Tutorial 1.1: Combinatorial Set Theory

Jean A. Larson (University of Florida) ESSLLI in Ljubljana, Slovenia, August 1, 2011

I. Overview

- The König Infinity Lemma: an infinite tree with finite levels has an infinite branch.
- Ramsey's Theorem: if the edges of a complete graph on an infinite set are colored with finitely many colors, there is an infinite subset of the vertices all of whose edges are monochromatic.
- There is a graph coloring theorem for finite graphs that cannot be proved in Peano arithmetic.

II. Set theoretic trees

Set theoretic trees are partial orders $(T, <_T)$ such that for every $t \in T$, the set $T \upharpoonright_t$ of predecessors of t is well-ordered, where

$$T\!\upharpoonright_t = \{s \in T : s <_T t\}.$$

Example

Finite sequences of 0's and 1's ordered by end-extension is a tree (the *complete binary tree*) with finite levels and root the empty sequence.

Definition

A node t in a tree $(T, <_T)$ is on level $i < \omega$ if $T \upharpoonright_t$ has order type i, i.e. is order isomorphic to $\{0, 1, \ldots, i-1\}$.

III. König Infinity Lemma

Theorem 1 Dénes Kőnig 1926 [3]

An infinite tree with finite levels has an infinite branch.

Definition

A branch is a maximal chain (totally ordered subset) of the tree.

Suppose $(T, <_T)$ is an infinite tree with finite levels. Then it must have nodes on infinitely many different levels.

There are only finitely many nodes on level 0 and every node is comparable with one of them. Let t_0 be a node on level 0 that is below nodes from infinitely many different levels.

At stage i + 1, choose a node t_{i+1} on level i extending t_i that is below nodes from infinitely many levels.

Since this process continues for all $i < \omega$, $C = \{t_i : i < \omega\}$ is an infinite chain (all pairs comparable). Extend C to a maximal chain B in T to get an infinite branch.

Definition

A graph is (V, E) where V is a set of vertices and $E \subseteq [V]^2$ is a set of edges (two element subsets of V). The complete graph on a set V is the graph for which $E = [V]^2$.

A coloring of a complete graph $(V, [V]^2)$ with colors $\{0, 1, \dots, k-1\}$ is a function $c : [V]^2 \to \{0, 1, \dots, k-1\}$.

Theorem 2 (Ramsey's Theorem for pairs [5])

For any finite coloring $c : [\omega]^2 \to \{0, 1, \dots, k-1\}$, there is an infinite subset $U \subseteq V$ such that c is constant on $[U]^2$.

By recursion build a tree (T, \supseteq) of non-empty subsets of ω indexed by *k*-ary sequences:

- Start with $A_{\emptyset} = \omega$ and let $a_0 = 0$ be the least element of A_{\emptyset} .
- If A_s has been defined and a_s = min A_s for some sequence s whose elements come from the set of colors, then for each color ℓ for which there is some m ∈ A_s different from a_s with f(m, a_s) = ℓ, let

$$A_{s^\frown \langle \ell \rangle} = \{ b \in A_s \mid b \neq a_s \land f(a_s, b) = \ell \}.$$

- Each level of the tree is finite, since the root is the only node of level 0, and level m + 1 has at most k times as many nodes as level m.
- The tree has infinitely many nodes, since each n < ω is n = a_s for some s which has length at most n.

- Apply the König Infinity Lemma to (T, \supseteq) to get a branch B.
- Let $S: \omega \to \{0, 1, \dots, k-1\}$ be $\bigcup \{s : A_s \in B\}$.
- Define $h: \omega \to \{0, 1, \dots, k-1\}$ by $h(i) = f(a_{S \upharpoonright_i}, a_{S \upharpoonright_{i+1}})$.
- By the Pigeonhole Principle there is ℓ < k and an infinite set H ⊆ ω such that h(i) = ℓ for all ℓ ∈ H.
- The set {a_{S↑i} : i ∈ H} is monochromatic of color ℓ. (Based on the Erdős proof in [2] for uncountable graphs.)

Theorem 3 (Infinite Ramsey's Theorem [5])

For any $r < \omega$ and finite coloring $c : [\omega]^r \to \{0, 1, \dots, k-1\}$ of the *r*-tuples of ω , there is an infinite subset $U \subseteq V$ such that c is constant on $[U]^r$.

- For r = 1, this is the Pigeonhole Principle.
- For r = 2, this is Ramsey's Theorem for Pairs sketched above.
- If it is true for r = m, one can prove it for r = m + 1 by an argument similar to the one sketched, where at level n + 1 ≥ r, we partition A_s into pieces so that for all x, y in one piece and all a₀, a₁,..., a_{m-1} minimal elements of A_{ti} ⊆ A_s, c(a₀,..., a_{m-1}, x) = c(a₀,..., a_{m-1}, y).
- If H = {a_i | i < ω} are the nodes along the infinite branch, then color of an (m + 1)-element subset of H depends only on it first m elements, so we can apply the induction hypothesis.

Definition

The Paris-Harrington Principle is the statement that for all positive integers r, s, k, there is some $N < \omega$ such that for every coloring $c : [\{0, \ldots, N-1\}]^r \to \{0, 1, \ldots, k-1\}$ there is a min-size-homogeneous set X for c of size at least s.

Identify N with the set $\{0, 1, ..., N-1\}$ and k with $\{0, ..., k-1\}$. Call a set $X \subseteq N$ homogeneous for $c : [N]^r \to k$ if c is constant on $[X]^r$.

X is *min-size-homogeneous* if it is homogeneous and min X < |X|.

A pair $(X, [X]^r)$ is called a *complete r-uniform hypergraph*.

Example

If $c: [N]^2 \to 2$ is defined by $c(\{x, y\}_{<}) = 0$ iff y is even, then

- the set $\{1,4\}$ is min-size-homogeneous (but not of size $\geq s = 3$); and
- the set $\{5, 6, 8, 10, 12\}$ is homogeneous and has size $5 \ge s = 3$ but is not min-size-homogeneous.

Theorem 4

Infinite Ramsey's Theorem implies the Paris-Harrington Principle.

Proof.

Assume to the contrary that r, s, k are finite positive integers for which the Paris-Harrington Principle fails. Let

 $T = \{c \mid (\exists N < \omega)(c : [N]^r \to k \text{ is a counter-example})\}.$

For c, d in T, write $c \sqsubseteq d$ if $c = d \upharpoonright_{dom(c)}$. Then (T, \sqsubseteq) is an infinite tree with finite levels.

continued.

Use the König Infinity Lemma to get an infinite branch B.

Let $C = \bigcup B$. Then $C : [\omega]^r \to k$.

Apply the Infinite Ramsey's Theorem to C to get an infinite monochromatic subset H. Let $m = \min(H)$, and let X be the set of the first m + 1 elements of H. Then X is min-size-homogeneous for C.

Let $N > \max(X)$ be such that $C \upharpoonright_N \in B$. Then X is min-size-homogeneous for $C \upharpoonright_N$. This is a contradiction, so the theorem follows.

Theorem 5 (Paris, Harrington 1977 [4])

The Paris-Harrington Principle is not provable in Peano Arithmetic.

Multiple proofs exist. Bovykin [1] has a nice model theoretical proof that the related principle PH* is not provable in Peano Arithmetic: PH^* : for all positive integers r, s, k, there is some integer N such that for every coloring

$$c: [\{0, \ldots, N-1\}]^r \to \{0, 1, \ldots, k-1\}$$

there is a homogeneous set X for c with |X| > s and $|X| > r(2^{r\min(H)} + 1)$.

VI. References

- Andrey Bovykin. Brief introduction to unprovability. In *Logic Colloquium 2006*, Lect. Notes Logic. Assoc. Symbol. Logic, Chicago, IL, 38–64, 2009.
- [2] P. Erdős. Some set-theoretical properties of graphs. Revista de la Universidad Nacional de Tucumán, Serie A, Matemática y Fisica Téorica, 3:363–367, 1942.
- [3] D. Kőnig. Sur les correspondances multivoques. *Fund. Math.*, 8:114–134, 1926.
- J. Paris and L. Harrington. A mathematical incompleteness in Peano Arithmetic. In Handbook of mathematical logic, Part D (Proof theory and constructive mathematics), North-Holland, Amsterdam, 1133–1142, 1977.
- [5] F. Ramsey. On a problem of formal logic. Proc. London Math. Soc. (2), 30(1):264–286, 1930.

A final remark

