
Syntax of first order logic.

A first-order language L is a set {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} of function symbols and relation
symbols together with a signature σ : I ∪ J → N. In addition to the symbols from L, we shall
be using the logical symbols ∀, ∃, ∧, ∨, →, ¬, ↔, equality =, and a set of variables Var.
Definition of an L-term.

Every variable is an L-term.

If σ(ḟi) = n, and t1, ..., tn are L-terms, then ḟi(t1, ..., tn) is an L-term.

Nothing else is an L-term.

Definition of an L-formula.

If t and t∗ are L-terms, then t = t∗ is an L-formula.

If σ(Ṙi) = n, and t1, ..., tn are L-terms, then Ṙi(t1, ..., tn) is an L-formula.

If ϕ and ψ are L-formulae and x is a variable, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ,
∀x (ϕ) and ∃x (ϕ) are L-formulae.

Nothing else is an L-formula.

An L-formula without free variables is called an L-sentence.
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Semantics of first order logic (1).

We fix a first-order language L = {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

A tuple X = 〈X, 〈fi ; i ∈ I〉, 〈Rj ; j ∈ J〉〉 is called an
L-structure if fi is an σ(ḟi)-ary function on X and Ri is an
σ(Ṙi)-ary relation on X.

An X-interpretation is a function ι : Var → X.

If ι is an X-interpretation and X is an L then ι extends to a
function ι̂ on the set of all L-terms.

If X is an L-structure and ι is an X-interpretation, we define
a semantics for all L-formulae by recursion.
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Semantics of first order logic (2).

If X is an L-structure and ι is an X-interpretation, we define a semantics for all L-formulae
by recursion.

X, ι |= t = t∗ if and only if ι̂(t) = ι̂(t∗).

X, ι |= Ṙj(t1, ..., tn) if and only if R(ι̂(t1), ..., ι̂(tn)).

X, ι |= ϕ ∧ ψ if and only if X, ι |= ϕ and X, ι |= ψ.

X, ι |= ¬ϕ if and only if it is not the case that X, ι |= ϕ.

X, ι |= ∀x (ϕ) if and only if for all X-interpretations ι∗

with ι ∼x ι
∗, we have X, ι∗ |= ϕ.

X |= ϕ if and only if for all X-interpretations ι, we have
X, ι |= ϕ.

Object Language ↔ Metalanguage.
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Semantics of first order logic (3).

Object Language ↔ Metalanguage.

Let X be an L-structure. The theory of X, Th(X), is the set
of all L-sentences ϕ such that X |= ϕ.

Under the assumption that the tertium non datur holds for
the metalanguage, the theory of X is always complete:

For every sentence ϕ, we either have ϕ ∈ Th(X) or
¬ϕ ∈ Th(X).
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Deduction (1).

Let Φ be a set of L-sentences. A Φ-proof is a finite
sequence 〈ϕ1, ..., ϕn〉 of L-formulae such that for all i, one of
the following holds:

ϕi ≡ t = t for some L-term t,

ϕi ∈ Φ, or

there are j, k < i such that ϕj

and ϕk are the premisses and
ϕi is the conclusion in one of
the rows of the following table.

Premisses Conclusion

ϕ ∧ ψ ϕ

ϕ ∧ ψ ψ

ϕ ψ ϕ ∧ ψ

ϕ ¬ϕ ψ

ϕ→ ψ ¬ϕ→ ψ ψ

∀x (ϕ) ϕ s
x

ϕ y

x
∀x (ϕ))

t = t∗ ϕ t
x

ϕ t∗

x
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Deduction (2).

If Φ is a set of L-sentences and ϕ is an L-formula, we write
Φ ` ϕ if there is a Φ-proof in which ϕ occurs.

We call a set Φ of sentences a theory if whenever Φ ` ϕ,
then ϕ ∈ Φ (“Φ is deductively closed”).

Example. Let L = {≤} be the language of partial orders.
Let Φp.o. be the axioms of partial orders, and let Φ be the
deductive closure of Φp.o.. Φ is not a complete theory, as the
sentence ∀x∀y(x ≤ y ∨ y ≤ x) is not an element of Φ, but
neither is its negation.
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Completeness.

Kurt Gödel (1906-1978)

Semantic entailment. We write Φ |= ϕ for “whenever X |= Φ,
then X |= ϕ”.

Gödel Completeness Theorem (1929).
Φ ` ϕ if and only if Φ |= ϕ.

“there is a Φ-proof of ϕ” “for all X |= Φ, we have X |= ϕ”

Φ 6` ϕ if and only if Φ 6|= ϕ.
“no Φ-proof contains ϕ” “there is some X |= Φ ∧ ¬ϕ”
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Applications (1).

The Model Existence Theorem.
If Φ is consistent (i.e., Φ 6` ⊥), then there is a model X |= Φ.

The Compactness Theorem.
Let Φ be a set of sentences. If every finite subset of Φ has a
model, then Φ has a model.
Proof. If Φ doesn’t have a model, then it is inconsistent by the Model Existence Theorem.
So, Φ ` ⊥, i.e., there is a Φ-proof P of ⊥.
But P is a finite object, so it contains only finitely many elements of Φ. Let Φ0 be the set of
elements occurring in P . Clearly, P is a Φ0-proof of ⊥, so Φ0 is inconsistent. Therefore Φ0

cannot have a model. q.e.d.
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Applications (2).

The Compactness Theorem. Let Φ be a set of sentences. If every finite subset of Φ has a
model, then Φ has a model.

Corollary 1. Let Φ be a set of sentences that has arbitrary
large finite models. Then Φ has an infinite model.
Proof. Let ψ≥n be the formula stating “there are at least n different objects”. Let
Ψ := {ψ≥n ; n ∈ N}. The premiss of the theorem says that every finite subset of Φ ∪ Ψ has
a model. By compactness, Φ ∪ Ψ has a model. But this must be infinite. q.e.d.

Let L := {≤} be the first order language with one binary
relation symbol. Let Φp.o. be the axioms of partial orders.

Corollary 2. There is no sentence σ such that for all partial
orders P, we have

P is finite if and only if P |= σ.

[If σ is like this, then Corollary 1 can be applied to Φp.o. ∪ {σ}.]
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Foundations of Mathematics.

Does mathematics need foundations? (Not until 1900.)

Mathematical approach: Work towards an axiom
system of mathematics with purely mathematical
means. (Hilbert’s Programme). In its naïve
interpretation crushed by Gödel’s Incompleteness
Theorem.

Extra-mathematical approach: Use external arguments
for axioms and rules: pragmatic, philosophical,
sociological, (theological ?).

Foundations of number theory: test case.
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Sets are everything (1).

Different areas of mathematics use different primitive
notions: ordered pair, function, natural number, real
number, transformation, etc.

Set theory is able to incorporate all of these in one
framework:

Ordered Pair. We define

〈x, y〉 := {{x}, {x, y}}.

(Kuratowski pair)
Function. A set f is called a function if there are
sets X and Y such that f ⊆ X × Y and

∀x, y, y′
(

〈x, y〉 ∈ f&〈x, y′〉 ∈ f → y = y′
)

.
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Sets are everything (2).

Set theory incorporates basic notions of mathematics:

Natural Numbers. We call a set X inductive if it
contains ∅ and for each x ∈ X, we have x ∪ {x} ∈ X.
Assume that there is an inductive set. Then define N

to be the intersection of all inductive sets.
Rational Numbers. We define

P := {0, 1} × N × N\{0}, then

〈i, n,m〉 ∼ 〈j, k, `〉 : ⇐⇒ i = j & n · ` = m · k, and

Q := P/∼.
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Sets are everything (3).

Set theory incorporates basic notions of mathematics:

Real Numbers. Define an order on Q by

〈i, n,m〉 ≤ 〈j, k, `〉 : ⇐⇒ i < j ∨ (i = j & n · ` ≤ k ·m).

A subset X of Q is called an initial segment if

∀x, y(x ∈ X & y ≤ x→ y ∈ X).

Initial segments are linearly ordered by inclusion.
We define R to be the set of initial segments of Q.

These definitions implicitly used a lot of set theoretic
assumptions.

Core Logic – 2006/07-1ab – p. 14/45



Sets.

What is a set?
Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

The Full Comprehension Scheme. Let X be our universe
of discourse (“the universe of sets”) and let Φ be any
formula. Then the collection of those x such that Φ(x) holds
is a set:

{x ; Φ(x)}.
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Frege (1).

Gottlob Frege (1848-1925)

Frege’s Comprehension Principle. If Φ is any formula,
then there is some G such that

∀x(G(x) ↔ Φ(x)).

The ε operator. In Frege’s system, we can assign to
“concepts” F (second-order objects) a first-order object εF
(“the extension of F ”).
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Frege (2).

Basic Law V. If F and G are concepts (second-order
objects), then

εF = εG ↔ ∀x(F (x) ↔ G(x)).

Frege’s Foundations of Arithmetic. Let F be an absurd
concept (“round square”). Let G be the concept “being
equinumerous to εF ”. We then define 0 := εG.
Suppose 0, ... , n are already defined. Then let H be the
concept “being either 0 or ... or n” and let H be the concept
“being equinumerous to εH”. Then let n + 1 := εH.
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Russell (1).

Bertrand Arthur William
3rd Earl Russell (1872-1970)

Grandson of John 1st Earl Russell (1792-1878); British prime minister (1846-1852 &
1865-1866).

1901: Russell discovers Russell’s paradox.

1910-13: Principia Mathematica with Alfred North Whitehead (1861-1947).

1916: Dismissed from Trinity College for anti-war protests.

1918: Imprisoned for anti-war protests.

1940: Fired from City College New York.

1950: Nobel Prize for Literature.

1957: First Pugwash Conference.
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Russell (2).

Frege’s Comprehension Principle. Every formula defines a concept.
Basic Law V. If F and G are concepts, then εF = εG ↔ ∀x(F (x) ↔ G(x)).

Theorem (Russell). Basic Law V and the Full
Comprehension Principle together are inconsistent.
Proof. Let R be the concept “being the extension of a concept which you don’t fall under”,
i.e., the concept described by the formula

Φ(x) :≡ ∃F (x = εF ∧ ¬F (x)).

This concept exists by Comprehension. Let r := εR.
Either R(r) or ¬R(r):

1. If R(r), then there is some F such that r = εF and ¬F (r). Thus εF = εR, and by
Basic Law V, we have that F (r) ↔ R(r). But then ¬R(r). Contradiction!

2. If ¬R(r), then for all F such that r = εF we have F (r). But R is one of these F , so
R(r). Contradiction!

q.e.d.
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Russell (3).

Theorem (Russell). The Full Comprehension Principle
cannot be an axiom of set theory.
Proof. Suppose the Full Comprehension Principle holds, i.e., every formula Φ describes a
set {x ; Φ(x)}. Take the formula Φ(x) :≡ x /∈ x and form the set r := {x ; x /∈ x} (“the
Russell class”).
Either r ∈ r or r /∈ r.

1. If r ∈ r, then Φ(r), so r /∈ r. Contradiction!

2. If r /∈ r, then ¬Φ(r), so ¬r /∈ r, i.e., r ∈ r. Contradiction!

q.e.d.

Core Logic – 2006/07-1ab – p. 20/45



Frege & Russell.

Russell discovered the paradox in June 1901.

Russell’s Paradox was discovered independently by
Zermelo (Letter to Husserl, dated April 16, 1902).

B. Rang, W. Thomas, Zermelo’s discovery of the “Russell paradox", Historia
Mathematica 8 (1981), p. 15-22.

Letter to Frege (June 16, 1902) with the paradox.

Frege’s reply (June 22, 1902):
“with the loss of my Rule V, not only the foundations of my arithmetic, but also
the sole possible foundations of arithmetic, seem to vanish”.
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Attempts to resolve the paradoxes.

Theory of Types.
Russell (1903, “simple theory of types”; 1908, “ramified
theory of types”). Principia Mathematica.

Axiomatization of Set Theory.
Zermelo (1908). Skolem/Fraenkel (1922). Von
Neumann (1925). “Zermelo-Fraenkel set theory” ZF.

Foundations of Mathematics.
Hilbert’s 2nd problem: Consistency proof of arithmetic
(1900). Hilbert’s Programme (1920s).
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