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Introduction 

•  Prominent in discussions of the mathematical infinite is typically: Georg 
Cantor; earlier also Bolzano, Galilei, all the way back to Aristotle. 

•  One highly influential authority:  David Hilbert, with his well-known remark that 
“no one shall drive us from the paradise that Cantor created for us” (1926). 

•  I want to highlight another seminal figure:  Richard Dedekind.   
•  A first remark guiding me is by Ernst Zermelo, who wrote that modern set theory 

was “created by Cantor and Dedekind” (1908). 
•  Also Hilbert, who was fascinated by Dedekind’s and Frege’s attempts to “explain 

the finite in terms of the infinite” (1922), even though he took them to have failed. 
•  Finally, cf. Akihiro Kanamori: the actual infinite first “entered [mainstream] 

mathematics in Dedekind’s work” (2012), already in the 1850s. 
•  Claim: Dedekind was as important as Cantor for the acceptance of the infinite in 

mathematical practice, in some respects more so.  (But: less “drama”.) 
•  Three aspects and, thus, parts of my talk:  

PART I:  Dedekind’s contributions to the rise of set theory 
PART II:  His use of infinite sets in mathematics more generally 
PART III:  The issue of “explanation” as part of “mathematical practice” 
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Introduction (continued) 
Relevant works by Dedekind: 

 1872:  Continuity and Irrational Numbers  
 1888:  The Nature and Meaning of Numbers 
 (Cf. 1930/32:  Gesammelte Mathematische Werke, Vols. I-III) 

But also: 
 1872-1899:  Some meetings, and intermittent correspondence, with Cantor 
 1860s-90s:  Supplements to Dirichlet’s Lectures on Number Theory; also his 
  corresponding work (with H. Weber) in algebraic geometry (function fields) 
 1855-1858:  Early work on algebra, including Galois theory (lecture notes). 

Besides Zermelo’s and Hilbert’s remarks, I am building on the following: 
•  José Ferreirós:  Labyrinth of Thought (1999/2010) 
•  Akihiro Kanamori:  “In Praise of Replacement” (BSL, 2012) 
•  But also, recent work on mathematical explanation (cf. my “Dedekind, 

Structural Reasoning, and Mathematical Understanding”, 2009) 
•  As more general background, cf. my survey “Dedekind’s Contributions to 

the Foundations of Mathematics” (SEP, 2008/2011) 



PART I: Dedekind’s Contributions to Set Theory (Reminder) 
•  1872 booklet (on continuity and irrational numbers): 
▫  He starts with Q, seen as an infinite set—actual infinity, contra Aristotle 
▫  Use of cuts (infinite subsets of Q) to define continuity and introduce the elements of R 

•  1888 booklet (but much already in early drafts from 1870s): 
▫  Use of a general theory of sets (“Systeme”) and functions (“Abbildungen”), both understood 

extensionally, as a foundational framework—for N, then for Z, Q, R etc.   
▫  Explicit definition of sets as (Dedekind-)”infinite”—very bold, turning a “paradox” (Galilei) 

into a definition (characteristic property of infinite sets).  (Here also: implicit use of AC.) 
▫  Dedekind-Peano axioms for N, via “simply infinite systems”—acknowledged by Peano. 
▫  Systematic justification of definitions by recursion and proofs by induction, via the notion of 

“chain” (a set closed under a given function)—later generalized by Zermelo and von Neumann. 
▫  Famous categoricity result for simply infinite sets (all isomorphic). 
▫  The “construction” of a simply infinite set (cf. Bolzano, put in problematic “psychologistic” 

language)—later the acknowledged basis for Zermelo’s axiom of infinity. 

•  Correspondence with Cantor (from 1872 on): 
▫  Proof that the set of algebraic numbers, not just Q, is countable—part of the inspiration for 

Cantor’s study of the cardinality of R (non-countability discovered in 1873). 
▫  Proof of the Cantor-Bernstein equivalence theorem, again via Dedekind’s theory of chains. 

All of this became a standard and integral part of ZFC—thus Zermelo’s remark. 
Then again:  Use of a naïve approach to sets, subject to Russell’s antinomy; and 
no basic axioms formulated explicitly (cf. Frege’s criticism, Zermelo’s work). 
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PART II: Dedekind’s Novel Uses of Infinity (More Generally) 
•  In the more foundational works (1970s-80s):  
▫  Q, then also R and N, as infinite sets—or rather, as infinite relational systems (ordered etc.). 
▫  Real numbers as infinite sets of rationals (implicit use of, essentially, the power set axiom). 

▫  Construction of Z, Q in terms of infinite equivalence classes or pairs in Dedekind’s Nachlass. 

•  In algebraic number theory (from 1870s on): 
▫  Arbitrary sub-fields, as well as corresponding sub-rings, of C. 

▫  Ideals introduced as infinite sets (subsets of rings closed under certain operations). 
▫  Similarly for other (often infinite) relational systems, e.g., modules, later lattices, etc. 

•  In algebra (already in the 1850s): 
▫  Quotient constructions for modular arithmetic: actually infinite residue classes treated as 

unitary mathematical objects here (unlike, e.g., in Gauss who works with residues directly). 
▫  Important: Z[x], the ring of polynomials with integer coefficients (whose roots are algebraic 

numbers).  Mod p: a class consisting of infinitely many infinite equivalence classes. 
▫  In Dedekind’s own words:  “[T]he whole system of infinitely many functions of a variable 

congruent to each other modulo p behaves here like a single concrete number in number 
theory. […]  The system of infinitely many incongruent classes—infinitely many, since the 
degree may grow indefinitely—corresponds to the series of whole numbers in number 
theory.”  (Dedekind 1930/32, Vol. 1, pp. 46-47, as quoted in Kanamori 2012, p. 49.) 
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PART II: Dedekind’s Uses of Infinity (Further Analyzed) 

•  Basic observations:  
▫  In some of these constructions, one can avoid the actual infinite easily (cf. Z, Q, also Zp). 

▫  But in other cases, the use of the actual infinite is unavoidable and essential—e.g., real 
numbers as cuts, ideals as infinite sets, and certain groups. 

▫  Thus Kanamori’s remark (concerning the case Z[x]):  “One can arguably date the entry of the 
actual infinite into mathematics here [i.e., in the 1850s], in the sense of infinite totalities 
serving as unitary objects within an infinite mathematical system” (pp. 49-50). 

•  Towards “explanation”: 
▫  In Dedekind’s corresponding writings, one can find very modern looking theorems, especially 

homomorphism and isomorphism theorems.  (Example: Given a group homomorphism of G 
onto H, with kernel K, we have G/K ≅ H.) 

▫  They are part of an emerging, very general methodology, where we study relational systems 
(finite or infinite sets with certain functions and relations defined on them) and various 
structure-preserving mappings between them. 

▫  It is an infinitary, non-constructive, and “structuralist” methodology (cf. Reck 2009); often 
people talk about “abstract” mathematics in this connection (“abstract algebra” etc.).  Both 
model theory and category theory are outgrowths of it. 

▫  Here: not (always) an issue of “foundations”, but of “methodology”, “reasoning style”, etc. 
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PART III:  Explanation and Mathematical Practice 
•  Cantor: 
▫  An alternative construction of R, via Cauchy sequences (related to Weierstrass etc.). 
▫  Cantor’s theory of transfinite cardinal and ordinal numbers etc.; leading to the General 

Continuum Hypothesis and other questions central to higher set theory.   
▫  Moreover, Cantor had a relatively sophisticated response to the set-theoretic antinomies. 
▫  In addition, there was the beginning of descriptive set theory (point sets etc.). 
▫  All of it was, at least initially, an outgrowth of Cantor’s work in analysis (the study of real-

valued functions with infinitely many singularities)—connected to mainstream mathematics. 

•  Dedekind: 
▫  Important particular contributions to the rise of set theory as well, i.e., some central results. 
▫  The systematic use of infinite sets, and corresponding functions, as a foundational 

framework, for studying N, Z, Q, R, C, recursive processes, sets more generally, etc. 
▫  Beyond that: steps towards “abstract algebra”, studies in algebraic number theory, algebraic 

geometry, etc.—picked up later by Noether, Bourbaki, etc. 

•  Thus: 
▫  With respect to a foundational perspective, Dedekind was as important as Cantor.  (Unlike 

Dedekind and Frege, Cantor was initially not very interested in foundational issues.) 
▫  This is not to deny the importance of Cantor’s unique contributions (transfinite numbers, 

GCH, descriptive set theory, etc.), which had a huge influence on higher set theory. 
▫  Then again, with respect to mainstream mathematics Dedekind’s influence may have been 

more pervasive than Cantor’s—and in ways that involve the infinite systematically. 
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PART III:  Mathematical Explanation and the Infinite 
•  Back to Hilbert on “explaining the finite in terms of the infinite”: 
▫  Dedekind’s (and Frege’s) attempts to “explain” N within a basic framework of infinite sets and 

functions—characterize, precisely and completely, the first important infinity in mathematics. 
▫  In Dedekind (unlike Frege), part of an encompassing methodology meant to “explain” R—the 

second crucial infinity—but also divisibility in arbitrary subfields of C, function fields, etc. 

•  On “explanation” in mathematics more generally: 
▫  A slippery notion that philosophers of mathematics have only started to address (M. Steiner, P. 

Kitcher, P. Mancosu, etc.), partly borrowing from philosophy of science; but no agreement. 
▫  Still, mathematicians often try to “account for”, “make intelligible”, “comprehend”, 

“understand”, etc. mathematical phenomena—an important part of “mathematical practice”. 
▫  One can distinguish different “methodologies”, “reasoning styles”, etc. (H. Stein, I. Hacking, 

etc.); related to, but not identical, with “foundations” (derivability, truth, existence, etc.). 
▫  Partly:  reasoning from the “right concepts”; identifying “structural properties”; systematic 

“variation of cases” (cf. group and number theory), analogous to “mechanistic explanation”. 

•  Crucial for my purposes: 
▫  Without the huge success of the “abstract”, “conceptual”, or “structural” explanation style that 

one finds first in Dedekind, the infinite wouldn’t be so entrenched in mathematical practice. 
▫  Even for many people not interested in, or suspicious of, axiomatic set theory, foundational 

studies, etc., giving up those uses of the actual infinite in mathematics would be a big loss. 
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