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Aim and Motivation

AIM: To connect infinitesimals and computability.

WHY: From the scope of CCA 2013: (http://cca-net.de/cca2013/)

The conference is concerned with the theory of computability and

complexity over real-valued data. [BECAUSE] Most mathematical models

in physics and engineering [...] are based on the real number concept.

The following is more true:

Most mathematical models in physics and engineering [...] are based on

the real number concept, via an intuitive calculus with infinitesimals, i.e.

informal Nonstandard Analysis.

Moreover: Infinitesimals and NSA are said to have ‘non-constructive’

nature (Bishop, Connes), although prominent in physics and engineering.

The latter produces rather concrete/effective/constructive mathematics

(compared to e.g. pure mathematics).
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The constructive nature of Nonstandard Analysis

Overarching question:

How can mathematics involving ideal objects (such as NSA with its

infinitesimals) yield (standard) computable or constructive results?

Nonstandard Analysis

= Any formal system with a notion of ‘nonstandard object’,
especially infinitesimals (=infinitely small quantities).

This includes:

1 Robinson’s original ‘Non-standard Analysis’ and Luxemburg’s
ultrafilter approach.

2 Nelson’s IST and variants.
3 The nonstandard constructive type theory by Martin-Löf,

Palmgren etc
4 Other (SDG)
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Palmgren etc
4 Other (SDG)



The constructive nature of Nonstandard Analysis

Overarching question:

How can mathematics involving ideal objects (such as NSA with its

infinitesimals) yield (standard) computable or constructive results?

Nonstandard Analysis

= Any formal system with a notion of ‘nonstandard object’,
especially infinitesimals (=infinitely small quantities).

This includes:

1 Robinson’s original ‘Non-standard Analysis’ and Luxemburg’s
ultrafilter approach.

2 Nelson’s IST and variants.
3 The nonstandard constructive type theory by Martin-Löf,
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Palmgren etc

4 Other (SDG)



The constructive nature of Nonstandard Analysis

Overarching question:

How can mathematics involving ideal objects (such as NSA with its

infinitesimals) yield (standard) computable or constructive results?

Nonstandard Analysis

= Any formal system with a notion of ‘nonstandard object’,
especially infinitesimals (=infinitely small quantities).

This includes:

1 Robinson’s original ‘Non-standard Analysis’ and Luxemburg’s
ultrafilter approach.

2 Nelson’s IST and variants.
3 The nonstandard constructive type theory by Martin-Löf,
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Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷

Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Nonstandard Analysis: a new way to compute

∗N, the hypernatural numbers︷ ︸︸ ︷
︸ ︷︷ ︸

N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite/standard numbers︷ ︸︸ ︷ Ω=∗N\N, the infinite/nonstandard numbers︷ ︸︸ ︷

Standard functions f : N→ N are (somehow) generalized to
∗f : ∗N→ ∗N such that (∀n ∈ N)(f (n) = ∗f (n)).

Definition (Ω-invariance)

For standard f : N× N→ N and ω ∈ Ω, the function ∗f (n, ω) is
Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Note that ∗f (n, ω) is independent of the choice of infinite number.



Ω-invariance: a nonstandard version of computability

Definition (Ω-invariance)

For f : N×N→ N and ω ∈ Ω, the function ∗f (n, ω) is Ω-invariant
if (∀n ∈ N)(∀ω′ ∈ Ω)[∗f (n, ω) = ∗f (n, ω′)].

Principle (Ω-CA)

For all Ω-invariant ∗f (n, ω), we have

(∃g : N→ N)(∀n ∈ N)(g(n) = ∗f (n, ω)).

RCA0 is IΣ1 + ∆0
1-CA and ∗RCA0 is RCA0 plus basic NSA-axioms.

Theorem (Montalbán-Palmgren-S.)
∗RCA0 + Ω-CA ≡ ∗RCA0 ≡ RCA0 (All systems prove the same standard theorems)

∗RCA0 proves that every ∆0
1-function is Ω-invariant.

∗RCA0 + Ω-CA proves that every Ω-invariant function is ∆0
1.
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Turing computable functions are ‘built up from the ground’.

Ω-invariant functions are nonstandard, i.e. ‘come from above’.
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Ω-invariance and real numbers

Definition

1) For qn : N→ Q, ω ∈ Ω, ∗qω is Ω-invariant if (∀ω′ ∈ Ω)(∗qω ≈ ∗qω′)
2) For F : R× N→ R and ω ∈ Ω, ∗F (x , ω) is Ω-invariant if

(∀x ∈ R, ω′ ∈ Ω)(∗F (x , ω) ≈ ∗F (x , ω′)). (∗∗)

Theorem (In ∗RCA0 + Ω-CA)

1) For Ω-invariant ∗qω, there is x ∈ R such that x ≈ ∗qω.

2) For Ω-invariant ∗F (x , ω), there is G : R→ R such that

(∀x ∈ R)(∗F (x , ω) ≈ G (x)).

The standard part map ◦(x + ε) = x (x ∈ R and ε ≈ 0) is highly

non-computable, but Ω-CA provides a computable alternative for

Ω-invariant reals and functions.
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Computable results in physics

Theorem (In ∗RCA0 + Ω-CA)

For Ω-invariant ∗F (x , ω), there is G : R→ R such that

(∀x ∈ R)(∗F (x , ω) ≈ G (x)).

Observation: Math. practice involving infinitesimals in physics and

engineering produces functions ∗F (x , ε) satisfying:

(∀x ∈ R)(∀ε, ε′ ≈ 0)(∗F (x , ε) ≈ ∗F (x , ε′))

Thus, ∗F (x , ε) is Ω-invariant and computable by the theorem.

Intuition and motivation:

1 ∗F (x , ε) is constructed from basic operations and ε ≈ 0. Repeating

with a different ε′ ≈ 0 yields the same object, up to infinitesimals.

2 Previous is especially true if ∗F (x , ε) describes a real-world object.

3 Well-posed problems (Hadamard, Brouwer) and uniqueness.
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Functionals and NSA

The Weierstrass maximum theorem (WEIMAX)

(∀st f ∈ C [0, 1])(∃stx1 ∈ [0, 1])(∀sty1 ∈ [0, 1])(f (y) ≤ f (x))

The Uniform Weierstrass maximum theorem (UWEIMAX)

(∃stΘ(1→1)→1)(∀st f ∈ C )(∀sty1 ∈ [0, 1])(f (y) ≤ f (Θ(f ))) (1)

The Nonstandard Weierstrass maximum theorem (WEIMAX∗)

(∀st f ∈ C )(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(f (y) ≤ f (x)) (2)

In ∗RCAω
0 + Ω-CA, we have (1)↔(2), and a general theme: UT ↔ T ∗.

Also, there is a nonstandard functional in ∗RCAω
0 + Ω-CA which becomes

Ω-invariant (and hence Θ from (2)) given WEIMAX∗.

Classical existence of a standard object with the same standard and

nonstandard properties = A standard functional computes the object.
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The ontological cornucopia of NSA

Taking the limit cn → c of a sequence of reals amounts to solving
the Halting problem.

Hence, a proof P involving a limit cn → c cannot be constructive
or constructivized easily.

A NSA-proof P ′ involving a limit cn → c can in many cases be
constructivized! Indeed, carry out the rest of the proof P ′ with cω
instead of c , for fixed infinite ω. Call this proof P ′′

This ‘protolimit’ cω cannot be Ω-invariant (without solving the
Halting problem), but in many cases, the final terms of P ′′

involving cω will be Ω-invariant (without additional assumptions).

Hence, we can use Ω-CA to obtain a standard result from P ′′,
without using the Halting problem.
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Local Constructivity

Most of mathematics is non-constructive or non-computable.

How to extract computational/constructive information from

non-constructive proofs?

Proof Mining (Kreisel, Kohlenbach, . . . )

Local constructivity (Osswald, S. )

A non-constructive proof P of a theorem T is locally constructive
if the core, the essential part is constructive.

Ideally, we can change some initial and final steps in P to obtain a
constructive proof P ′ of a similar theorem T ′

NSA is amenable to local constructivity!
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NSA is amenable to local constructivity!
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The mathematics in the nonstandard world is essentially
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definitions in the standard world.
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Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?
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