Core Logic 2006

Statistical Inference, Induction and Realism

J.W. Romeyn Psychological Methods University of Amsterdam

Outline of presentation

- The problem of induction
- The Carnapian solution: logical probability
- Bayesian inductive logic
- Statistical hypotheses and frequentism
- Empiricism and subjectivism
- **6** Statistical underdetermination

• Problem of induction

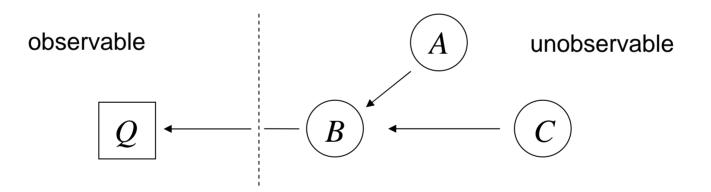
Past observations do not entail anything about future observations.

$$e_t = 10100001010100000?$$
 $q = 1$
 $q = 0$

Rather dramatically, there is no justification for predictions from science or common sense.

Underdetermination

Past observations do not entail anything about the structure underlying the observations either.



Limited stocks of data are always consistent with a large number of distinct scientific theories.

Probabilistic solution?

Perhaps we can derive probabilistic predictions on the observations from past observations.

$$e_{t} = 101000010101010000 \qquad \qquad p(q=0 \mid e_{t}) = (1 - \alpha)$$
$$p(q=1 \mid e_{t}) = \alpha$$

For a solution the predictions need only be comparative, for example $\alpha < 1/2$.

Carnapian logic

For Carnap, probabilistic solutions can be based solely on the choice of an observation language.

$$e_t = 10100001010100000$$

 $e'_t = 00000000000111111$
 $p(q=1 | e_t) = \alpha$

Specifically, he took relative frequencies as the basis for predictions. Such predictions are called exchangeable.

Carnapian logic

Using some further assumptions on symmetry and inductive relevance, Carnap derived the rule c_{λ} :

$$c_{\lambda}(e_{t},q) = \left(\frac{\lambda}{t+\lambda}\right)\frac{1}{2} + \left(\frac{t}{t+\lambda}\right)\frac{t_{q}}{t}$$

Parameter λ determines how fast predictions change from 1/2 to the observed relative frequency t_a / t .

Implicit assumptions

In the Carnapian picture, inductive assumptions are part of the logical famework.

 $e_t = 101000010101010000$

------ rule with implicit inductive assumption ------

predictions $p(q | e_t) = c_{\lambda}(e_t, q)$

Many procedures in classical statistics have the same implicit character.

A logic of induction

The following aims to improve on this framework in two ways.

• The inference rule that brings us from observations to predictions must not be carrying implicit assumptions.

• Inductive logic must provide the tools for choosing the assumptions that underly the predictions, the so-called projectability assumptions.

Bayesian logic

The likelihood principle provides a neutral way of adapting probability assignments to observations.

inductive assumptions

 $e_t = 101000010101010000$

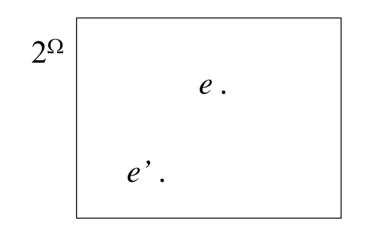
—— likelihood principle ——

predictions $p(q | e_t) = c_{\lambda}(e_t, q)$

Statistical inference can in this way be cast in a logical form. Assumptions can be made explicit.

Observations

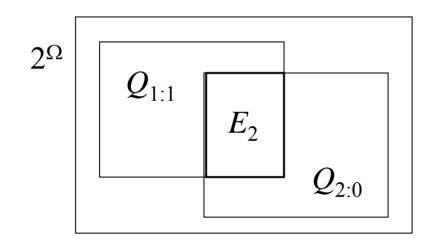
Observations are represented as sets of infinite sequences of binary observations, e.g., e = 101000010...



Every point in the rectangle represents a separate infinite sequence.

Cylindrical algebra

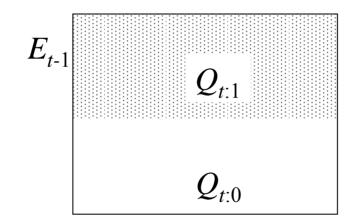
The observation of a 0 at time 2 is the set of all those sequences *e* that have a 0 at position 2, denoted $Q_{2:0}$.



Similarly, the finite sequence $e_2=10$ is given by the set $E_2 = Q_{1:1} \cap Q_{2:0}$. The whole space is $E_0 = 2^{\Omega}$.

Predictions

Predictions are determined by a probability function p over the observations. The areas in the diagrams refer to the size of the probability.

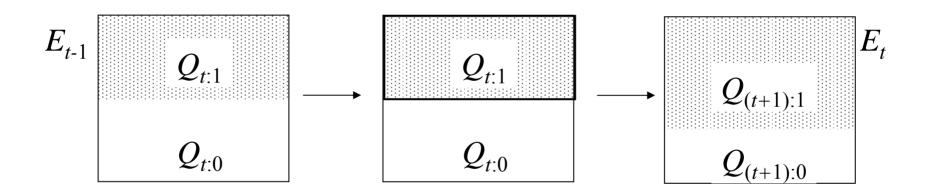


So the above means that $p(Q_{t:1} | E_{t-1}) = p(Q_{t:0} | E_{t-1})$.

Likelihood principle

3

Conditioning on observation $Q_{t:1}$ is like zooming in on the probability p within the subset $Q_{t:1}$.



For Carnapian prediction rules we must choose the initial probability to conform to $p(Q_{(t+1):q} | E_t) = c_{\lambda}(e_t, q)$.

Bayesian inference

The inductive assumptions can be expressed in the prior probability.

prior over observations conforming to c_{λ}

 $e_t = 101000010101010000$

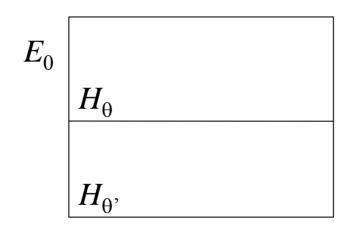
likelihood principle

predictions $p(Q_{(t+1):q} | E_t) = c_{\lambda}(e_t, q)$

Note that the prior does not provide tools for controling the inductive assumptions.

Statistical hypotheses

Statistical hypotheses offer an alternative way for determining a prior over the observation algebra.

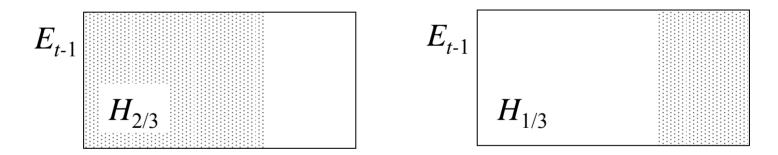


Considerations on statistical models can therefore be captured in the prior probability.

Chance processes

Statistical hypotheses may be associated with chance processes underlying the observations:

$p(Q_{t:1} / H_{\theta} \cap E_{t-1}) = \theta$



This is where statistical inference becomes relevant for underdetermination.

Frequentism

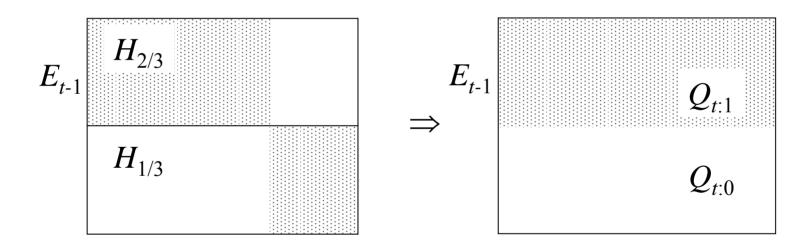
Hypotheses can be seen as elements in an extended observation algebra using the frequentist interpretation.

e = 101000010101010...

$$H_{\theta} = \left\{ e : \text{freq}_{1}(e) = \theta \right\}.$$

The hypotheses are collections of so-called Kollektivs, and as such they are tail events in an extended observation algebra.

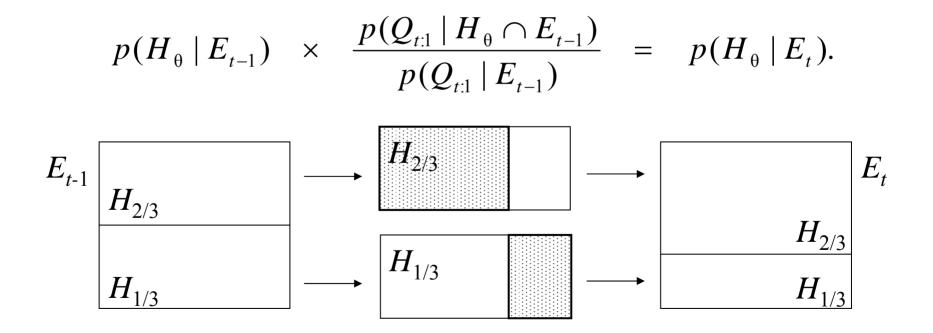
To these hypotheses we can assign a probability that expresses belief.



Predictions can be derived by weighing the objectivist likelihoods with these subjective beliefs.

Inference over hypotheses

Conditioning determines changes in the probability over the hypotheses due to accumulating data:



Bayesian statistical inference

This completes the following alternative logic of inductive predictions.

hypotheses H_{θ} associated with chance processes

prior over the hypotheses $H_{ heta}$

 $e_t = 101000010101010000$

— likelihood principle ——

posterior over H_{θ} , and predictions $p\left(Q_{(t+1):q} \mid E_t\right)$

Well-calibrated Bayesians

With the accumulation of data, the subjective probability will converge onto the true hypothesis.

$$t \to \infty \quad \Rightarrow \quad \exists \theta : \quad p(H_{\theta} \mid E_t) \to 1.$$

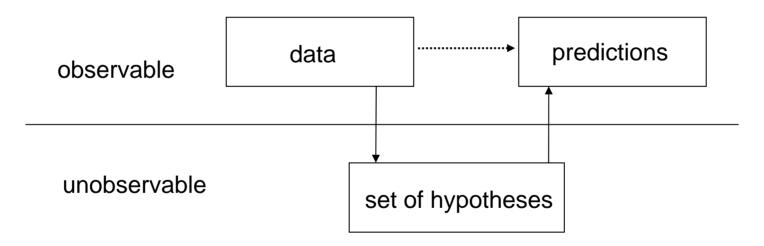
The set of hypotheses thus present an inductive assumption:

$$igcup_{_{ heta}} H_{_{ heta}}$$
 is true .

This connects well to statistical inference being logical.

• Empiricism and subjectivism

In controlling inductive assumptions, hypotheses turn out to be useful tools.



But their use has long been suspect for empiricist and subjectivist reasons.

Representation theorem

Consider the continuum of hypotheses H_{θ} associated with process with fixed chances θ :

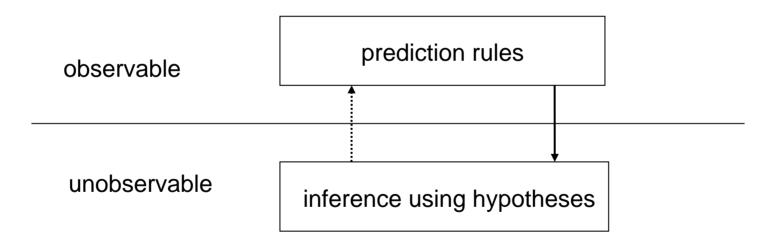
$$p(Q_{(t+1):1} \mid H_{\theta} \cap E_t) = \theta.$$

De Finetti proved that the class of priors over this continuum results in the class of exchangeable prediction rules.

$$p(H_{\theta})d\theta = f(\theta) \iff p(Q_{t+1:q} | E_t) = f(t_q, t).$$

Strict empiricism?

The representation theorem is usually interpreted as a reason for doing away with statistical hypotheses.



Bayesian statistical inference employs the representation theorem in opposite direction.

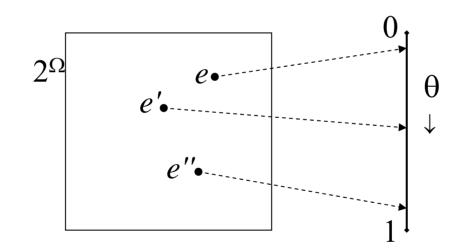
Using hypotheses

By using hypotheses we can tackle many problems in inductive logic and methodology.

- Analogical reasoning: formalizing inductive relevance between variables.
- Conceptual change: defining a distance function between statistical models.
- Realism debate: the use of distinguishing empirically equivalent models.

6 Statistical underdetermination

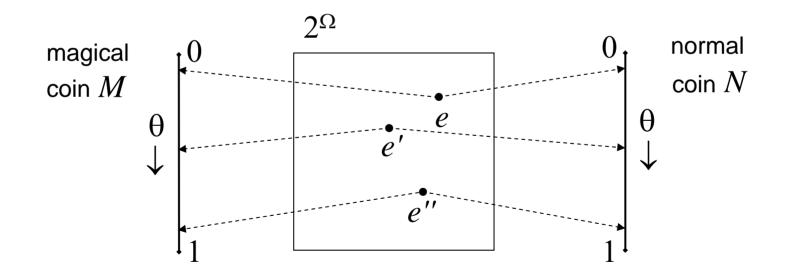
The hypotheses H_{θ} prescribe different likelihoods θ . Every *e* belongs in exactly one such hypothesis.



Can there be any use for distinguishing between hypotheses that have the same likelihoods?

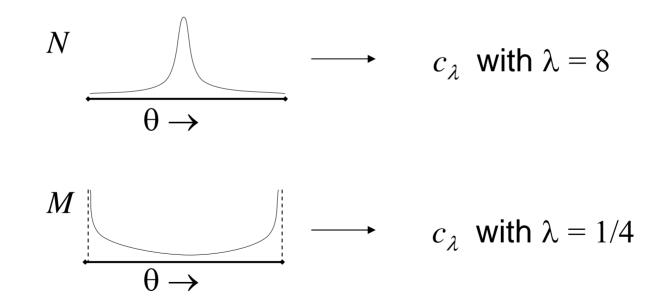
Magical coin

Imagine that the observations are coin tosses, but that we are not sure whether the coin is from a wallet or a magic box.



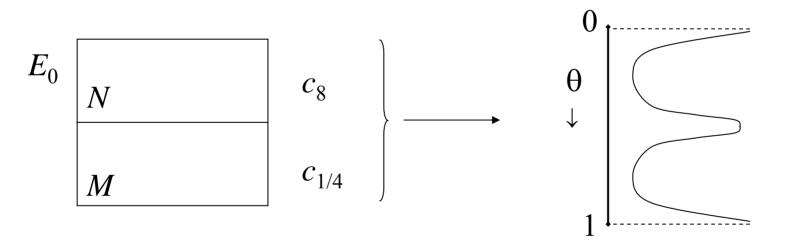
Prior knowledge

We can express the difference between the normal and magical coin in a prior probability over the hypotheses $N \cap H_{\theta}$ and $M \cap H_{\theta}$:



The use of underdetermination

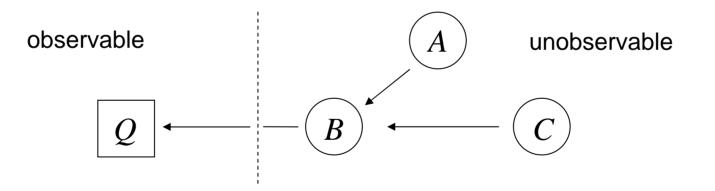
There is a prior over a single partition into H_{θ} that generates the same predictions.



But dealing with *N* and *M* separately allows for an easier integration of prior information and inferences.

Back to science

The more general claim is that much of experimental science employs underdetermined distinctions for exactly these reasons.



There are pragmatic reasons for using latent structures.

Abducted by Bayesians?

Combining the identical partitions with differing prior probabilities results in a mixture of Carnapian rules:

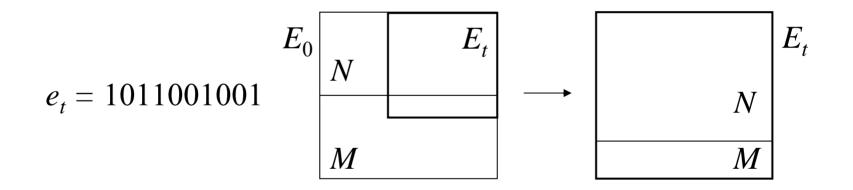
$$p(Q_{t+1:q} | E_t) =$$

$$p(N | E_t) c_8(e_t, q) + p(M | E_t) c_{1/4}(e_t, q)$$

The probability assignment is updated in two parts: first over the two partitions of H_{θ} separately, and then over the partition into *N* and *M*.

As-if confirmation

The Carnapian predictions c_{λ} function as likelihoods for the hypotheses *N* and *M*.



It is therefore possible to update over these hypotheses, which nevertheless consist of the very same H_{θ} .

Observation and theory

The above update for *N* and *M* is less magical than it may seem.

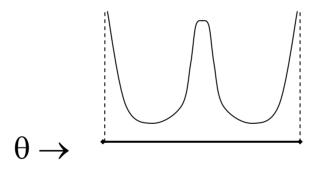
 $e_t = 10110010010111100 \longrightarrow \text{normal}$

 $e_t = 0000001000010000 \longrightarrow \text{magical}$

The hypotheses *N* and *M* do have different observable content. This difference is simply not expressed in the statistical hypotheses H_{θ} .

Theoretical distinctions

The distinction between *N* and *M* is only theoretical relative to the hypotheses H_{θ} . Here it serves to motivate and manipulate a prior probability over the H_{θ} .



The prior probability expresses knowledge on the underlying chance processes that the hypotheses H_{θ} do not capture.

Conclusion

Conclusions on induction, Bayesian logic and the use of theoretical concepts.

- Inductive logic must be based on a justifiable rule, and reveal the underlying inductive assumptions.
- Bayesianism provides the justified rule, and hypotheses schemes can reveal the assumptions.
- Distinguishing empirically equivalent models may have computational advantages.