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Problem of induction

Past observations do not entail anything about future 
observations.

q = 1

q = 0

Rather dramatically, there is no justification for 
predictions from science or common sense.

et = 101000010101010000 ?
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Underdetermination

Past observations do not entail anything about the 
structure underlying the observations either.

Limited stocks of data are always consistent with a 
large number of distinct scientific theories.

observable unobservable

Q B

A

C
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Probabilistic solution?

Perhaps we can derive probabilistic predictions on the 
observations from past observations.

p (q=0 | et ) = (1 - α)

p (q=1 | et ) = α

For a solution the predictions need only be comparative, 
for example α < 1/2.

et = 101000010101010000  
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Carnapian logic

For Carnap, probabilistic solutions can be based solely 
on the choice of an observation language.

Specifically, he took relative frequencies as the basis 
for predictions. Such predictions are called 
exchangeable.

et = 101000010101010000

e’
t = 000000000000111111

p (q=1 | et ) = α
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Carnapian logic

Using some further assumptions on symmetry and 
inductive relevance, Carnap derived the rule cλ :
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Parameter λ determines how fast predictions change 
from 1/2 to the observed relative frequency tq / t.
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Implicit assumptions

Many procedures in classical statistics have the 
same implicit character.

In the Carnapian picture, inductive assumptions are 
part of the logical famework.

et = 101000010101010000

predictions p (q | et )  =  cλ (et , q) 

rule with implicit inductive assumption
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A logic of induction

The following aims to improve on this framework in two 
ways.

• The inference rule that brings us from 
observations to predictions must not be carrying 
implicit assumptions.

• Inductive logic must provide the tools for choosing 
the assumptions that underly the predictions, the 
so-called projectability assumptions.
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Bayesian logic

The likelihood principle provides a neutral way of 
adapting probability assignments to observations.

inductive assumptions

Statistical inference can in this way be cast in a 
logical form. Assumptions can be made explicit.

et = 101000010101010000

predictions p (q | et )  =  cλ (et , q) 

likelihood principle
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Observations

Observations are represented as sets of infinite 
sequences of binary observations, e.g., e = 101000010...

2Ω
e .

Every point in the rectangle represents a separate 
infinite sequence.

e’ .
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Cylindrical algebra

2Ω
Q1:1

The observation of a 0 at time 2 is the set of all those 
sequences e that have a 0 at position 2, denoted Q2:0.

Similarly, the finite sequence e2=10 is given by the set 
E2 = Q1:1 ∩Q2:0 . The whole space is E0 = 2Ω.

Q2:0

E2
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Predictions

Predictions are determined by a probability function p
over the observations. The areas in the diagrams refer 
to the size of the probability.

Et-1
Qt:1

Qt:0

So the above means that  p ( Qt:1 | Et-1 ) = p ( Qt:0 | Et-1 ).
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Likelihood principle

Conditioning on observation Qt:1 is like zooming in on 
the probability p within the subset Qt:1.

Et-1 EtQt:1

Qt:0

Qt:1

Qt:0

Q(t+1):1

Q(t+1):0

For Carnapian prediction rules we must choose the initial 
probability to conform to p ( Q(t+1):q | Et ) = cλ ( et , q ).
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Bayesian inference

prior over observations conforming to cλ

et = 101000010101010000

predictions p (Q(t+1):q | Et)  =  cλ (et , q) 

The inductive assumptions can be expressed in the prior 
probability.

Note that the prior does not provide tools for controling
the inductive assumptions.

likelihood principle
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Statistical hypotheses

Considerations on statistical models can therefore be 
captured in the prior probability.

Hθ

Hθ’

E0

Statistical hypotheses offer an alternative way for 
determining a prior over the observation algebra.
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Chance processes

Statistical hypotheses may be associated with chance 
processes underlying the observations:

p(Qt:1 | Hθ ∩ Et-1) =  θ

Et-1

H2/3

Et-1

H1/3

This is where statistical inference becomes relevant 
for underdetermination.
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Frequentism

Hypotheses can be seen as elements in an extended 
observation algebra using the frequentist interpretation.

{ }.θ)(: 1θ freq == eeH

The hypotheses are collections of so-called Kollektivs, 
and as such they are tail events in an extended 
observation algebra.

e = 101000010101010...
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Subjective probability

To these hypotheses we can assign a probability 
that expresses belief. 

⇒
Et-1

H2/3Et-1 Qt:1

Qt:0
H1/3

Predictions can be derived by weighing the 
objectivist likelihoods with these subjective beliefs. 
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Inference over hypotheses

Conditioning determines changes in the probability 
over the hypotheses due to accumulating data:
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Bayesian statistical inference

This completes the following alternative logic of 
inductive predictions.

hypotheses Hθ associated with chance processes

et = 101000010101010000

posterior over Hθ, and predictions p (Q(t+1):q | Et)

likelihood principle

prior over the hypotheses Hθ
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Well-calibrated Bayesians

The set of hypotheses thus present an inductive 
assumption:

.
θ θ trueisU H

With the accummulation of data, the subjective 
probability will converge onto the true hypothesis.

.1)|(:θ θ →∃⇒∞→ tEHpt

This connects well to statistical inference being logical.
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Empiricism and subjectivism

In controlling inductive assumptions, hypotheses 
turn out to be useful tools.

data

set of hypotheses

predictions
observable

unobservable

But their use has long been suspect for empiricist 
and subjectivist reasons.
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Representation theorem

Consider the continuum of hypotheses Hθ associated 
with process with fixed chances θ:

θ.)|( θ1:)1( =∩+ tt EHQp

De Finetti proved that the class of priors over this 
continuum results in the class of exchangeable prediction 
rules.

.),()|()θ(θ)( :1θ ttfEQpfdHp qtqt =⇔= +
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Strict empiricism?

The representation theorem is usually interpreted as a 
reason for doing away with statistical hypotheses.

Bayesian statistical inference employs the representation 
theorem in opposite direction. 

inference using hypotheses

prediction rules
observable

unobservable
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Using hypotheses

By using hypotheses we can tackle many problems in 
inductive logic and methodology. 

• Analogical reasoning: formalizing inductive 
relevance between variables.

• Conceptual change: defining a distance function 
between statistical models.

• Realism debate: the use of distinguishing 
empirically equivalent models.
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Statistical underdetermination
The hypotheses Hθ prescribe different likelihoods θ. 
Every e belongs in exactly one such hypothesis.

Can there be any use for distinguishing between 
hypotheses that have the same likelihoods?

e'

e''

e θ
↓

0

1

2Ω
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Magical coin

Imagine that the observations are coin tosses, but 
that we are not sure whether the coin is from a wallet 
or a magic box.

normal 
coin N

θ
↓

magical 
coin M

θ
↓ e'

e''

e

0

1

0

1

2Ω
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Prior knowledge

We can express the difference between the normal 
and magical coin in a prior probability over the 
hypotheses N ∩ Hθ and M ∩ Hθ:

M

θ →

N

θ →

cλ with λ = 8

cλ with λ = 1/4
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The use of underdetermination

There is a prior over a single partition into Hθ that 
generates the same predictions.

E0

But dealing with N and M separately allows for an easier 
integration of prior information and inferences.

θ
↓

0

1

c8

c1/4

N

M
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Back to science

The more general claim is that much of experimental 
science employs underdetermined distinctions for 
exactly these reasons.

observable unobservable

Q B

A

C

There are pragmatic reasons for using latent structures.
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Abducted by Bayesians?

),()|(),()|(
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Combining the identical partitions with differing prior 
probabilities results in a mixture of Carnapian rules:

The probability assignment is updated in two parts: 
first over the two partitions of Hθ separately, and then 
over the partition into N and M.
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As-if confirmation

The Carnapian predictions cλ function as likelihoods for 
the hypotheses N and M. 

It is therefore possible to update over these hypotheses, 
which nevertheless consist of the very same Hθ.

N

M

E0

N

M

Et

et = 1011001001

Et
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Observation and theory

The above update for N and M is less magical than it 
may seem.

et = 1011001001011100

et = 0000001000010000

normal

magical

The hypotheses N and M do have different observable 
content. This difference is simply not expressed in the 
statistical hypotheses Hθ.
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Theoretical distinctions

The distinction between N and M is only theoretical 
relative to the hypotheses Hθ. Here it serves to motivate 
and manipulate a prior probability over the Hθ.

The prior probability expresses knowledge on the 
underlying chance processes that the hypotheses Hθ
do not capture.

θ →
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Conclusion

Conclusions on induction, Bayesian logic and the use of 
theoretical concepts.

• Inductive logic must be based on a justifiable rule, 
and reveal the underlying inductive assumptions.

• Bayesianism provides the justified rule, and 
hypotheses schemes can reveal the assumptions.

• Distinguishing empirically equivalent models may 
have computational advantages.
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