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Plan

• Students find cardinal numbers difficult, but 
why?

• Existing explanations: theory of conceptual 
change.

• How do ‘strong’ and ‘weak’ students learn 
about cardinal arithmetic from text?

• Can mathematical reading strategies be 
improved?



Cardinal Numbers

• Cardinal numbers are known to be hard for 
students to understand (e.g., Borasi, 1984; Duval, 1983; 
Fischbein, Tirosh & Hess, 1979; Fischbein, Tirosh & Melamed, 1981;  
Tall, 1980, 1981, 2001a, 2001b; Tirosh, 1985).

• Traditionally understood from a “conceptual 
change” perspective.

• Goal of the talk: to argue that this should be 
supplemented by a “many students don’t (but 
can) read effectively” perspective.
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• The conceptual change account of learning 
posits an analogous process to Kuhnian 
paradigm shift in the philosophy of science 
(e.g. Vosniadou, 2001).

• When new knowledge comes into conflict with 
existing knowledge major reorganisation is 
required, referred to as conceptual change. 

• Paradigmatic example: children learning about 
the shape of the earth.
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Conceptual Change and Cardinality
Major differences between students’ existing 
understanding of how numbers behave and how 
cardinal numbers behave.

@0 = 2 · @0

@0 = @0 + 1

Major differences between “infinity” and 
cardinality:

lim
x!3�

1

x� 3
= �1 lim

x!3+

1

x� 3
= 1

What is this? Isn’t subtraction undefined?

n < 2n

n 6= n+ 1
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Conceptual Change and Cardinality

• Basic idea of the conceptual change approach 
is that you have to reconstruct your existing 
knowledge of numbers to account for these 
strange new properties.

• This is very difficult.

• But... university-level students are really 
experienced at changing their 
conceptualisation of number.

• For example: the “Kuhnian revolution” from 
naturals to rationals.



Natural Number Bias
Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.



Natural Number Bias

Which is bigger? 

Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.



Natural Number Bias

Which is bigger? 

Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.

7

8

5

8



Natural Number Bias
Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.



Natural Number Bias

Which is bigger? 
3

34

3

21

Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.



Natural Number Bias

Which is bigger? 
3

34

3

21

Seen as bigger 
because 34 > 21

Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.



Natural Number Bias

Which is bigger? 
3

34

3

21

Seen as bigger 
because 34 > 21

Children (and adults) struggle with fractions, in 
part because of interference from natural 
number knowledge.

We all have 
this bias, but 
(mostly) have 
successfully 
learnt to 
inhibit it
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a b s t r a c t

When school students compare the numerical values of fractions, they have frequently been found to be
biased by the natural numbers involved (e.g., to believe that 1/4 > 1/3 because 4 > 3), thereby consid-
ering fractions componentially as two natural numbers rather than holistically as one number. Adult
studies have suggested that intuitive processes could be the source of this bias, but also that adults are
able to activate holistic rather than componential mental representations of fractions under some cir-
cumstances. We studied expert mathematicians on various types of fraction comparison problems to
gain further evidence for the intuitive character of the bias, and to test how the mental representations
depend on the type of comparison problems. We found that experts still show a tendency to be biased by
natural numbers and do not activate holistic representations when fraction pairs have common nu-
merators or denominators. With fraction pairs without common components, we found no natural
number bias, and holistic representations were more likely. We discuss both findings in relation to each
other, and point out implications for mathematics education.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Amply research has shown that students frequently struggle
with learning of rational numbers in general and with under-
standing the concept of fractions in particular (e.g., Behr,
Wachsmuth, Post, & Lesh, 1984; Iuculano & Butterworth, 2011;
Mazzocco & Devlin, 2008; Sowder, 1988; Stafylidou & Vosniadou,
2004; Vamvakoussi, Christou, Mertens, & Van Dooren, 2011;
Vamvakoussi & Vosniadou, 2004). A common error is to consider
a fraction as two separate natural numbers rather than as one
number. This becomes explicit in fraction comparison problems,
when decisions are based on comparing the components separately
rather than on comparing the holistic fraction values. On such
problems, students are frequently biased by the natural numbers
that make up the fractions (Meert, Grégoire, & Noël, 2010b; Van
Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). For example, they
believe that 1/4 is larger than 1/3 because 4 is larger than 3.

We address three issues that are not sufficiently studied by
previous research. The first one refers to the source of this

“natural number bias” on fraction comparison problems. As the
bias has been found in adults, it has been concluded that intuitive
processes are the source of the bias. This would imply that it is not
possible to completely overcome it, even for people who have a
very deep understanding of fractions, such as expert mathema-
ticians. We therefore studied these people to gain further evi-
dence for the intuitive character of the natural number bias. The
second issue concerns the generalizability of the natural number
bias in fraction comparison. So far, mainly special cases of com-
parison problems, namely fraction pairs with common numera-
tors or common denominators, were used as stimuli, so that it is
unclear whether the bias occurs in fraction comparisons in gen-
eral. The third issue is the question whether fractions can
mentally be represented as integrated wholes rather than com-
ponentially as two natural numbers. This issue is related to the
natural number bias, because it is possible that the bias occurs
only when people use componential representations of fractions
but not when they use holistic representations. Previous studies
have revealed that holistic representations are possible for certain
fractions that people are presumably very familiar with (such as
1/2), but there is very limited evidence that this is also possible
for less well-known fractions. In the following, we elaborate on
the rationales and the available evidence for the three issues
raised here.

* Corresponding author. Arcisstr. 21, 80333 München, Germany. Tel.: þ49 89 289
25396.

E-mail address: andreas.obersteiner@tum.de (A. Obersteiner).
1 Present affiliation.
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Natural Number Bias

• Students who meet cardinality have 
successfully negotiated the shift from naturals 
to integers, from integers to rationals, from 
rationals to reals, and from reals to complex 
numbers.

• They seem to do this by successfully inhibiting 
(not replacing) prior knowledge structures.

• It seems like another change in the meaning of 
“number” shouldn’t be too surprising to them?
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Study 1: Rationale

• We were interested in learning about how 
‘strong’ and ‘weak’ students would approach 
learning about cardinal arithmetic.

• What would confuse them?

• Would they get hung up with aspects of cardinal 
arithmetic that conflict with their prior knowledge 
of arithmetic?



Study 1: Method
• Recruited 20 students: 12 ‘good’ students (scored 

over 70% in their first year set theory module), and 
8 ‘weak’ students (scored less than 60%);

• All had taken a set theory module which introduced 
cardinal numbers (but not cardinal arithmetic);

• Asked them to read an introduction to cardinal 
arithmetic (taken from Stewart & Tall, 1979);

• Recorded their eye-movements as they read;

• Then asked them to complete a comprehension 
test.



Definitions

Bijection. A bijection, or one-to-one correspondence, is a function f : A ! B which

is both injective and surjective. In other words f is a bijection if (i) for every

a1, a2 2 A, f(a1) = f(a2) =) a1 = a2 (injective); and (ii) if f(A) = B, in other

words if for every b 2 B there exists an a 2 A such that f(a) = b (surjective).

Cartesian Product. Let X and Y be sets. Then the Cartesian Product of X and

Y , denoted X ⇥ Y is the set

X ⇥ Y = {(x, y) | x 2 X, y 2 Y }.

So, for example, R2 = R⇥ R = {(x1, x2) | x1, x2 2 R}.

Cardinal Numbers

‘What is infinity?’. When some first-year university students were asked this question

recently, the consensus was ‘something bigger than any natural number’. In a precise

Basic Definitions



Cardinal Arithmetic

Just as we can add, multiply and take powers of finite cardinal numbers, we can

mimic the set-theoretic procedures involved and define corresponding operations on

infinite cardinals. Some, but not all, of the properties of ordinary arithmetic carry

over to cardinal numbers, and it is most instructive to see which ones. First of all the

definitions:

Addition. Given two cardinal numbers ↵, � (finite or infinite), select disjoint sets

A,B such that |A| = ↵, |B| = �. Define ↵ + � to be the cardinal number of

A [B.

Multiplication. If ↵ = |A|, � = |B|, then ↵� = |A⇥ B|.

Powers. If ↵ = |A|, � = |B|, then ↵

� = |AB| where A

B is the set of all functions

from B to A.

The reader should pause briefly and check that when the sets concerned are finite then

this corresponds to the usual arithmetic. In particular, when |A| = m and |B| = n,

then on defining a function f : B ! A, each element b 2 B has m possible choices of

Defined how to 
add, multiply and 
take powers of 

cardinal numbers



We have g(�) = ✓, as required.

(x) The final equality between cardinals follows from the bjiection h : (A ⇥ B)C !

A

C ⇥ B

C given by writing any � : C ! A⇥ B in terms of

�(c) = (�1(c),�2(c)) for all c 2 C,

then by setting h(�) = (�1,�2). Checking the details is left to the reader. ⇤

Now let’s make some explicit calculations with cardinals. Because a countable union

of countable sets is countable, we find that

n+ @0 = @0 + n = @0, for any finite cardinal n,

and @0 + @0 = @0.

This shows us that we have no possibility of defining subtraction of cardinals where

infinite cardinals are involved, for what would @0 � @0 be? According to the above

results it could be any finite cardinal or @0 itself, so subtraction cannot be defined

uniquely so that

@0 � @0 = ↵ () @0 = @0 + ↵

Because the cartesian product of two countable sets is countable, it is easy to deduce

that

n@0 = @0n = @0 for n 2 N

and @0@0 = @0.

It is interesting to calculate 0@0. This turns out to be zero. In fact we have

0� = 0

for each cardinal number �. This is because A = ; =) A ⇥ B = ; for any other

set B, for if A has no elements then there are no ordered pairs (a, b) for a 2 A and

b 2 B. This means that, in terms of cardinal numbers, zero times infinity is zero, no

matter how big the infinite cardinal is.

Example
Calculations
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Eye-Movements
• When viewing static images there are only two 

types of eye-movements:

• Fixations: short (≈200ms) stable period 
where the eye rests on a single point

• Saccades: rapid movements between 
fixations.

• Just & Carpenter’s (1980) eye-mind 
hypothesis: there is a close correlation 
between eye position and visual attention 
position.
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Indicative Measures

• Mean Fixation Duration: a measure of 
processing effort (Just & Carpenter, 1976).

• Dwell Time (total fixation duration): total 
attention on a given area (Hauland, 2003).

• Number of Fixations: more fixations indicates 
less optimal search (Goldberg & Kotval, 1999).

• Large number of saccades between A and B: 
may indicate an attempt to find a connection 
between A and B (Inglis & Alcock, 2012).



Study 1: Analysis

Questions

1. Did the two groups learn different amounts?

2. Were there between-group differences in 
aspects of the text which conflicted with 
existing knowledge?

3. What else differed between the groups?



Preliminaries

• How long did 
the students 
spend reading 
the material?

• Was there 
between-groups 
differences in 
reading times?



Preliminaries

• How long did 
the students 
spend reading 
the material?

• Was there 
between-groups 
differences in 
reading times?

t (17) = 2.327, p = .032
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Q1: Learning Differences

Did the two groups learn different amounts?
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Q1: Learning Differences
t (18) = 3.359, p = .003
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Did the two groups learn different amounts?

Yes, the ‘strong’ group learnt significantly more 
from the text than the weak group.

Q1: Learning Differences



Q2: Counterintuitive Ideas
• Was this difference due to different ways of 

approaching the ‘counterintuitive’ sections of the 
text?

• The conceptual change account suggests that the 
weaker students would find these areas more 
confusing and harder to process than the stronger 
students.

• Traditional way to measure processing difficulty is 
by looking at mean fixation duration on a given 
area (e.g. Just & Carpenter, 1976). 

• Longer mean fixations on a given area mean that it 
was harder to process.
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We have g(�) = ✓, as required.

(x) The final equality between cardinals follows from the bjiection h : (A ⇥ B)C !

A

C ⇥ B

C given by writing any � : C ! A⇥ B in terms of

�(c) = (�1(c),�2(c)) for all c 2 C,

then by setting h(�) = (�1,�2). Checking the details is left to the reader. ⇤

Now let’s make some explicit calculations with cardinals. Because a countable union

of countable sets is countable, we find that

n+ @0 = @0 + n = @0, for any finite cardinal n,

and @0 + @0 = @0.

This shows us that we have no possibility of defining subtraction of cardinals where

infinite cardinals are involved, for what would @0 � @0 be? According to the above

results it could be any finite cardinal or @0 itself, so subtraction cannot be defined
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Q2: Counterintuitive Ideas

• No differences between the groups in 
processing difficulty associated with 
counterintuitive areas.

• (NB. if you control for individual differences in 
overall fixation duration, then there are still no 
differences)

• Also no differences in raw measure of dwell 
time spent studying these areas, or number of 
returns to these areas.



Q2: Counterintuitive Ideas

Was this difference due to different ways of 
approaching the ‘counterintuitive’ sections of the 
text?

No evidence in favour of this hypothesis.

Apparently the two groups found the difficulty of 
these sections to be roughly similar.



Q3: What else?

• If the difficulty was not due to difficulty 
accommodating counterintuitive knowledge, as 
predicted by the conceptual change account, 
why did the weak group learn so much less?

• We looked at where participants focused their 
attention throughout the text.

• Brief highlights here.



Q3: What else?
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asked participants to define what it means to 
say that two sets have the same cardinality.
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sense, this is correct; one of the triumphs of set theory is that the concept of infinity

can be given a clear interpretation. We find not one infinity, but many, a vast hierarchy

of infinities. We can answer a question like ‘How many rational numbers are there?’,

with the surprising reply ‘as many as there are natural numbers’. The most useful

type of question is exemplified by this answer. Rather than ask ‘how many’ elements

there are in a given set, it is much more profitable to compare two sets and ask if

there are as many elements in the two of them. This can be described by saying

that there are ‘the same number of elements’ in sets A and B if there is a bijection

f : A ! B.

Rather than begin with the full hierarchy of infinities, let’s begin with what turns out

to be the smallest of them. The standard set for comparison purposes we’ll take to

be the natural numbers N. It is useful to consider N rather than N0 = {0}[N simply

because a bijection f : N ! B organises the elements of B into a sequence; we can call

f(1) the first element of B using this bijection, f(2) the second, and so on. . . Using

this process we set up a method of counting B. Of course, if we actually say the

elements one after another using this bijection, ‘f(1), f(2), . . .’, we never actually

reach the end, but we do know that given any element b 2 B, then b = f(n) for some
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Definitions

• Of course the f(XY) = f(X)f(Y) person wasn’t 
going to be able to answer this question: they 
didn’t attend to the definition.

• If they didn’t know what |X| = |Y| meant, the 
rest of the chapter would have been jibberish.

• Was this lack of focus on definitions the case 
in general?



Cardinal Arithmetic

Just as we can add, multiply and take powers of finite cardinal numbers, we can

mimic the set-theoretic procedures involved and define corresponding operations on

infinite cardinals. Some, but not all, of the properties of ordinary arithmetic carry

over to cardinal numbers, and it is most instructive to see which ones. First of all the

definitions:

Addition. Given two cardinal numbers ↵, � (finite or infinite), select disjoint sets

A,B such that |A| = ↵, |B| = �. Define ↵ + � to be the cardinal number of

A [B.

Multiplication. If ↵ = |A|, � = |B|, then ↵� = |A⇥ B|.

Powers. If ↵ = |A|, � = |B|, then ↵

� = |AB| where A

B is the set of all functions

from B to A.

The reader should pause briefly and check that when the sets concerned are finite then

this corresponds to the usual arithmetic. In particular, when |A| = m and |B| = n,

then on defining a function f : B ! A, each element b 2 B has m possible choices of
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So if they were not focusing on definitions, what 
were they focusing on?
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Study 1: Summary

• The difference between strong and weak 
students was not related to how they dealt with 
their conflicts with existing knowledge;



Study 1: Summary

• The difference between strong and weak 
students was not related to how they dealt with 
their conflicts with existing knowledge;

• The weak students had extremely 
questionable study strategies:

• They spent around half as long as the strong 
students reading definitions;

• and 50% longer reading examples.



Study 2: Improvement?

• If students have ineffective reading strategies, 
is there a way of improving them?

• Can we simply tell them that they should read 
more effectively?

• We tried the Self-Explanation Training method.



Self-Explanation Effect
Chi et al. (1989) asked students to read material on 
Newtonian mechanics.  Those who did well on 
problems produced more self-explanations: more 
interpretations of what was read that involved 
information and relationships beyond those in text.
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asked to read the text twice.
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Chi et al. (1989) asked students to read material on 
Newtonian mechanics.  Those who did well on 
problems produced more self-explanations: more 
interpretations of what was read that involved 
information and relationships beyond those in text.

Chi et al. (1994) trained students to self-explain then 
had them read a text on the circulatory system.  Those 
with the training learned significantly more than those 
asked to read the text twice.

Ainsworth & Burcham (2007) distinguished explanations 
of different quality.  Comprehension of a biology text 
was related to the types of explanation produced.
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Self-Explanation Training
Our self-explanation training we used was based on that 
by Bielaczyc et al. (1995) and Ainsworth & Burcham 
(2007).  We used on-screen slides that:

• Explain benefits of self-explanation;

• Discuss identifying key ideas, explaining each line in 
terms of previous ideas or previous knowledge 
(definitions);

• Demonstrate with an example proof;

• Distinguish self-explanation from monitoring and 
paraphrasing;

• Provide practice reading attempt.



Method
Participants:

• 76 undergraduates (26 first year, 26 second, 24 
final).

• Self-explanation and control groups (38 each).



Method
Participants:

• 76 undergraduates (26 first year, 26 second, 24 
final).

• Self-explanation and control groups (38 each).

Proof comprehension test:

• Proof that there exist infinitely many triadic primes.

• Comprehension test based on Mejia-Ramos et al.’s 
(2012) framework.

• Question order randomised; Total possible score 28.



Design

Control Activity
(History Reading)

Randomization 
into Groups

Self-Explanation 
Training

Read 
Proof A

Comp 
Test A

Self-Expl 
Group

Control 
Group

Explain Proof Line-
by-Line Using Self-

Expl Training

Explain Proof Line-
by-Line



Explanation Types
Explanations:

• Principle-based: explanation based upon definitions, 
theorems or ideas not explicit in proof.

• Goal-driven: explanation of how structure relates to goal of 
text (e.g. proving the theorem).

• Noticing coherence: “this is because in line 5 we 
introduced...”.
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• False: incorrect or no explanation.

• Paraphrasing: repeat in similar or same words.

• Negative monitoring: “I don’t understand this”.

• Positive monitoring: “this makes sense”.



Explanation Types
Explanations:

• Principle-based: explanation based upon definitions, 
theorems or ideas not explicit in proof.

• Goal-driven: explanation of how structure relates to goal of 
text (e.g. proving the theorem).

• Noticing coherence: “this is because in line 5 we 
introduced...”.

Non-explanations:

• False: incorrect or no explanation.

• Paraphrasing: repeat in similar or same words.

• Negative monitoring: “I don’t understand this”.

• Positive monitoring: “this makes sense”.

This is where the students had 
problems with the cardinality text
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Explanation quality

Approximately twice as many 
explanations; twice as many 
principle-based explanations

Fewer positive and 
negative monitoring 
statements
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* p < .006

*Positive Monitoring

*Negative Monitoring

Paraphrasing
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No Comment
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Main effect of condition:
F(1,76) = 13.315, p < .001



Comprehension
ANCOVA:

• Between-subjects factor (condition: self-
explanation, control).

• Time included as a covariate.
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Comprehension
ANCOVA:

• Between-subjects factor (condition: self-
explanation, control).

• Time included as a covariate.

Significant effect of condition:
F (1, 76) = 13.315, p < .001, �2p = .154

Average scores:

• Self-explanation group: 18.2 (SD=4.2)

• Control group: 14.2 (SD=4.0)

Effect size: very large, d=0.950.



Study 3: Genuine Pedagogy?

Does this technique work in genuine 
pedagogical settings?



Method
Participants:

• 107 first-year undergraduates; Calculus lectures.

• Self-explanation group (53) and control group (54).



Method
Participants:

• 107 first-year undergraduates; Calculus lectures.

• Self-explanation group (53) and control group (54).

Design:

Randomization 
into Groups

Self-Explanation 
Training

Control Activity 
(Study Habits)

Read 
Proof B

Comp 
Test B

Read 
Proof A

Comp 
Test A'

20 Days Later

Self-Explanation 
Training

Control Activity 
(Study Habits) Self-Expl Group

Control Group

Self-Expl Group

Control Group



Proof comprehension
Measure: proof 
comprehension scores 
(out of 10).
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Proof comprehension
Measure: proof 
comprehension scores 
(out of 10).
Significant effect of 
condition (p = .016)
No significant 
effect of time; no 
significant 
interaction

d = .410
d = .350



Study 3: Summary

• Promising indications that self-explanation 
training may provide a solution to the problem 
of inefficient reading strategies.

• Needs testing with other types of mathematical 
texts (i.e. content unrelated to infinity, textbook 
explanations rather than just proofs).
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Overall Summary
• Students find cardinality a difficult topic to 

engage with (very poor performance on our 
comprehension test);

• We found no evidence that this was related to 
conflicts with intuitions of numbers;

• Rather, problem was considerably more 
fundamental: students have highly inefficient 
study strategies which prevents them from 
engaging with these new mathematical ideas;

• Self-explanation training seems a promising 
approach.
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