

Available online at www.sciencedirect.com



Annals of Pure and Applied Logic 131 (2005) 287-301

ANNALS OF PURE AND APPLIED LOGIC

www.elsevier.com/locate/apal

# Completeness of S4 with respect to the real line: revisited<sup>\*</sup>

# Guram Bezhanishvili\*, Mai Gehrke

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-0001, USA

Received 1 October 2001; received in revised form 30 November 2003; accepted 3 June 2004 Available online 2 September 2004

Communicated by S.N. Artemov

#### Abstract

We prove that **S4** is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski (Ann. of Math. (2) 45 (1944) 141). We also prove that the same result holds for the bimodal system S4 + S5 + C, which is a strengthening of a 1999 result of Shehtman (J. Appl. Non-Classical Logics 9 (1999) 369). © 2004 Elsevier B.V. All rights reserved.

MSC (1991): 03B45; 06E25; 54C10

Keywords: Modal logic; Topology; Boolean algebras with operators; Completeness

## 1. Introduction

It was shown in McKinsey and Tarski [8] that every finite well-connected topological space is an open image of a metric separable dense-in-itself space. This together with the finite model property of **S4** implies that **S4** is complete with respect to any metric separable dense-in-itself space. Most importantly, it implies that **S4** is complete with respect to the real line  $\mathbb{R}$ . Shehtman [13] strengthened the McKinsey and Tarski result by showing that

\* Corresponding author.

0168-0072/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.apal.2004.06.003

 $<sup>\</sup>stackrel{\text{tr}}{\sim}$  The research described in this publication was made possible in part by Award No. 3303 of the Georgian Research and Development Foundation (GRDF) and the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF).

E-mail addresses: gbezhani@nmsu.edu (G. Bezhanishvili), mgehrke@nmsu.edu (M. Gehrke).

every finite connected space is an open image of a (connected) metric separable densein-itself space. (That every finite connected space is an open image of a Euclidean space was first established in Puckett [11].) As a result, Shehtman obtained that in the language enriched with the universal modality  $\forall$  the complete logic of a connected metric separable dense-in-itself space is the logic S4 + S5 + C, where S4 + S5 is Bennett's logic [2] (being S4 for  $\Box$ , S5 for  $\forall$ , plus the bridge axiom  $\forall \varphi \rightarrow \Box \varphi$ ) and C is the connectedness axiom  $\forall (\Diamond \varphi \rightarrow \Box \varphi) \rightarrow (\forall \varphi \lor \forall \neg \varphi)$ .

The original proof of McKinsey and Tarski was quite complicated. The later version in Rasiowa and Sikorski [12] was not much more accessible. Recently Mints [10] and Aiello et al. [1] obtained simpler model-theoretic proofs of completeness of **S4** with respect to the Cantor space C and the real line  $\mathbb{R}$ . In this paper we give yet another, more topological, proof of completeness of **S4** with respect to  $\mathbb{R}$ . It is not only more accessible than the original proof, but also strengthens both the McKinsey and Tarski, and Shehtman results.

The paper is organized as follows. In Section 2 we recall a one-to-one correspondence between Alexandroff spaces and quasi-ordered sets; we also recall the modal systems S4, S4 + S5 and S4 + S5 + C, and their algebraic semantics. In Section 3 we give a simplified proof that a finite well-connected topological space is an open image of  $\mathbb{R}$ . It follows that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of  $\mathbb{R}$ , which is a strengthening of the McKinsey and Tarski result. As a by-product, we obtain a new proof of completeness of the intuitionistic propositional logic Int with respect to open subsets of  $\mathbb{R}$ , and completeness of the Grzegorczyk logic Grz with respect to Boolean combinations of open subsets of  $\mathbb{R}$ . In Section 4 we give a simplified proof that a finite topological space is an open image of  $\mathbb{R}$  iff it is connected. Consequently, we obtain that S4 + S5 + C is complete with respect to Boolean combinations of countable unions of convex subsets of  $\mathbb{R}$ , which is a strengthening of the Shehtman result. We conclude the paper by mentioning several open problems.

### 2. Preliminaries

#### 2.1. Topology and order

Suppose X is a topological space. For  $A \subseteq X$  we denote by  $\overline{A}$  the closure of A, and by Int(A) the interior of A. We recall that A is *dense* if  $\overline{A} = X$ , and that A is *nowhere dense* or *boundary* if  $Int(A) = \emptyset$ . The definition of closed and open subsets of X is usual. We call a subset of X *clopen* if it is simultaneously closed and open. The space X is called *connected* if  $\emptyset$  and X are the only clopen subsets of X; it is called *well-connected* if there exists a least nonempty closed subset of X. It is obvious that every well-connected space is connected, but the converse is not necessarily true. We call X an *Alexandroff space* if the intersection of any family of open subsets of X is open. Obviously every finite space is an Alexandroff space. For two topological spaces X and Y, a continuous map  $f : X \to Y$  is called *open* if the *f*-image of every open subset of X is an open subset of Y. Thus, f is an open map iff it *preserves* and *reflects* opens.

Suppose X is a nonempty set. A binary relation  $\leq$  on X is called a *quasi-order* if  $\leq$  is reflexive and transitive; if in addition  $\leq$  is antisymmetric, then  $\leq$  is called a *partial order*. If  $\leq$  is a quasi-order on X, then X is called a *quasi-ordered set* or simply a *qoset*; if  $\leq$  is

a partial order, then X is called a *partially ordered set* or simply a *poset*. For two qosets X and Y, an order-preserving map  $f : X \to Y$  is called a *p*-morphism if for every  $x \in X$  and  $y \in Y$ , from  $f(x) \le y$  it follows that there exists  $z \in X$  such that  $x \le z$  and f(z) = y.

Suppose X is a qoset. For  $A \subseteq X$  let  $\uparrow A = \{x \in X : \exists a \in A \text{ with } a \leq x\}$  and  $\downarrow A = \{x \in X : \exists a \in A \text{ with } x \leq a\}$ . We call  $A \subseteq X$  an upset if  $A = \uparrow A$ , and a downset if  $A = \downarrow A$ . For  $x \in X$  let  $C[x] = \{y \in X : x \leq y \text{ and } y \leq x\}$ . We call  $C \subseteq X$  a *cluster* if there is  $x \in X$  such that C = C[x]. We call  $x \in X$  maximal if  $x \leq y$  implies x = y, and quasi-maximal if  $x \leq y$  implies  $y \leq x$ ; similarly, we call  $x \in X$  minimal if  $y \leq x$ implies y = x, and *quasi-minimal* if  $y \le x$  implies  $x \le y$ . If X is a poset, then it is obvious that the notions of maximal and quasi-maximal points, as well as the notions of minimal and quasi-minimal points coincide. We call a cluster C maximal if C = C[x] for some quasi-maximal  $x \in X$ ; a cluster C is called *minimal* if C = C[x] for some quasi-minimal  $x \in X$ . We call  $r \in X$  a root of X if r < x for every  $x \in X$ ; a goset X is called rooted if it has a root r; note that r is not unique: every element of C[r] serves as a root of X. We say that there exists a  $\leq$ -*path* between two points x, y of X if there exists a sequence  $w_1, \ldots, w_n$  of points of X such that  $w_1 = x, w_n = y$ , and either  $w_i \le w_{i+1}$  or  $w_{i+1} \le w_i$ for any  $1 \le i \le n-1$ . We call X a connected component if there is a  $\le$ -path between any two points of X. Note that every rooted qoset is a connected component, but not vice versa.

For a qoset X let  $\tau_{\leq}$  denote the set of upsets of X. It is easy to verify that  $\tau_{\leq}$  is an Alexandroff topology on X. Conversely, if X is a topological space, then we define the *specialization order*  $\leq_{\tau}$  on X by putting  $x \leq_{\tau} y$  iff  $x \in \{y\}$ . It is routine to check that  $\leq_{\tau}$  is a quasi-order on X. Moreover,  $\leq_{\tau}$  is a partial order iff X is a  $T_0$ -space. Now a standard argument shows that  $\leq = \leq_{\tau_{\leq}}$  and that  $\tau \subseteq \tau_{\leq_{\tau}}$ . Furthermore,  $\tau = \tau_{\leq_{\tau}}$  iff  $\tau$  is an Alexandroff topology. This establishes a one-to-one correspondence between qosets and Alexandroff spaces, and between posets and Alexandroff  $T_0$ -spaces. In particular, we obtain a one-to-one correspondence between finite qosets and finite topological spaces, and between finite posets and finite  $T_0$ -spaces. We note that under this correspondence order-preserving maps correspond to continuous maps, and *p*-morphisms correspond to open maps. Moreover, connected spaces correspond to connected components and well-connected spaces correspond to rooted qosets (see, e.g., Aiello et al. [1] for details).

Subsequently, we will not distinguish between Alexandroff spaces and qosets, and between Alexandroff  $T_0$ -spaces and posets. For these spaces we will use interchangeably the notions of open maps and *p*-morphisms, connected spaces and connected components, and well-connected spaces and rooted qosets.

#### 2.2. S4, S4 + S5, and S4 + S5 + C

We recall that **S4** is the least set of formulae of the propositional modal language  $\mathcal{L}$  containing the axioms  $\Box \varphi \rightarrow \varphi$ ,  $\Box \varphi \rightarrow \Box \Box \varphi$ ,  $\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ , and closed under modus ponens  $(\varphi, \varphi \rightarrow \psi/\psi)$ , substitution  $(\varphi(p_1, \ldots, p_n)/\varphi(\psi_1/p_1, \ldots, \psi_n/p_n))$ , and necessitation  $(\varphi/\Box \varphi)$ .

It was shown in McKinsey and Tarski [9] that algebraic models of S4 are closure algebras. We recall that a *closure algebra* is a pair (B, C), where B is a Boolean algebra and

290

 $C: B \to B$  is a function satisfying the following identities: (i)  $a \le Ca$ , (ii) CCa = Ca, (iii)  $C(a \lor b) = Ca \lor Cb$ , and (iv) C0 = 0. We call *C* a *closure operator* on *B*.

To give an example of a closure algebra, let X be a qoset and let  $\mathcal{P}(X)$  denote the powerset of X. It is easy to check that  $\downarrow$  is a closure operator on  $\mathcal{P}(X)$ . Hence,  $(\mathcal{P}(X), \downarrow)$  is a closure algebra. We call  $(\mathcal{P}(X), \downarrow)$  the *closure algebra over the qoset* X. More generally, if X is a topological space, then it is routine to verify that  $(\mathcal{P}(X), \neg)$  is a closure algebra. We call  $(\mathcal{P}(X), \neg)$  the *closure algebra over the topological space* X.

Suppose *X* and *Y* are topological spaces and  $f: X \to Y$  is an open map. Then it is easy to verify that for  $A \subseteq Y$  we have  $f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$ . Therefore,  $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$  is a closure algebra homomorphism. Moreover, if *f* is onto, then  $f^{-1}$  is one-to-one, and hence  $(\mathcal{P}(Y), \overline{\phantom{A}})$  is isomorphic to a subalgebra of  $(\mathcal{P}(X), \overline{\phantom{A}})$ .

- **Theorem 1.** (a) Every closure algebra can be represented as a subalgebra of the closure algebra over a topological space. In fact, every closure algebra can be represented as a subalgebra of the closure algebra over an Alexandroff space, or equivalently, over a qoset.
- (b) If a closure algebra is finite, then it is isomorphic to the closure algebra over a finite space, or equivalently, over a finite qoset.
- (c) A finite closure algebra is subdirectly irreducible iff it is isomorphic to the closure algebra over a finite well-connected space, or equivalently, over a finite rooted qoset.
- (d) S4 is complete with respect to finite subdirectly irreducible closure algebras. Hence, S4 is complete with respect to the closure algebras over finite well-connected spaces, or equivalently, over finite rooted qosets.

**Proof.** In the light of the above correspondence between Alexandroff spaces and qosets, (a) follows from [8, Theorem 2.4] and [6, Theorem 3.14]; (b) follows from [3, Lemma 1]; (c) follows from [4, the paragraph after the Theorem of Duality]; and finally, (d) follows from [8, Theorem 4.16].

Let  $\mathcal{L}(\forall)$  denote the enrichment of  $\mathcal{L}$  by the universal modality  $\forall$ . As usual, the existential modality  $\exists$  is the abbreviation of  $\neg \forall \neg$ . We recall that Bennett's logic **S4** + **S5** is the least set of formulae of  $\mathcal{L}(\forall)$  containing the  $\Box$ -axioms for **S4**, the  $\forall$ -axioms for **S5** (that is  $\forall$ -axioms for **S4** plus the axiom  $\exists \varphi \rightarrow \forall \exists \varphi$ ), the bridge axiom  $\forall \varphi \rightarrow \Box \varphi$ , and closed under modus ponens, substitution,  $\Box$ -necessitation, and  $\forall$ -necessitation ( $\varphi/\forall \varphi$ ).

Algebraic models of **S4** + **S5** are the triples  $(B, C, \exists)$ , where (i) (B, C) is a closure algebra, (ii)  $(B, \exists)$  is a *monadic algebra* (that is  $(B, \exists)$  is a closure algebra satisfying the identity  $\exists - \exists a = -\exists a$ ), and (iii)  $Ca \leq \exists a$ . We call  $(B, C, \exists)$  an (S4 + S5)-algebra.

Examples of (S4 + S5)-algebras can be obtained from the closure algebras over topological spaces. Let X be a topological space. We define  $\exists$  on  $\mathcal{P}(X)$  by setting

$$\exists A = \begin{cases} \emptyset, & \text{if } A = \emptyset \\ X, & \text{otherwise.} \end{cases}$$

Then  $(\mathcal{P}(X), \neg, \exists)$  is an  $(\mathbf{S4} + \mathbf{S5})$ -algebra, called the  $(\mathbf{S4} + \mathbf{S5})$ -algebra over the topological space X. In particular, if X is a qoset, then  $(\mathcal{P}(X), \downarrow, \exists)$  is an  $(\mathbf{S4} + \mathbf{S5})$ -algebra, called the  $(\mathbf{S4} + \mathbf{S5})$ -algebra over the qoset X.

- **Theorem 2.** (a) Every (S4 + S5)-algebra over a topological space is simple (has no proper congruences).
- (b) Every simple (S4 + S5)-algebra can be represented as a subalgebra of the (S4 + S5)algebra over some (Alexandroff) space.
- (c) If a simple (S4 + S5)-algebra is finite, then it is isomorphic to the (S4 + S5)-algebra over a finite space, or equivalently, over a finite goset.
- (d) S4 + S5 is complete with respect to finite simple (S4 + S5)-algebras. Hence, S4 + S5 is complete with respect to the (S4 + S5)-algebras over finite topological spaces, or equivalently, over finite qosets.

**Proof.** For (a) see [5, Lemma 3.1]. For (b) observe that a (S4 + S5)-algebra  $(B, C, \exists)$  is simple iff for every  $a \in B$  we have  $a \neq 0$  implies  $\exists a = 1$ . Now apply Theorem 1(a). (c) follows from (b) and Theorem 1(b). For (d) see [13, Theorem 7] or [5, Theorem 5.9].  $\Box$ 

It was proved in [13, Lemma 8] that the connectedness axiom

 $\mathbf{C} = \forall (\Diamond \varphi \to \Box \varphi) \to (\forall \varphi \lor \forall \neg \varphi)$ 

is valid in the (S4 + S5)-algebra over a topological space X iff X is connected. In particular, C is valid in the (S4 + S5)-algebra over a qoset X iff X is a connected component. Let S4 + S5 + C denote the normal extension of S4 + S5 by the connectedness axiom. We call an (S4 + S5)-algebra  $(B, C, \exists)$  a (S4 + S5 + C)-algebra if the connectedness axiom is valid in  $(B, C, \exists)$ .

**Theorem 3.** S4+S5+C is complete with respect to finite simple (S4+S5+C)-algebras. Hence, S4+S5+C is complete with respect to the (S4+S5+C)-algebras over finite connected spaces, or equivalently, over finite connected components.

**Proof.** See [13, Theorem 10].  $\Box$ 

#### 3. Completeness of S4

We recall that a subset A of  $\mathbb{R}$  is said to be *convex* if  $x, y \in A$  and  $x \leq z \leq y$ imply that  $z \in A$ . We denote by  $C(\mathbb{R})$  the set of convex subsets of  $\mathbb{R}$ , and by  $C^{\infty}(\mathbb{R})$ the set of countable unions of convex subsets of  $\mathbb{R}$ . We also let  $B(C^{\infty}(\mathbb{R}))$  denote the Boolean algebra generated by  $C^{\infty}(\mathbb{R})$ . It is obvious that every open interval of  $\mathbb{R}$  belongs to  $C(\mathbb{R})$ . Now since every open subset of  $\mathbb{R}$  is a countable union of open intervals of  $\mathbb{R}$ , it follows that every open subset of  $\mathbb{R}$ , and hence every closed subset of  $\mathbb{R}$  belongs to  $B(C^{\infty}(\mathbb{R}))$ . Therefore,  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$  is a closure algebra. In fact,  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$  is a proper subalgebra of  $(\mathcal{P}(\mathbb{R}), \overline{\phantom{a}})$ . Our goal is to show that **S4** is complete with respect to  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$ . For this, as follows from Theorem 1, it is sufficient to show that every closure algebra over a finite rooted qoset is isomorphic to a subalgebra of  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$ .

Suppose X is a finite poset. We call  $Y \subseteq X$  a *chain* if for every  $x, y \in Y$  we have  $x \leq y$  or  $y \leq x$ . For  $x \in X$  let d(x) be the number of elements of a maximal chain with the root x; we call d(x) the *depth* of x. Let also  $d(X) = \sup\{d(x) : x \in X\}$ ; we call d(X) the *depth* of X. For  $x, y \in X$  let x < y mean that  $x \leq y$  and  $x \neq y$ . We call y an *immediate successor* of x if x < y and there is no z such that x < z < y. For  $x \in X$  let b(x) be the number of immediate successors of x; we call b(x) the *branching* of x. Let also

 $b(X) = \sup\{b(x) : x \in X\}$ ; we call b(X) the *branching* of X. A finite poset X is called a *tree* if  $\downarrow x$  is a chain for every  $x \in X$ ; if in the tree X we have b(x) = n for every  $x \in X$ , then we call X an *n*-tree.

**Lemma 4.** (a) Every finite rooted poset is a p-morphic image of a finite tree.

- (b) Every tree of branching n and depth m is a p-morphic image of the n-tree of depth m.
- (c) For every finite rooted poset X there exists n such that X is a p-morphic image of a finite n-tree.

**Proof.** For (a) see [7, Proposition 2]; (b) follows from [7, Theorem 1]; finally, (c) follows from (a) and (b).  $\Box$ 

We call a finite qoset X *q*-regular if every cluster of X consists of exactly q elements. We define an equivalence relation  $\sim$  on X by putting  $x \sim y$  iff C[x] = C[y]. Let  $X/\sim$  denote the quotient of X under  $\sim$ , where  $[x] \leq_{\sim} [y]$  if there exist  $x' \in [x]$  and  $y' \in [y]$  such that  $x' \leq y'$ . Obviously  $X/\sim$  is a finite poset, called the *skeleton* of X. We call X a *quasitree* if  $X/\sim$  is a tree; we call X a *quasi-n-tree* if  $X/\sim$  is an *n*-tree; finally, we call X a *quasi-(q, n)-tree* if X is a *q*-regular quasi-*n*-tree. The following lemma is an easy generalization of Lemma 4 to qosets.

**Lemma 5.** For every finite rooted qoset X there exist q, n such that X is a p-morphic image of a finite quasi-(q, n)-tree.

**Proof** (Sketch). Let  $q = \sup\{|C[x]| : x \in X\}$ . Then replacing every cluster of X by a q-element cluster, we get a new q-regular qoset Y. Obviously X is a p-morphic image of Y and  $X/\sim$  is isomorphic to  $Y/\sim$ . From the previous lemma we know that there exist an n-tree  $T_n$  and a p-morphism f from  $T_n$  onto  $Y/\sim$ . We denote by  $T_{q,n}$  the quasi-tree obtained from  $T_n$  by replacing every node t of  $T_n$  by a q-element cluster  $[t] = \{t_1, \ldots, t_q\}$ . Obviously  $T_{q,n}$  is a finite quasi-(q, n)-tree and  $T_n$  is (isomorphic to)  $T_{q,n}/\sim$ . Suppose  $[y] = \{y_1, \ldots, y_q\}$  is an element of  $Y/\sim$  and  $[t] = \{t_1, \ldots, t_q\}$  is an element of  $T_{q,n}/\sim = T_n$ . We define  $h: T_{q,n} \to Y$  by putting  $h(t_i) = y_i$  if f([t]) = [y],  $t_i \in [t]$ , and  $y_i \in [y]$  for  $1 \le i \le q$ . Since  $[h(t_i)] = f([t])$  and f is an onto p-morphism, so is h. So Y is a p-morphic image of  $T_{q,n}$ .  $\Box$ 

**Corollary 6.** S4 is complete with respect to the closure algebras over finite quasi-trees.

**Proof.** It follows from Theorem 1(d) that **S4** is complete with respect to the closure algebras over finite rooted qosets. From Lemma 5 it follows that the closure algebra over a finite rooted qoset is isomorphic to a subalgebra of the closure algebra over some finite quasi-tree. Thus, **S4** is complete with respect to the closure algebras over finite quasi-trees.  $\Box$ 

Now we are in a position to show that finite rooted qosets are open images of  $\mathbb{R}$ . We first show that every finite rooted poset is an open image of  $\mathbb{R}$ , and then extend this result to finite qosets. Let us start by showing that the *n*-tree *T* of depth 2 shown in Fig. 1 is an open image of any bounded interval  $I \subseteq \mathbb{R}$ .



Fig. 1. An *n*-tree of depth 2.

Suppose  $a, b \in \mathbb{R}$ , a < b, I = (a, b), I = [a, b), I = (a, b], or I = [a, b]. We recall that the Cantor set C is constructed inside I by taking out open intervals from I infinitely many times. More precisely, in step 1 of the construction the open interval

$$I_1^1 = \left(a + \frac{b-a}{3}, a + \frac{2(b-a)}{3}\right)$$

is taken out. We denote the remaining closed intervals by  $J_1^1$  and  $J_2^1$ . In step 2 the open intervals

$$I_1^2 = \left(a + \frac{b-a}{3^2}, a + \frac{2(b-a)}{3^2}\right)$$
 and  $I_2^2 = \left(a + \frac{7(b-a)}{3^2}, a + \frac{8(b-a)}{3^2}\right)$ 

are taken out. We denote the remaining closed intervals by  $J_1^2$ ,  $J_2^2$ ,  $J_3^2$ , and  $J_4^2$ . In general, in step *m* the open intervals  $I_1^m, \ldots, I_{2^{m-1}}^m$  are taken out, and the closed intervals  $J_1^m, \ldots, J_{2^m}^m$  remain. We will use the construction of C to obtain *T* as an open image of *I*.

Lemma 7. T is an open image of I.

**Proof.** Define  $f_I^T : I \to T$  by putting

$$f_I^T(x) = \begin{cases} t_k, & \text{if } x \in \bigcup_{m \equiv k \pmod{n}} \bigcup_{p=1}^{2^{m-1}} I_p^m \\ r, & \text{otherwise} \end{cases}.$$

Obviously,  $f_I^T$  is a well-defined onto map. Moreover,

$$(f_I^T)^{-1}(t_k) = \bigcup_{m \equiv k \pmod{n}} \bigcup_{p=1}^{2^{m-1}} I_p^m \text{ and } (f_I^T)^{-1}(r) = \mathcal{C}.$$

Let us show that  $f_I^T$  is open. Since  $\{\emptyset, \{t_1\}, \ldots, \{t_n\}, T\}$  is a family of basic open subsets of T, continuity of  $f_I^T$  is obvious. Suppose U is an open interval in I. If  $U \cap \mathcal{C} = \emptyset$ , then  $f_I^T(U) \subseteq \{t_1, \ldots, t_n\}$ . Thus,  $f_I^T(U)$  is open. If  $U \cap \mathcal{C} \neq \emptyset$ , then there exists  $c \in U \cap \mathcal{C}$ . Since  $c \in \mathcal{C}$  we have  $f_I^T(c) = r$ . From  $c \in U$  it follows that there is  $\varepsilon > 0$  such that  $(c - \varepsilon, c + \varepsilon) \subseteq U$ . We pick m so that  $\frac{b-a}{3^m} < \varepsilon$ . As  $c \in \mathcal{C}$ , there is  $k \in \{1, \ldots, 2^m\}$  such that  $c \in J_k^m$ . Moreover, since the length of  $J_k^m$  is equal to  $\frac{b-a}{3^m}$ , we have that  $J_k^m \subseteq U$ . Therefore, U contains the points removed from  $J_k^m$  in the subsequent iterations in the



Fig. 2. T and  $T_d$ .

construction of C. Thus,  $f_I^T(U) \supseteq \{t_1, \ldots, t_n\}$  and  $f_I^T(U) = T$ . Hence,  $f_I^T(U)$  is open for any open interval U of I. It follows that  $f_I^T$  is an onto open map.  $\Box$ 

**Theorem 8.** Every finite n-tree is an open image of I.

**Proof.** For an arbitrary finite *n*-tree *T* we define a map  $f_I : I \to T$  by induction on the depth of *T*. If the depth of *T* is 1, then *T* is a 1-tree consisting of a single element *t*, and for every  $x \in I$  we set  $f_I(x) = t$ . Then it is obvious that  $f_I$  is onto and open. If the depth of *T* is 2, then for every  $x \in I$  we define  $f_I(x) = f_I^T(x)$ . Then the previous lemma guarantees that  $f_I$  is onto and open. Now suppose the depth of *T* is d + 1,  $d \ge 2$ . Let  $t_1, \ldots, t_m$  ( $m = n^d$ ) be the elements of *T* of depth 2, and let  $T_d$  be the subtree of *T* of all elements of *T* of depth  $\ge 2$  (see Fig. 2).

We note that for each  $k \in \{1, ..., m\}$  the upset  $\uparrow t_k$  is isomorphic to the *n*-tree of depth 2, and that  $T_d$  is the *n*-tree of depth *d*. So by the induction hypothesis there exists an onto open map  $f_I^d : I \to T_d$ . We use  $f_I^d$  to define  $f_I : I \to T$  as follows. For each  $k \in \{1, ..., m\}$  and  $x \in (f_I^d)^{-1}(t_k)$  let  $I_x$  denote the connected component of  $(f_I^d)^{-1}(t_k)$  containing *x*. We set

$$f_I(x) = \begin{cases} f_I^d(x), & \text{if } f_I^d(x) \notin \{t_1, \dots, t_m\} \\ f_{I_x}^{\uparrow t_k}(x), & \text{if } f_I^d(x) = t_k. \end{cases}$$

It is clear that  $f_I$  is a well-defined onto map. To show that  $f_I$  is continuous observe that for  $t \in T - T_d$  there is a unique  $t_k$  such that  $t_k < t$ . Hence, we have

$$f_I^{-1}(t) = \bigcup \{ (f_{I'}^{\uparrow t_k})^{-1}(t) : I' \text{ is a connected component of } (f_I^d)^{-1}(t_k) \}.$$

Also for  $t \in T_d$  we have

$$f_I^{-1}(\uparrow_T t) = (f_I^d)^{-1}(\uparrow_T t).$$

Now since the family  $\{\emptyset\} \cup \{\{t\} : t \in T - T_d\} \cup \{\uparrow_T t : t \in T_d\}$  forms a basis for *T*, we have that  $f_I$  is continuous.

To show that  $f_I$  is open, let U = (c, d) be an open interval in I. If  $U \subseteq I'$  where I' is a connected component of  $(f_I^d)^{-1}(t_k)$  for some k, then  $f_I(U) = f_{I'}^{\uparrow t_k}(U)$ . Therefore,  $f_I(U)$  is open by the previous lemma. Assume  $U \not\subseteq I'$  for any k and I'. We want to show that  $f_I(U) = \uparrow f_I^d(U)$ . If  $t \in T - \uparrow \{t_1, \ldots, t_m\}$ , then  $f_I^{-1}(t) = (f_I^d)^{-1}(t)$ , and thus  $t \in f_I(U)$ 



Fig. 3. A quasi-(q, n)-tree of depth 2.

iff  $t \in f_I^d(U)$ . So we can assume that  $t \in \uparrow t_k$  for some k. Then if  $t \in f_I(U)$ , there is  $x \in U$  with  $f_I(x) = t$ . Hence, by the definition of  $f_I$ , there exists a connected component I' of  $(f_I^d)^{-1}(t_k)$  with  $x \in I'$  and  $f_I(x) = f_{I'}^{\uparrow t_k}(x)$ . Therefore,  $x \in U \cap (f_I^d)^{-1}(t_k)$ , which implies that  $t_k \in f_I^d(U)$ . Hence,  $t \in \uparrow t_k \subseteq \uparrow f_I^d(U)$ . Conversely, if  $t \in \uparrow f_I^d(U)$ , then there exist  $k \in \{1, \ldots, m\}$  and  $x \in U$  with  $f_I^d(x) = t_k \leq t$ . Hence,  $x \in (f_I^d)^{-1}(t_k)$ , and there is a connected component I' = (p, q) of  $(f_I^d)^{-1}(t_k)$  containing x. Since  $U \cap I' \neq \emptyset$  and by assumption  $U \not\subseteq I'$ , we have that  $U \cap I'$  is either (p, d) or (c, q). As both (p, d) and (c, q) must intersect the Cantor set constructed in I' and  $f_{I'}^{\uparrow t_k}$  is open, we have  $f_I(U) \supseteq f_I(U \cap I') = f_{I'}^{\uparrow t_k}(U \cap I') = \uparrow t_k$ . It follows that  $t \in \uparrow t_k \subseteq f_I(U)$ . Therefore,  $f_I(U) = \uparrow f_I^d(U)$ , and so  $f_I(U)$  is open. Thus,  $f_I$  is an onto open map, implying that T is an open image of I.  $\Box$ 

**Corollary 9.** Every finite rooted poset, or equivalently, every finite well-connected  $T_0$ -space is an open image of  $\mathbb{R}$ .

**Proof.** It follows from Lemma 4 and Theorem 8 that every finite rooted poset is an open image of any bounded interval  $I \subseteq \mathbb{R}$ . In particular, if *I* is open, then *I* is homeomorphic to  $\mathbb{R}$ , and so the corollary follows.  $\Box$ 

**Remark 10.** It follows from Corollary 9 that the Heyting algebra of upsets of a finite rooted poset is isomorphic to a subalgebra of the Heyting algebra  $\mathcal{O}(\mathbb{R})$  of open subsets of  $\mathbb{R}$ . Hence, every finite subdirectly irreducible Heyting algebra is isomorphic to a subalgebra of  $\mathcal{O}(\mathbb{R})$ . This together with the finite model property of the intuitionistic propositional logic **Int** gives a new proof of completeness of **Int** with respect to  $\mathcal{O}(\mathbb{R})$ , a fact first established by Tarski [14] back in 1938. Now, applying the Blok–Esakia theorem, we obtain that the Grzegorczyk modal system  $\mathbf{Grz} = \mathbf{S4} + \Box(\Box(\varphi \to \Box\varphi) \to \varphi) \to \varphi$  is complete with respect to the Boolean closure  $B(\mathcal{O}(\mathbb{R}))$  of  $\mathcal{O}(\mathbb{R})$ .

We are now in a position to expand on Corollary 9 and show that finite rooted qosets are open images of  $\mathbb{R}$ . We start by showing that the quasi-(q, n)-tree Q of depth 2 shown in Fig. 3 is an open image of I.

**Lemma 11.** If X has a countable basis and every countable subset of X is boundary, then for any natural number n there exist disjoint dense boundary subsets  $A_1, \ldots, A_n$  of X such that  $X = \bigcup_{i=1}^n A_i$ .

**Proof.** Suppose  $\{B_i\}_{i=1}^{\infty}$  is a countable basis of *X*. Since every countable subset of *X* is boundary, each  $B_i$  is uncountable. We pick from each  $B_i$  a point  $x_i^1$  and set  $A_1 = \{x_i^1\}_{i=1}^{\infty}$ . Since  $A_1$  is countable, each  $B_i - A_1$  is uncountable. So we pick from each  $B_i - A_1$  a point  $x_i^2$  and set  $A_2 = \{x_i^2\}_{i=1}^{\infty}$ . We repeat the same construction for each  $B_i - (A_1 \cup A_2)$  to obtain  $A_3$ . After repeating the construction n - 1 times we obtain n - 1 many sets  $A_1, \ldots, A_{n-1}$ . Finally, we set  $A_n = X - \bigcup_{i=1}^{n-1} A_i$ . It is clear that different  $A_i$ 's are disjoint from each other and that  $X = \bigcup_{i=1}^{n} A_i$ . Moreover, each  $A_i$  contains at least one point from every basic open set. Hence, each  $A_i$  is dense. Furthermore, no basic open set is a subset of any  $A_i$ . Therefore, every  $A_i$  is boundary.  $\Box$ 

Lemma 12. Q is an open image of I.

**Proof.** We denote the least cluster of Q by r and its elements by  $r_1, \ldots, r_q$ . Also for  $1 \le i \le n$  we denote the *i*-th maximal cluster of Q by  $t^i$  and its elements by  $t_1^i, \ldots, t_q^i$ . Since the Cantor set C satisfies the conditions of Lemma 11, it can be divided into q-many disjoint dense boundary subsets  $C_1, \ldots, C_q$ . Also each  $I_p^m$  ( $1 \le p \le 2^{m-1}, m \in \omega$ ) satisfies the conditions of Lemma 11, and so each  $I_p^m$  can be divided into q-many disjoint dense boundary subsets  $(I_p^m)^1, \ldots, (I_p^m)^q$ . Suppose  $1 \le k \le q$ . We define  $f_I^Q : I \to Q$  by putting

$$f_I^{\mathcal{Q}}(x) = \begin{cases} t_k^i, & \text{if } x \in \bigcup_{m \equiv i \pmod{n}} \bigcup_{p=1}^{2^{m-1}} (I_p^m)^k \\ r_k, & \text{if } x \in \mathcal{C}_k \end{cases}.$$

It is clear that  $f_I^Q$  is a well-defined onto map. Similar to Lemma 7 we have

$$(f_I^Q)^{-1}(t^i) = \bigcup_{m \equiv i \pmod{n}} \bigcup_{p=1}^{2^{m-1}} I_p^m \text{ and } (f_I^Q)^{-1}(r) = \mathcal{C}.$$

Hence,  $f_I^Q$  is continuous. To show that  $f_I^Q$  is open let U be an open interval in I. If  $U \cap C = \emptyset$ , then  $f_I^Q(U) \subseteq \bigcup_{i=1}^n t^i$ . Moreover, since  $(I_p^m)^1, \ldots, (I_p^m)^q$  partition  $I_p^m$  into q-many disjoint dense boundary subsets,  $U \cap I_p^m \neq \emptyset$  implies  $U \cap (I_p^m)^k \neq \emptyset$  for every  $k \in \{1, \ldots, q\}$ . Hence, if  $f_I^Q(U)$  contains an element of a cluster  $t^i$ , it contains the whole cluster. Thus,  $f_I^Q(U)$  is open. Now suppose  $U \cap C \neq \emptyset$ . Since  $C_1, \ldots, C_q$  partition C into q-many disjoint dense boundary subsets,  $U \cap C_k \neq \emptyset$  for every  $k \in \{1, \ldots, q\}$ . Hence,  $r \subseteq f_I^Q(U)$ . Moreover, the same argument as in the proof of Lemma 7 guarantees that every point greater than points in r also belongs to  $f_I^Q(U)$ . Thus  $f_I^Q(U) = Q$ , implying that  $f_I^Q$  is an onto open map.  $\Box$ 

**Theorem 13.** Every finite quasi-(q, n)-tree is an open image of I.

**Proof.** This follows along the same lines as the proof of Theorem 8 but is based on Lemma 12 instead of Lemma 7.  $\Box$ 

**Corollary 14.** Every finite rooted qoset, or equivalently, every finite well-connected space is an open image of  $\mathbb{R}$ .

**Proof.** This follows along the same lines as the proof of Corollary 9 but is based on Lemma 5 and Theorem 13 instead of Lemma 4 and Theorem 8.  $\Box$ 

# **Theorem 15.** S4 is complete with respect to $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$ .

**Proof.** It is sufficient to show that the closure algebra over a quasi-(q, n)-tree is isomorphic to a subalgebra of  $(B(C^{\infty}(\mathbb{R})), \overline{})$ . So let X be a quasi-(q, n)-tree and I be a bounded interval of  $\mathbb{R}$ . We denote by C the Cantor set constructed inside I, and by  $C_1, \ldots, C_q$  disjoint dense boundary subsets of C constructed in Lemma 11. By Theorem 13 there exists an onto open map  $f_I : I \to X$ . We show that for every  $x \in X$  we have  $(f_I)^{-1}(x) \in B(C^{\infty}(I))$ . If x is a quasi-minimal point of X, then by Lemma 12  $(f_I)^{-1}(x) = C_k$  for some  $k \in \{1, \dots, q\}$ . From the proof of Lemma 11 it follows that either  $\mathcal{C}_k$  or  $\mathcal{C} - \mathcal{C}_k$  is a countable subset of I. In either case we have  $(f_I)^{-1}(x) \in B(\mathcal{C}^{\infty}(I))$ . Now suppose x is neither a quasi-minimal nor a quasi-maximal point of X. Then by the proof of Theorem 13, which follows along the same lines as the proof of Theorem 8,  $(f_I)^{-1}(x)$  is a countable union of the sets  $\mathcal{C}_k^{I'}$ , where each  $\mathcal{C}_k^{I'}$  is a dense boundary subset of the Cantor set  $\mathcal{C}^{I'}$  constructed inside some open interval I' of I. Let U denote the (countable) union of these open intervals. Then by Lemma 11  $(f_I)^{-1}(x)$  or  $U - (f_I)^{-1}(x)$  is countable. Thus,  $(f_I)^{-1}(x) \in B(C^{\infty}(I))$ . Finally, if x is a quasi-maximal point of X, then  $(f_I)^{-1}(x) =$  $\bigcup_{m \equiv i \pmod{n}} \bigcup_{p=1}^{2^{m-1}} (I_p^m)^k \text{ for some } k \in \{1, \dots, q\}, \text{ where each } (I_p^m)^k \text{ is a dense boundary subset of the interval } I_p^m \text{ constructed inside some open interval of } I. \text{ Let } U \text{ denote the } I$ (countable) union of these open intervals. Then the same argument as above guarantees that  $(f_I)^{-1}(x)$  or  $U - (f_I)^{-1}(x)$  is countable. Therefore,  $(f_I)^{-1}(x) \in B(C^{\infty}(I))$ . Thus, the closure algebra over a quasi-(q, n)-tree is isomorphic to a subalgebra of  $(B(C^{\infty}(I)), \overline{})$ . Now if I is an open interval, then I is homeomorphic to  $\mathbb{R}$ . Hence, the closure algebra over a quasi-(q, n)-tree is isomorphic to a subalgebra of  $(B(C^{\infty}(\mathbb{R})), \overline{})$ , and so S4 is complete with respect to  $(B(C^{\infty}(\mathbb{R})), \overline{})$ .  $\Box$ 

#### 4. Completeness of S4 + S5 + C

In this section we show that S4 + S5 + C is complete with respect to the algebra  $(B(C^{\infty}(\mathbb{R})), \overline{}, \exists)$ . For this, by Theorem 3, it is sufficient to construct an open map from  $\mathbb{R}$  onto every finite connected component X such that for every  $x \in X$  we have  $f^{-1}(x) \in B(C^{\infty}(\mathbb{R}))$ .

Suppose  $T_1, \ldots, T_n$  are finite trees (of branching  $\geq 2$ ). Let  $t_i^l$  and  $t_i^r$  denote two distinct maximal nodes of  $T_i$ . Consider the disjoint union  $\bigsqcup_{i=1}^n T_i$ , and identify  $t_{i-1}^r$  with  $t_i^l$  and  $t_i^r$  with  $t_{i+1}^l$ . We call this construction the *tree sum* of  $T_1, \ldots, T_n$  and denote it by  $\bigoplus_{i=1}^n T_i$  (see Fig. 4).

We can generalize this construction to quasi-trees. Suppose  $Q_1, \ldots, Q_n$  are finite q-regular quasi-trees (of branching  $\geq 2$ ). Let  $C_i^l$  and  $C_i^r$  denote two distinct maximal clusters of  $Q_i$ . Consider the disjoint union  $\bigsqcup_{i=1}^n Q_i$ , and identify  $C_{i-1}^r$  with  $C_i^l$  and  $C_i^r$  with  $C_{i+1}^l$ . We call this construction the *regular quasi-tree sum* of  $Q_1, \ldots, Q_n$  and denote it by  $\bigoplus_{i=1}^n Q_i$ .

Lemma 16 (Compare with [13, Lemma 13]).

G. Bezhanishvili, M. Gehrke / Annals of Pure and Applied Logic 131 (2005) 287-301



Fig. 4. Construction of  $\bigoplus_{i=1}^{n} T_i$  from  $T_1, \ldots, T_n$ .

- (a) For every finite partially ordered connected component X there exist trees T<sub>1</sub>,..., T<sub>n</sub> such that X is a p-morphic image of ⊕<sub>i=1</sub><sup>n</sup> T<sub>i</sub>.
  (b) For every finite connected component X there exist q-regular quasi-trees Q<sub>1</sub>,..., Q<sub>n</sub>
- (b) For every finite connected component X there exist q-regular quasi-trees Q<sub>1</sub>,..., Q<sub>n</sub> such that X is a p-morphic image of ⊕<sup>n</sup><sub>i=1</sub> Q<sub>i</sub>.

**Proof.** (a) follows from (b) and the fact that the regular quasi-tree sum of trees is in fact their tree sum.

(b) Suppose X is a finite connected component. Let  $C_1, \ldots, C_n$  denote minimal clusters of X. Consider  $(\uparrow C_1, \leq_1), \ldots, (\uparrow C_n, \leq_n)$ , where  $\leq_i$  is the restriction of  $\leq$  to  $\uparrow C_i$ . Obviously each  $(\uparrow C_i, \leq_i)$  is a finite rooted qoset and  $\bigcup_{i=1}^n C_i = X$ . As follows from Lemma 5, for each  $(\uparrow C_i, \leq_i)$  there exist  $q_i, m_i$  such that  $(\uparrow C_i, \leq_i)$  is a *p*-morphic image of a finite quasi- $(q_i, m_i)$ -tree. Let  $q = \sup\{q_1, \ldots, q_n\}$ , and consider quasi- $(q, m_i)$ -trees  $Q_1, \ldots, Q_n$ . Obviously for each *i* there exists a *p*-morphism  $f_i$  from  $Q_i$  onto  $(\uparrow C_i, \leq_i)$ . Also note that for each *i* there exists a maximal cluster *C* of *X* such that *C* is a subset of both  $\uparrow C_{i-1}$  and  $\uparrow C_i$ . Since  $f_{i-1}$  is a *p*-morphism, there exists a maximal cluster  $D_{i-1}^l$  of  $Q_i$  such that  $f_i(D_i^l) = C$ . We form  $\bigoplus_{i=1}^n Q_i$  by identifying  $D_{i-1}^r$  with  $D_i^l$  and  $D_i^r$  with  $D_{i+1}^l$ . Now define  $f : \bigoplus_{i=1}^n Q_i \to X$  by putting  $f(t) = f_i(t)$  for  $t \in Q_i$ . It is routine to check that f is well defined and that it is an onto *p*-morphism.  $\Box$ 

**Theorem 17.** *The tree sum of finitely many finite trees is an open image of*  $\mathbb{R}$ *.* 

**Proof.** Suppose  $T_1, \ldots, T_n$  are finite trees. Consider  $\bigoplus_{k=1}^n T_k$ . For  $2 \le k \le n-1$  let  $t_k^l$  and  $t_k^r$  denote the maximal nodes of  $T_k$  which got identified with the corresponding nodes



Fig. 5. The maps  $f_{I_k}$ .

 $t_{k-1}^r$  of  $T_{k-1}$  and  $t_{k+1}^l$  of  $T_{k+1}$ , respectively. Also let  $I_1 = (0, 1]$ ,  $I_k = [2k - 2, 2k - 1]$  for  $k \in \{2, ..., n-1\}$ , and  $I_n = [2n - 2, 2n - 1)$ . From Theorem 8 it follows that for each  $I_k$ there exists an onto open map  $f_{I_k}: I_k \to T_k$  (see Fig. 5).

We define  $f: (0, 2n-1) \rightarrow \bigoplus_{k=1}^{n} T_k$  by putting

$$f(x) = \begin{cases} f_{I_k}(x), & \text{if } x \in I_k \\ t_k^r, & \text{if } x \in (2k-1, 2k) \\ f_{I_n}(x), & \text{if } x \in I_n \end{cases}$$

where  $k \in \{1, ..., n-1\}$ . It is obvious that f is a well-defined onto map. For  $t \in T_k$ observe that if  $t_k^l, t_k^r \notin \uparrow t$ , then

$$f^{-1}(\uparrow t) = f_{I_k}^{-1}(\uparrow t),$$

if  $t_k^l \in \uparrow t$  and  $t_k^r \notin \uparrow t$ , then

$$f^{-1}(\uparrow t) = f^{-1}_{I_{k-1}}(t^r_{k-1}) \cup (2k-3, 2k-2) \cup f^{-1}_{I_k}(\uparrow t),$$

if  $t_k^l \notin \uparrow t$  and  $t_k^r \in \uparrow t$ , then

$$f^{-1}(\uparrow t) = f_{I_k}^{-1}(\uparrow t) \cup (2k - 1, 2k) \cup f_{I_{k+1}}^{-1}(t_{k+1}^l),$$

and finally, if  $t_k^l, t_k^r \in \uparrow t$ , then

$$f^{-1}(\uparrow t) = f^{-1}_{I_{k-1}}(t^r_{k-1}) \cup (2k-3, 2k-2) \cup f^{-1}_{I_k}(\uparrow t) \cup (2k-1, 2k) \cup f^{-1}_{I_{k+1}}(t^l_{k+1}).$$

Hence, f is continuous. Moreover, for an open interval  $U \subseteq (0, 2n - 1)$ , if  $U \subseteq I_k$ , then  $f(U) = f_{I_k}(U)$ ; and if  $U \subseteq (2k - 1, 2k)$ , then  $f(U) = \{t_k^r\}$ . In either case f(U) is open in  $\bigoplus_{k=1}^{n} T_k$ . Now every open interval  $U \subseteq (0, 2n-1)$  is the union  $U = U_1 \cup \ldots \cup U_{2n-1}$ , where  $U_{2k} = U \cap (2k-1, 2k)$  for  $k = 1, \ldots, n-1$ , and  $U_{2k+1} = U \cap I_{k+1}$  for

k = 0, ..., n - 1. Thus,  $f(U) = f(U_1) \cup ... \cup f(U_{2n-1})$ , and so f(U) is an open set in  $\bigoplus_{k=1}^{n} T_k$ . Hence, f is an onto open map, implying that  $\bigoplus_{k=1}^{n} T_k$  is an open image of (0, 2n - 1). Since (0, 2n - 1) is homeomorphic to  $\mathbb{R}$ , we obtain that  $\bigoplus_{k=1}^{n} T_k$  is an open image of  $\mathbb{R}$ .  $\Box$ 

**Corollary 18.** A finite  $T_0$ -space is an open image of  $\mathbb{R}$  iff it is connected.

**Proof.** Since finite connected  $T_0$ -spaces correspond to finite connected partially ordered components, it follows from Lemma 16 and Theorem 17 that every finite connected  $T_0$ -space is an open image of  $\mathbb{R}$ . Conversely, since  $\mathbb{R}$  is connected and open (even continuous) images of connected spaces are connected, finite  $T_0$  images of  $\mathbb{R}$  are connected.  $\Box$ 

**Theorem 19.** *The regular quasi-tree sum of finitely many finite q-regular quasi-trees is an open image of*  $\mathbb{R}$ *.* 

**Proof.** This follows along the same lines as the proof of Theorem 17 but is based on Theorem 13 instead of Theorem 8. In addition, according to Lemma 11, for k = 1, ..., n - 1 we divide each interval (2k - 1, 2k) into q-many disjoint dense boundary subsets  $A_1^k, ..., A_q^k$  and define  $f : (0, 2n - 1) \rightarrow \bigoplus_{k=1}^n Q_k$  by putting

$$f(x) = \begin{cases} f_{I_k}(x), & \text{if } x \in I_k \\ (t_k^r)_i, & \text{if } x \in A_i^k \\ f_{I_n}(x), & \text{if } x \in I_n \end{cases}$$

300

where  $(t_k^r)_i$  is the *i*-th element of  $C_k^r$  and  $k \in \{1, ..., n-1\}$ . As a result we obtain that  $\bigoplus_{k=1}^n Q_k$  is an open image of (0, 2n-1), and so  $\bigoplus_{k=1}^n Q_k$  is an open image of  $\mathbb{R}$ .  $\Box$ 

**Corollary 20.** A finite topological space is an open image of  $\mathbb{R}$  iff it is connected.

**Proof.** This follows along the same lines as the proof of Corollary 18 but is based on Theorem 19 instead of Theorem 17.  $\Box$ 

**Theorem 21.** S4 + S5 + C is complete with respect to  $(B(C^{\infty}(\mathbb{R})), \overline{}, \exists)$ .

**Proof.** Suppose  $Q_1, \ldots, Q_n$  are arbitrary *q*-regular quasi-trees. It is sufficient to show that the  $(\mathbf{S4} + \mathbf{S5} + \mathbf{C})$ -algebra over the regular quasi-tree sum  $\bigoplus_{k=1}^{n} Q_k$  is isomorphic to a subalgebra of  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}}, \exists)$ . The proof of Theorem 15 implies that for each  $Q_k$  there exists  $I_k = [2k - 2, 2k - 1]$  and an onto open map  $f_k : I_k \to Q_k$  such that for every  $t \in Q_k$  we have  $f_k^{-1}(t) \in B(C^{\infty}(I_k))$ . It follows from the proof of Theorem 19 that there exists an onto open map  $f : (0, 2n - 1) \to \bigoplus_{k=1}^{n} Q_k$ . If  $t \in Q_k$  does not belong to either  $C_k^l$  or  $C_k^r$ , then  $f^{-1}(t) = f_k^{-1}(t)$ , and so  $f^{-1}(t) \in B(C^{\infty}(0, 2n - 1))$ . If  $t \in C_k^l$ , then  $f^{-1}(t)$  is the union of  $f_k^{-1}(t) \cup f_{k-1}^{-1}(t)$  with a disjoint dense boundary subset of (2k - 3, 2k - 2) constructed in Theorem 19; and if  $t \in C_k^r$ , then  $f^{-1}(t)$  is the union of  $f_k^{-1}(t) \cup f_{k-1}^{-1}(t) \in B(C^{\infty}(0, 2n - 1))$ . Therefore,  $f^{-1}(t) \in B(C^{\infty}(0, 2n - 1))$  for every  $t \in \bigoplus_{k=1}^{n} Q_k$ . Thus, the  $(\mathbf{S4} + \mathbf{S5} + \mathbf{C})$ -algebra over  $\bigoplus_{k=1}^{n} Q_k$  is isomorphic to a subalgebra of  $(B(C^{\infty}(\mathbb{R}), \overline{\phantom{a}}, \exists)$ . It follows that  $\mathbf{S4} + \mathbf{S5} + \mathbf{C}$  is complete with respect to  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}}, \exists)$ .

#### 5. Conclusions

In this paper we proved that S4 is complete with respect to the closure algebra  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$ . It follows that S4 is complete with respect to any closure algebra containing  $(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}})$  and contained in  $(\mathcal{P}(\mathbb{R})), \overline{\phantom{a}})$ . One closure algebra in the interval  $[(B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}}), (\mathcal{P}(\mathbb{R})), \overline{\phantom{a}})]$  deserves special mention. Let  $\mathfrak{B}(\mathbb{R})$  denote the Boolean algebra of Borel sets over open subsets of  $\mathbb{R}$ ; that is  $\mathfrak{B}(\mathbb{R})$  is the countably complete Boolean algebra countably generated by  $\mathcal{O}(\mathbb{R})$ . It is obvious that  $B(C^{\infty}(\mathbb{R})) \subseteq \mathfrak{B}(\mathbb{R}) \subseteq \mathcal{P}(\mathbb{R})$ . In fact, both of the inclusions are proper. As a result we obtain that S4 is complete with respect to the closure algebra  $(\mathfrak{B}(\mathbb{R}), \overline{\phantom{a}})$ .

In Remark 10 we pointed out that the modal system **Grz** is complete with respect to the closure algebra  $(\mathcal{B}(\mathcal{O}(\mathbb{R})), \overline{\phantom{a}})$ . It still remains an open problem to classify the complete logics of the closure algebras in between  $(\mathcal{B}(\mathcal{O}(\mathbb{R})), \overline{\phantom{a}})$  and  $(\mathcal{B}(\mathcal{C}^{\infty}(\mathbb{R})), \overline{\phantom{a}})$ .

In the language  $\mathcal{L}(\forall)$  a natural extension of **Grz** is the bimodal system **Grz** + **S5** + **C**. However, it remains an open problem whether **Grz** + **S5** + **C** has the finite model property. Therefore, it is still an open problem whether **Grz** + **S5** + **C** is complete with respect to  $(B(\mathcal{O}(\mathbb{R})), \overline{-}, \exists)$ .

Let  $B(C(\mathbb{R}))$  denote the Boolean algebra generated by  $C(\mathbb{R})$ . It was proved in Aiello et al. [1] that the complete logic of  $(B(C(\mathbb{R})), \overline{\phantom{a}})$  is the complete logic of the closure algebra over the 2-tree of depth 2. This result was extended to the bimodal language  $\mathcal{L}(\forall)$  in van Benthem et al. [15]. It still remains an open problem to classify the complete logics of the closure algebras in the interval  $[(B(C(\mathbb{R})), \overline{\phantom{a}}), (B(\mathcal{O}(\mathbb{R})), \overline{\phantom{a}})]$ , as well as the bimodal logics of the (S4 + S5 + C)-algebras in the interval  $[(B(C(\mathbb{R})), \overline{\phantom{a}}, \exists), (B(C^{\infty}(\mathbb{R})), \overline{\phantom{a}}, \exists)]$ .

#### References

- M. Aiello, J. van Benthem, G. Bezhanishvili, Reasoning about space: the modal way, J. Logic Comput. 13 (6) (2003) 889–920.
- [2] B. Bennett, Modal logics for qualitative spatial reasoning, J. IGPL 4 (1) (1996) 23-45.
- [3] M.A.E. Dummett, E.J. Lemmon, Modal logics between S4 and S5, Z. Math. Logik Grundlagen Math. 5 (1959) 250–264.
- [4] L. Esakia, V. Meskhi, Five critical modal systems, Theoria 43 (1) (1977) 52-60.
- [5] V. Goranko, S. Passy, Using the universal modality: gains and questions, J. Logic Comput. 2 (1) (1992) 5–30.
- [6] B. Jónsson, A. Tarski, Boolean algebras with operators. I, Amer. J. Math. 73 (1951) 891–939.
- [7] R.E. Kirk, A characterization of the classes of finite tree frames which are adequate for the intuitionistic logic, Z. Math. Logik Grundlag. Math. 26 (6) (1980) 497–501.
- [8] J.C.C. McKinsey, A. Tarski, The algebra of topology, Ann. of Math. (2) 45 (1944) 141-191.
- [9] J.C.C. McKinsey, A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, J. Symbolic Logic 13 (1948) 1–15.
- [10] G. Mints, A completeness proof for propositional S4 in cantor space, in: E. Orlowska (Ed.), Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, Physica-Verlag, Heidelberg, 1998.
- [11] W.T. Puckett, A problem in connected finite closure algebras, Duke Math. J. 14 (1947) 289–296.
- [12] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963.
- [13] V. Shehtman, "Everywhere" and "here", J. Appl. Non-Classical Logics 9 (2-3) (1999) 369-379.
- [14] A. Tarski, Der Aussagenkalkül und die Topologie, Fund. Math. 31 (1938) 103-134.
- [15] J. van Benthem, G. Bezhanishvili, M. Gehrke, Euclidean hierarchy in modal logic, Studia Logica 75 (2003) 327–345.