Mathematica. Cambridge:
Cambridge University Press.

Wiedijk, F. (2007). The QED Manifesto revisited. Studies in Logic, Grammar and
Rhetoric, 10 (23), 121–133.

Peter Koepke

Mathematical Institute

University of Bonn

Germany

koepke@math.uni-bonn.de


