A few results about topological types -Definitions and bibliography

Definition 1 (ordinal) A set S is an ordinal if and only if it satisfies the two following conditions :

(O₁) every non-empty subset of S has a least element for the relation \in ;¹

(O₂) for all x, if $x \in S$ then $x \subseteq S$.

Definition 2 (inverse image) Let \mathbb{U} and \mathbb{V} be sets; the inverse image of $S \subseteq \mathbb{V}$ under the function $f : \mathbb{U} \to \mathbb{V}$ is the subset $f^{-1}[S]$ of \mathbb{U} defined as follows :

 $f^{-1}[S] := \{ u \in \mathbb{U} ; f(u) \in S \}.$

Definition 3 (topology) Let \mathbb{U} be a set; $\mathcal{T} \subseteq \wp(\mathbb{U})$ is a topology on \mathbb{U} if and only if the three following conditions are satisfied :

 $(T_1) \ \emptyset \in \mathcal{T} \text{ and } \mathbb{U} \in \mathcal{T};$

 (T_2) \mathcal{T} is closed under countable union;

 (T_3) \mathcal{T} is closed under finite intersection.

Definition 4 (base) Let \mathbb{U} be a set and \mathcal{T} a topology on \mathbb{U} ; $\mathcal{B} \subseteq \wp(\mathbb{U})$ is a base for \mathcal{T} if and only if every non-empty element of \mathcal{T} can be written as a union of elements of \mathcal{B} .

Definition 5 (open set, closed set, clopen set) Let \mathbb{U} be a set and \mathcal{T} a topology on \mathbb{U} ; an open set is an element of \mathcal{T} , a closed set is an element of $\{\mathfrak{C}^{O}_{\mathbb{U}} \in \wp(\mathbb{U}); O \in \mathcal{T}\}$ where $\mathfrak{C}^{O}_{\mathbb{U}} := \mathbb{U} \ominus O := \{x \in \mathbb{U}; x \notin O\}$, and a clopen set is an element of $\mathcal{T} \cap \{\mathfrak{C}^{O}_{\mathbb{U}} \in \wp(\mathbb{U}); O \in \mathcal{T}\}$.

Definition 6 (topological space) T is a topological space if and only if T := (U, T) where U is a set and T is a topology on U.

¹In other words, S is well-ordered by the relation \in .

Definition 7 (continuous function) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ be topological spaces; $f : \mathbb{U} \to \mathbb{V}$ is a continuous function if and only if for all $O \in \mathcal{T}_{\mathbb{V}}$, $f^{-1}[O] \in \mathcal{T}_{\mathbb{U}}$.

Definition 8 (homeomorphism) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ be topological spaces; a function $f : \mathbb{U} \to \mathbb{V}$ is a homeomorphism between $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ if and only if the three following conditions are satisfied :

- (H₁) f is a bijection;
- (H_2) f is continuous;
- (H₃) f^{-1} is continuous.

Definition 9 (homeomorphic) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ be topological spaces; $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ are homeomorphic, noted $(\mathbb{U}, \mathcal{T}_{\mathbb{U}}) \cong (\mathbb{V}, \mathcal{T}_{\mathbb{V}})$, if and only if there exists an homeomorphism f between $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$.

Definition 10 (topological type) Let \mathscr{T} be the class of all topological spaces; a topological type is an element of \mathscr{T}/\cong .

Definition 11 (closure) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $S \in \wp(\mathbb{U})$; the closure of S, noted CL(S), is the smallest closed set containing S.

Definition 12 (accumulation point) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $S \in \wp(\mathbb{U})$; $x \in \mathbb{U}$ is an accumulation point of S if and only if $x \in CL(S \ominus \{x\})$.

Definition 13 (derivative) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $S \in \wp(\mathbb{U})$; the derivative of S, noted S', is the set of all accumulation points of S.

Definition 14 (transfinite derivative of degree α) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $S \in \wp(\mathbb{U})$; the transfinite derivative of degree α of S where α is an ordinal, noted $S^{(\alpha)}$, is defined as follows:

$$S^{(\alpha)} = \begin{cases} S & if \ \alpha = 0\\ \left(S^{(\beta)}\right)' & if \ \alpha = \beta + 1\\ \bigcap_{\delta < \lambda} S^{(\delta)} & if \ \alpha = \lambda \text{ with } \lambda \text{ limit} \end{cases}$$

Definition 15 ((topological) neighbourhood) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $x \in \mathbb{U}$; $N \in \wp(\mathbb{U})$ is a neighbourhood of x if and only if there exists $O \in \mathcal{T}_{\mathbb{U}}$ such that $x \in O$ and $O \subseteq N$.

Definition 16 ((topological) neighbourhood system) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $x \in \mathbb{U}$; the neighbourhood system of x, noted $\nu(x)$, is the set of all its neighbourhoods.²

Definition 17 ((topological) neighbourhood base) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $x \in \mathbb{U}$; a neighbourhood base for x, noted b(x), is a subset of $\nu(x)$ such that for all elements $V \in \nu(x)$ there exists $B \in b(x)$ such that $B \subseteq V$.

Definition 18 (dispersed set) A set S is dispersed if and only if it does not contain any set $X \neq \emptyset$ such that $X \subseteq X'$.

Definition 19 (limit complexity, coefficient, purity) Let α be an ordinal whose (unique) Cantor normal form is

$$\omega^{\alpha_0} \cdot k_0 + \ldots + \omega^{\alpha_n} \cdot k_n$$

where $\alpha \geq \alpha_0 > \ldots > \alpha_n$ and $0 < k_i < \omega$ for $0 \leq i \leq n$; the limit complexity of α , noted $lc(\alpha)$, is α_0 ; the coefficient of α , noted $c(\alpha)$, is k_0 ; the purity of α , noted $p(\alpha)$, is defined as follows:

$$\mathbf{p}(\alpha) := \begin{cases} 0 & \text{if } \alpha = \omega^{\mathrm{lc}(\alpha)} \cdot \mathbf{c}(\alpha) \text{ and } \omega^{\mathrm{lc}(\alpha)} \cdot \mathbf{c}(\alpha) \ge \omega \\ \omega^{\alpha_n} \cdot k_n & \text{if } \alpha \neq \omega^{\mathrm{lc}(\alpha)} \cdot \mathbf{c}(\alpha) \text{ or } \omega^{\mathrm{lc}(\alpha)} \cdot \mathbf{c}(\alpha) < \omega. \end{cases}$$

Definition 20 (Cantor-Bendixon rank) Let S be a set, the Cantor-Bendixon rank of $x \in S$ is $CB_S(x) := \sup\{\alpha \in On ; x \in S^{(\alpha)}\}.$

Definition 21 (limit point) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space and $S \subseteq \mathbb{U}$; $x \in \mathbb{U}$ is a limit point of S if and only if every element of $\mathcal{T}_{\mathbb{U}}$ that contains x also contains a point of S that has to be different from x.

Definition 22 (cofinal subset) Let S be a set partially ordered³ by \leq_S and $C \subseteq S$; C is a cofinal subset of S if and only if for all $x \in S$ there exists $a \ y \in C$ such that $x \leq_S y$.

Definition 23 ($\langle C, \alpha \rangle$ -slope) Let η be a limit ordinal⁴, α an arbitrary ordinal and $C \subseteq \eta$ a confinal subset of η ; a function $f : C \to \alpha$ is a $\langle C, \alpha \rangle$ -slope if and only if $CB_{\alpha}(f(\gamma)) = \gamma$ for all $\gamma \in C$.

²A topological neighbourhood system is also called a "topological neighbourhood filter".

³A partial order is a binary relation R over a set P which is reflexive, antisymmetric, and transitive.

⁴A limit ordinal is an ordinal that is neither zero nor successor.

Definition 24 (top) Let η be a limit ordinal, α an arbitrary ordinal, $C \subseteq \eta$ a confinal subset of η and $f : C \to \alpha$ a $\langle C, \alpha \rangle$ -slope; $\tau \in \alpha$ is a top of the slope f if and only if for every $\delta < \eta$, the ordinal τ is a limit point of the set $f_{\delta} := \{f(\gamma); \gamma \in C_{\delta}\}$ where $C_{\delta} := \{x \in C; x > \delta\}.$

Definition 25 (cofinal slope, supremum) Let η be a limit ordinal, α an arbitrary ordinal, $C \subseteq \eta$ a confinal subset of η , $f : C \to \alpha$ a $\langle C, \alpha \rangle$ -slope and $\delta < \eta$; a function $g : \delta \to \sigma_{\delta}$ where $\sigma_{\delta} := \bigcup \{f(\gamma); \gamma \in C_{\delta}\}$ for $C_{\delta} := \{x \in C; x > \delta\}$ is a cofinal slope if and only if g is a constant function whose constant value is the supremum of f.

Definition 26 (\sigma-algebra) Let \mathbb{U} be a set; $S \subseteq \mathscr{P}(\mathbb{U})$ is a σ -algebra on \mathbb{U} if and only if the three following conditions are satisfied :

- (A₁) $\mathcal{S} \neq \emptyset$;
- (A₂) S is closed under complementation;
- (A₃) S is closed under countable union.

Definition 27 (generated σ -algebra) Let \mathbb{U} be a set and $S \subseteq \mathscr{P}(\mathbb{U})$; $\sigma(S)$ is the generated σ -algebra on \mathbb{U} from S if and only if it is the intersection of all the σ -algebras on \mathbb{U} that contain S.

Definition 28 (Borel σ -algebra) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ be a topological space; the Borel σ -algebra on $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$, noted $\mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}})$, is the generated σ -algebra on \mathbb{U} from $\mathcal{T}_{\mathbb{U}}$, that is $\mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}}) = \sigma(\mathcal{T}_{\mathbb{U}})$.

Definition 29 (Borel isomorphism) Let $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ be topological spaces whose respective Borel σ -algebras are $\mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}})$ and $\mathcal{B}_{\mathbb{V}}(\mathcal{T}_{\mathbb{V}})$; f: $\mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}}) \to \mathcal{B}_{\mathbb{V}}(\mathcal{T}_{\mathbb{V}})$ is a Borel isomorphism between $(\mathbb{U}, \mathcal{T}_{\mathbb{U}})$ and $(\mathbb{V}, \mathcal{T}_{\mathbb{V}})$ if and only if the three following conditions are satisfied :

- (B₁) f is a bijection;
- (B₂) for every $U \in \mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}}), f[U] \in \mathcal{B}_{\mathbb{V}}(\mathcal{T}_{\mathbb{V}});$
- (B₃) for every $V \in \mathcal{B}_{\mathbb{V}}(\mathcal{T}_{\mathbb{V}}), f^{-1}[V] \in \mathcal{B}_{\mathbb{U}}(\mathcal{T}_{\mathbb{U}}).$

Bibliography

- Baker John Warren Compact scattered spaces homeomorphic to a ray of ordinals *Fundamenta mathematicae*, volume 76, p. 19-27, 1972.
- Gao Su, Jackson Steve, Kieftenbeld Vincent A classification of ordinals up to Borel isomorphism *Preprint*, p. 01-13, 2006.
- Kieftenbeld Vincent, Löwe Benedikt A classification of ordinal topologies *The ILLC prebublication series*, number 57, p. 01-05, 2006.
- Kuratowski Casimir Topologie I : espaces métrisables, espaces complets (deuxième édition) *Monografie matematyczne*, 1948.
- Mazurkiewicz Stefan, Sierpisńki Wacław Franciszek Contribution à la topologie des ensembles dénombrables *Fundamenta mathematicae*, volume 01, p. 17-27, 1920.