The Continuum
Hypothesis, PartII

W. Hugh Woodin

Introduction

In the first part of this article, I identified the cor-
rect axioms for the structure (P(N),N,+, -, €),
which is the standard structure for Second Order
Number Theory. The axioms, collectively “Projec-
tive Determinacy”, solve many of the otherwise un-
solvable, classical problems of this structure.

Actually working from the axioms of set theory,
ZFC, Iidentified a natural progression of structures
increasing in complexity: (H(w), €), (H(w1), €),
and (H(w?), €), where for each cardinal k, H(k)
denotes the set of all sets whose transitive closure
has cardinality less than k. The first of these struc-
tures is logically equivalent to (N, +, -), the stan-
dard structure for number theory; the second is
logically equivalent to the standard structure for
Second Order Number Theory; and the third struc-
ture is where the answer to the Continuum Hy-
pothesis, CH, lies. The main topic of Part I was the
structure (H(w1), €).

Are there analogs of these axioms, say, some
generalization of Projective Determinacy, for the
structure (H(w?), €)? Any reasonable generaliza-
tion should settle the Continuum Hypothesis.

An immediate consequence of Cohen’s method
of forcing is that large cardinal axioms are not
terribly useful in providing such a generalization.
Indeed it was realized fairly soon after the dis-
covery of forcing that essentially no large cardinal
hypothesis can settle the Continuum Hypothesis.
This was noted independently by Cohen and by
Levy-Solovay.
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So the resolution of the theory of the structure
(H(w?),€) could well be a far more difficult
challenge than was the resolution of the theory of
the structure (H(w1), €).

One example of the potential subtle aspects of
the structure (H(w?3), €) is given in the following
theorem from 1991, the conclusion of which is in
essence a property of the structure (H(w?), €).

Theorem (Woodin). Suppose that the axiom Mar-
tin’s Maximum holds. Then there exists a surjection
p:R — wy such that {(x,y) | p(x) < p(y)} isa prb
jective set.

As we saw in Part I, assuming the forcing axiom,
Martin’s Maximum, CH holds projectively in that
if X < R is an uncountable projective set, then
|X| = |R]|. This is because Projective Determinacy
must hold. However, the preceding theorem shows
that assuming Martin’s Maximum, CH fails pro-
jectively in that there exists a surjection

PR - w?

such that {(x,y) | p(x) < p(¥)} is a projective set.
Such a function p is naturally viewed as a “pro-
jective counterexample” to CH, for it is a coun-
terexample to the following reformulation of CH:
Suppose that T : R — « is a surjection of R onto
the ordinal «; then & < wo>.

There is a curious asymmetry which follows
from (the proofs of) these results. Assume there
exist infinitely many Woodin cardinals. Then:

Claim (1) There can be no projective
“proof” of CH (there can be no projec-
tive well-ordering of R of length ).

Claim (2) There can be a projective
“proof” of -CH (there can be, in
the sense just defined, a projective
counterexample to CH).
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Therefore, if there exist infinitely many Woodin car-
dinals and if the Continuum Hypothesis is to be
decided on the basis of “simple” evidence (i.e.,
projective evidence), then the Continuum Hy-
pothesis must be false. This is the point of the first
claim.

But is this an argument against CH? If so, the
playful adversary might suggest that a similar line
of argument indicates that ZFC is inconsistent, for
while we can have a finite proof that ZFC is in-
consistent, we, by Godel’s Second Incompleteness
Theorem, cannot have a finite proof that ZFC is con-
sistent (unless ZFC is inconsistent). There is a key
difference here, though, which is the point of the
second claim. If there is more than one Woodin car-
dinal, then a projective “proof” that CH is false can
always be created by passing to a Cohen extension.
More precisely, if (M,E) is a model of ZFC to-
gether with the statement “There exist 2 Woodin
cardinals”, that is, if

(M, E) E ZFC+“There exist 2 Woodin cardinals,”

then there is a Cohen extension, (M*,E*), of
(M,E) such that (M*,E*) & ZFC + ¢, where ¢ is
the sentence which asserts that there exists a sur-
jection p : R — w3 such that {(x,y) | p(x) < p(¥)}
is a projective set. This theorem, which is the the-
orem behind the second claim above, shows that
what might be called the Effective Continuum Hy-
pothesis is as intractable as the Continuum Hy-
pothesis itself.

These claims are weak evidence that CH is false,
so perhaps large cardinal axioms are not quite so
useless for resolving CH after all.

Of course there is no a priori reason that CH
should be decided solely on the basis of projective
evidence. Nevertheless, in the 1970s Martin con-
jectured that the existence of projective evidence
against CH will eventually be seen to follow from
reasonable axioms.

Axioms for H(w>)

Encouraged by the success in Part I in finding the
correct axioms for H(w1), and refusing to be dis-
couraged by the observation that large cardinal ax-
ioms cannot settle CH, we turn our attention to
H(w?). Here we have a problem if we regard large
cardinal axioms as our sole source of inspiration:
Even if there is an analog of Projective Determinacy
for H(w?>), how can we find it or even recognize it
if we do find it?

My point is simply that the axiom(s) we seek can-
not possibly be implied by any (consistent) large
cardinal hypothesis remotely related to those cur-
rently accepted as large cardinal hypotheses.
Strong Logics
The solution is to take an abstract approach. This
we shall do by considering strengthenings of first
order logic and analyzing the following question,
which I shall make precise.
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Can the theory of the structure
(H(w?),€) be finitely axiomatized
(over ZFC) in a (reasonable) logic which
extends first order logic?

The logics arising naturally in this analysis sat-
isfy two important conditions, Generic Soundness
and Generic Invariance. As a consequence, any ax-
ioms we find will yield theories for (H(w?>), €),
whose “completeness” is immune to attack by ap-
plications of Cohen’s method of forcing, just as is
the case for number theory.

How shall we define the relevant strong logics?
There is a natural strategy motivated by the Godel
Completeness Theorem. If ¢ is a sentence in the
language L(=, €) for set theory, then “ZFC + ¢” in-
dicates that there is a formal proof of ¢ from ZFC.
This is an arithmetic statement.

The Godel Completeness Theorem shows that
if ¢ is a sentence, then ZFC + ¢ if and only if
(M,E) E ¢ for every structure (M, E) such that
(M,E) E ZFC.

Therefore a strong logic o can naturally be
defined by first specifying a collection of test struc-
tures—these are structures of the form M = (M, E),
where E C M X M—and then defining “ZFC +¢ ¢”
if for every test structure M, if M E ZFC, then
ME .

Of course, we shall only be interested in the case
that there actually exists a test structure /M such
that M E ZFC. In other words, we require that ZFC
be consistent in our logic.

The smaller the collection of test structures,
the stronger the logic, i.e., the larger the set of sen-
tences ¢ which are proved by ZFC. Note that if
there were only one test structure, then for each
sentence ¢ either ZFC ¢ ¢ or ZFC ¢ =¢. So in
the logic +¢ defined by this collection of test
structures, no propositions are independent of
the axioms ZFC.

By the Godel Completeness Theorem, first order
logic is the weakest (nontrivial) logic.

To formulate the notion of Generic Soundness,
I first define the cumulative hierarchy of sets:
this is a class of sets indexed by the ordinals. The
set with index « is denoted V, and the definition
is by induction on « as follows: Vo =O;
Var1 = P(Vy); and if B is a limit ordinal, then
Vg =U{Vx | @ < B}. It is easily verified that the
sets V are increasing, and it is a consequence of
the axioms that every set is a member of V for
large enough «.

It follows from the definitions that V, = H(w)
and that V41 € H(wq). However, Vi1 # H(w1).
Nevertheless, V1 and H(w1) are logically equiv-
alent in that each can be analyzed within the other.
The relationship between V42 and H(w?) is far
more subtle. If the Continuum Hypothesis holds,
then these structures are logically equivalent, but
the assertion that these structures are logically
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equivalent does not imply the Continuum Hy-
pothesis.

Suppose that M is a transitive set such that
(M, €) E ZFC. The cumulative hierarchy in the
sense of M is simply the sequence M N V indexed
by M n Ord. It is customary to denote M N Vy by
M. If M is countable, then one can always reduce
to considering Cohen extensions, M*, which are
transitive and for which the canonical embedding
of M into M* (given by Cohen’s construction) is
the identity. Thus, in this situation, M € M* and
the ordinals of the Cohen extension coincide with
those of the initial model.

The precise formulation of Generic Soundness
involves notation from the Boolean Valued Model
interpretation, due to Scott and Solovay, of Cohen’s
method of forcing. In the first part of this article
I noted that Cohen extensions are parameterized
by complete Boolean algebras (in the sense of the
initial structure). Given a complete Boolean alge-
bra B, one can analyze within our universe of sets
the Cohen extension of our universe that B could
be used to define in some virtual larger universe
where our universe, V, becomes, say, a countable
transitive set. VE denotes this potential extension,
and for each ordinal «, VZ denotes the x-th level
of VE. For each sentence ¢, the assertion “VE F ¢”
is formally an assertion about the ordinal « and
the Boolean algebra B; this calculation is the
essence of Cohen’s method.

Definition. Suppose that g is a strong logic. The
logic ¢ satisfies Generic Soundness if for each sen-
tence ¢ such that ZFC ¢ ¢, the following holds.
Suppose that B is a complete Boolean algebra, «
is an ordinal, and V% £ ZFC. Then Vg E ¢. a

Our context for considering strong logics will
require at the very least that there exists a proper
class of Woodin cardinals, and so the requirement
of Generic Soundness is nontrivial. More precisely,
assuming there exists a proper class of Woodin car-
dinals, for any complete Boolean algebra B there
exist unboundedly many ordinals « such that
VE k= ZFC.

The motivation for requiring Generic Sound-
ness is simply that if ZFC ¢ ¢, then the negation
of ¢ should not be (provably) realizable by pass-
ing to a Cohen extension. Of course, if ¢ is any
strong logic which satisfies the condition of
Generic Soundness, then it cannot be the case that
either ZFC o CH or ZFC o —CH;i.e., CH remains
unsolvable. This might suggest that an approach
to resolving the theory of H(w?) based on strong
logics is futile. But an important possibility arises
through strong logics. This is the possibility that
augmenting ZFC with a single axiom yields a sys-
tem of axioms powerful enough to resolve,
through inference in the strong logic, all questions
about H(w?).
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Definition. For a given strong logic +¢, the theory
of the structure (H(w?»), €) is “finitely axiomatized
over ZFC” if there exists a sentence ¥ such that for
some «, Vi F ZFC + ¥, and for each sentence ¢,

ZFC+Y -9 “(H(wp),€)EP”
if and only if (H(w?), €) E ¢. O

Universally Baire Sets

There is a transfinite hierarchy which extends the
hierarchy of the projective sets; this is the hierar-
chy of the universally Baire sets. Using these sets,
I shall define a specific strong logic, Q-logic.

Definition (Feng-Magidor-Woodin). A set A < R"
is universally Baire if for every continuous function

F:Q - R"

where Q is a compact Hausdorff space, F~1[A] (the
preimage of A by F) has the property of Baire in Q;
i.e., there exists an open set O < Q such that the sym-
metric difference F~1[A] A O is meager. O

It is easily verified that every Borel set A < R"
is universally Baire. More generally, the univer-
sally Baire sets form a o-algebra closed under
preimages by Borel functions

f:R" - R™,

A little more subtle, and perhaps surprising, is
that the universally Baire sets are Lebesgue mea-
surable.

Every analytic set is universally Baire. The fol-
lowing theorem is proved using Jensen’s Covering
Lemma.

Theorem (Feng-Magidor-Woodin). Suppose that
every projective set is universally Baire. Then every
analytic subset of [0, 1] is determined. O

The improvements of this theorem are quite
subtle; the assumption that every projective set is
universally Baire does not imply Projective Deter-
minacy.

The following theorem of Neeman improves an
earlier version of [Feng-Magidor-Woodin] which
required the stronger hypothesis: There exist two
Woodin cardinals.

Theorem (Neeman). Suppose that there is a Woodin
cardinal. Then every universally Baire subset of
[0, 1] is determined. O

If there exists a proper class of Woodin cardi-
nals, then the universally Baire sets are closed
under continuous images (and so projections).
Therefore:

Theorem. Suppose that there are arbitrarily large
Woodin cardinals. Then every projective set is uni-
versally Baire. O

Sometimes the Euclidean space R is not the most
illuminating space with which to deal. Let K < [0, 1]
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be the Cantor set, though any uncountable closed,
nowhere dense subset of [0, 1] would suffice for
what follows.

Suppose that A < K and that B < K. The set A
is reducible to B if there exists a continuous func-
tion

f:K-K

such that A=f"1(B). The set A is strongly re-
ducible to B if the function f can be chosen such
thatforall x,y € K, |f(x) — fO)| < (1/2)|x — y|.

There is a remarkably useful lemma of Wadge
which I state for the projective subsets of the Can-
tor set and with the reducibilities just defined.
There is a version of this lemma for subsets of
[0, 1], but the definitions of reducible and strongly
reducible must be changed.

Lemma (Wadge). Suppose that the axiom Projec-
tive Determinacy holds and that Ag and A1 are pro-
Jjective subsets of K. Then either Ag is reducible to
A1 or Ay is strongly reducible to K\ Ag. O

The proof of Wadge’s lemma simply requires the
determinacy of a set B < [0, 1] which is the preim-
age of

(Ap x (K\A1)) U ((K\Ag) x A1)

by a Borel function F : [0, 1] — R2. Such sets B are
necessarily universally Baire if both of the sets Ag
and A; are universally Baire. Therefore, by Nee-
man’s theorem:

Theorem. Suppose that there is a Woodin cardinal.
Suppose that Ag and A1 are universally Baire sub-
sets of K. Then either Aq is reducible to A1 or Ay
is strongly reducible to K\ Ag. O

Suppose that f : K — K is such that for all
x,y €K, Ifx)-f()] <(@1/2)|x-yl|. Then for
some Xg € K, f(xo) = Xo. This implies that no set
A € K can be strongly reducible to its comple-
ment K\ A. Therefore, given two universally Baire
subsets of K, Ag and A7, and assuming there is a
Woodin cardinal, exactly one of the following must
hold. This is easily verified by applying the previ-
ous theorem to the relevant pairs of sets, sorting
through the various possibilities, and eliminating
those that lead to the situation that a set is strongly
reducible to its complement.

1. Both Ag and K\ Ag are strongly reducible to
A1, and A; is not reducible to Ag (or to
K\Ag).

2. Both A1 and K\A; are strongly reducible to
Ag, and Ag is not reducible to A; (or to
K\A1).

3. Ag and A; are reducible to each other, or
K\Ap and A; are reducible to each other.

Thus one can define an equivalence relation
on the universally Baire subsets of the Cantor set
by Ag ~w A1 if (3) holds, and one can totally
order the induced equivalence classes by defin-
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ing for universally Baire sets, Ag and Aj,
Ag <w A1 if (1) holds.

Of course (1) can be used to define a partial
order on all subsets of K. In the context of deter-
minacy assumptions, Martin proved that this
partial order is well founded [Moschovakis 1980].
In the absence of any determinacy assumptions,
Martin’s theorem can be formulated as follows.

Theorem (Martin). Suppose that (Ai : k € N) is a
sequence of subsets of K such that for all k € N,
both Ayx.1 and K\ A1 are strongly reducible to
Ag. Then there exists a continuous function
g:K — K such that g~1(A1) does not have the
property of Baire. O

As a corollary we obtain the well-foundedness
of <y, because the continuous preimages of a uni-
versally Baire set must have the property of Baire.

So (assuming large cardinals) the universally
Baire subsets of the Cantor set form a well-
ordered hierarchy under a suitable notion of
complexity. The projective sets define an initial seg-
ment, since any set which is reducible to a
projective set is necessarily a projective set. The
hierarchy finely calibrates the universally Baire
sets. For example, the initial segment of length w1
is given by the Borel sets, and the corresponding
ordinal rank of a Borel set is closely related to its
classical Borel rank.

There is a natural generalization of first order
logic which is defined from the universally Baire
sets. This is Q-logic; the “proofs” in Q-logic are
witnessed by universally Baire sets which can be
assumed to be subsets of the Cantor set K. The
ordinal rank of the witness in the hierarchy of
such sets I have just defined provides a quite
reasonable notion of the length of a proof in Q-
logic.

The definition of Q-logic involves the notion of
an A-closed transitive set where A is universally
Baire.

A-closed Sets
Suppose that M is a transitive set with the prop-
erty that (M, €) F ZFC.
Suppose that (Q, F, T) € M and that
1. (M, e)FE “Qis a compact Hausdorff space”.
2. T is the topology on Q; i.e., T is the set of
O € M such that (M €) F “O < Q and O is
open”.
3. (M,e)E “FeCQ,R)".
For example, if M is countable and

(M, €) E “Q is the unit interval [0, 1]”,

then Q=[0,1]n M. It is easily verified that
[0,1] " M is dense in [0, 1], and so in this case O
is a countable dense subspace of [0, 1].

Notice that the element F of M is necessarily a
function, F : QO — R.

Trivially, T is a base for a topology on Q yield-
ing a topological space which of course need not
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be compact, as the preceding example illustrates.
Nevertheless, this topological space is necessarily
completely regular. The function F is easily seen
to be continuous on this space.

Let Q) be the Stone-Cech compactification of
this space, and for each set O € T let O be the open
subset of Q defined by O. This is the complement
of the closure, computed in Q, of Q\O.

The function F has a unique continuous exten-
sion

F:Q-R.
Suppose A < R is universally Baire. Then the
preimage of A under F has the property of Baire
in Q. Let

Ta={0 € T | O\F~'[A] is meager}.

Definition. Suppose that A < R is universally Baire
and that M is a transitive set with (M, €) E ZFC.
The set M is A-closed if for every (O, F,T) € M as
above, T4 € M. O

If M is A-closed, then AN M € M, but in gen-
eral the converse fails.

Suppose that A < R is universally Baire. Then
there exists a universally Baire set A* < K such that
for all transitive sets M such that (M, €) E ZFC,M
is A-closed if and only if M is A*-closed. Thus, for
our purposes, the distinction between universally
Baire subsets of R versus universally Baire subsets
of K, the Cantor set, is not relevant.

Q-logic

Having defined A-closure, I can now define Q-
logic. This logic can be defined without the large
cardinal assumptions used here, but the definition
becomes a bit more technical.

Definition. Suppose that there exists a proper
class of Woodin cardinals and that ¢ is a sen-
tence. Then

ZFCt+q ¢

if there exists a universally Baire set A € R such
that (M, €) F ¢ for every countable transitive A-
closed set M such that (M, €) k ZFC. O

There are only countably many sentences in
the language £(=, €), and, further, the universally
Baire sets are closed under countable unions and
preimages by Borel functions. Therefore there
must exist a single universally Baire set Ag € R
such that for all sentences ¢ of L(£, &), ZFC +q ¢
if and only if (M, €) E ¢ for every countable tran-
sitive set M such that M is Ag-closed and
(M, €) E ZFC. Thus Q-logic is the strong logic
defined by taking as the collection of test struc-
tures the countable transitive sets M such that
(M, €) is a model of ZFC and M is Ag-closed.

One can easily generalize the definition of Q-
logic to define when T +q ¢ where T is an arbi-
trary theory containing ZFC. If T is simply ZFC + ¥
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for some sentence ¥, then T +q ¢ if and only if
ZFC o (Y — ¢).

Suppose that ¢ is a sentence (of L(=, &€)) and
that ZFC +q ¢. Suppose that A < K is a universally
Baire set which witnesses this. Viewing A as a
“proof”, one can naturally define the “length” of
this proof to be the ordinal of A in the hierarchy
of the universally Baire subsets of the Cantor set,
K, given by the relation <yy.

Thus one can define the usual sorts of Godel and
Rosser sentences. These are “self-referential sen-
tences”, and Rosser’s construction yields sentences
with stronger undecidability properties than does
Godel’s construction.

For example, one can construct a sentence ¢
(obviously false) which expresses:

“There is a proof ZFC* -q (—¢g) for
which there is no shorter proof
ZFC* +q ¢o”,

where ZFC* is ZFC together with the axiom “There
exists a proper class of Woodin cardinals”. Such
constructions illustrate that Q-logic is a reasonable
generalization of first order logic.

Later in this article I shall make use of the
notion of the length of a proof in Q-logic when I
define abstractly the hierarchy of large cardinal
axioms.

Q-logic is unaffected by passing to a Cohen
extension. This is the property of Generic Invari-
ance. The formal statement of this theorem
involves some notation, which I discuss. It is
customary in set theory to write for a given
sentence ¢, “V E ¢” to indicate that ¢ is true, i.e.,
true in V, the universe of sets. Similarly, if B is a
complete Boolean algebra, “VE E ¢” indicates that
¢ is true in the Cohen extensions of V that B
could be used to define (again in some virtual
universe where our universe becomes a countable
transitive set, as briefly discussed when the
notation “VE E ¢” was introduced just before the
definition of Generic Soundness).

Theorem (Generic Invariance). Suppose that
there exists a proper class of Woodin cardinals
and that ¢ is a sentence. Then for each complete
Boolean algebra B, ZFC +q ¢ if and only if
VB EYZFC -q ¢”. O

Similar arguments establish that if there exists
a proper class of Woodin cardinals, then Q-logic
satisfies Generic Soundness.

The following theorem is a corollary of results
mentioned in the first part of this article.

Theorem. Suppose that there exists a proper class
of Woodin cardinals. Then for each sentence ¢,

ZFC o “(H(w1), €) F ¢p”
if and only if (H(w1),€) E ¢. U

A straightforward corollary is that
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ZFC +q Projective Determinacy,

which vividly illustrates that Q-logic is stronger
than first order logic.

The question of whether there can exist analogs
of determinacy for the structure (H(w?>), €) can
now be given a precise formulation.

Can there exist a sentence ¥ such that
for all sentences ¢ either

ZFC+ Y o “(H(w2),€) E ¢ or
ZFC+Y o “(H(w>), €) E ~¢p”

and such that ZFC + ¥ is )-consistent?

Such sentences ¥ will be candidates for the
generalization of Projective Determinacy to H(w?).
Notice that I am not requiring that the sentence ¥
be a proposition about H(w3); the sentence can
refer to arbitrary sets.

Why seek such sentences?

Here is why. By adopting axioms which “settle”
the theory of (H(w3»), €) in Q-logic, one recovers
for the theory of this structure the empirical com-
pleteness currently enjoyed by number theory.
This is because of the generic invariance of Q-
logic.

More speculatively, such axioms might allow
for the development of a truly rich theory for the
structure (H(w?), €), free to a large extent from
the ubiquitous occurrence of unsolvable problems.
Compare, for example, the theory of the projective
sets as developed under the assumption of Pro-
jective Determinacy with the theory developed of
the problems about the projective sets which are
not solvable simply from ZFC.

The ideal 7ys, which I now define, plays an es-
sential and fundamental role in the usual formu-
lation of Martin’s Maximum.

Definition. Ixs is the o-ideal of all sets A < w;
such that w;\A contains a closed unbounded
set. A set S c w is stationary if for each closed,
unbounded set C < w1, SNC#£D.AsetS c w;
is co-stationary if the complement of S is
stationary. O

The countable additivity and the nonmaximal-
ity of the ideal 7Iys are consequences of the Axiom
of Choice.

In my view, the continuum problem is a direct
consequence of assuming the Axiom of Choice.
This is simply because by assuming the Axiom of
Choice, the reals can be well ordered and so
|IR| = 8 for some ordinal «. Which «? This is the
continuum problem.

Arguably, the stationary, co-stationary, subsets
of w1 constitute the simplest true manifestation
of the Axiom of Choice. A metamathematical analy-
sis shows that assuming Projective Determinacy,
there is really no manifestation within H(w1) of
the Axiom of Choice. More precisely, the analysis
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of the projective sets, assuming Projective Deter-
minacy, does not require the Axiom of Choice.

These considerations support the claim that
the structure (H(w?»), €) is indeed the next struc-
ture to consider after (H(w1), €), being the sim-
plest structure where the influence of the Axiom
of Choice is manifest.

The Axiom ()

I now come to a central definition, which is that
of the axiom (x). This axiom is a candidate for
the generalization of Projective Determinacy to
the structure (H(w?>), ). The definition of the
axiom (%) involves some more notation from the
syntax of formal logic. It is frequently important
to monitor the complexity of a formal sentence.
This is accomplished through the Levy hierarchy.

The collection of 3¢ formulas of our language
L(£, €) is defined as the smallest set of formulas
which contains all quantifier-free formulas and
which is closed under the application of bounded
quantifiers.

Thus, if ¢ is a 3¢ formula, then so are the for-
mulas (Vx;((x;€x;j) — ¢)) and (Ix;(x;€EX;) A P)).

We shall be interested in formulas which are of
the form (Vx;(3x;y)), where  is a 3y formula.
These are the ITp formulas. Somewhat simpler are
the IT; formulas and the X; formulas; these are the
formulas of the form (V x; ) or of the form (3x;y)
respectively, where  is again a 3y formula.

Informally, aIl> sentence requires two (nested)
“unbounded searches” to verify that the sentence
is true, whereas for a ITy sentence only one un-
bounded search is required. Verifying that a 31 sen-
tence is true is even easier.

For example, consider the structure (H(w), €),
which I have already noted is in essence the stan-
dard structure for number theory.

Many of the famous conjectures of modern
mathematics are expressible as IT; sentences in this
structure. This includes both Goldbach’s Conjec-
ture and the Riemann Hypothesis. However, the
Twin Prime Conjecture is expressible by a I1» sen-
tence, as is, for example, the assertion that P # NP,
and neither is obviously expressible by a IT; sen-
tence. This becomes interesting if, say, either of
these latter problems were proved to be unsolv-
able from, for example, the natural axioms for
(H(w), €). Unlike the unsolvability of a ITy sen-
tence, from which one can infer its “truth”, for Il»
sentences the unsolvability does not immediately
yield a resolution.

If M is a transitive set and P and Q are subsets
of M, then one may consider (M,P,Q,€) as a
structure for the language L(=, P, Q,Aé), obtained
by adding two new symbols, P and Q,to L(£,&).
One defines the 3y formulas and the IT> formulas
of this expanded language in the same way as
above.

The structure I actually wish to consider is

(H(w2),Ins, X, €),
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where X < R is universally Baire. If ¢ is a sen-
tence in the language L&, P, 0, &) for this struc-
ture, then there is a natural interpretation of the
assertion that

ZFC + “(H(w2), Ins, X, €) E ¢~

is Q-consistent. The only minor problem is how
to deal with X. But X is universally Baire. Thus I
define

ZFC + “(H(w3),Ins, X, €) E ¢

to be Q-consistent if for every universally Baire set
A there exists a countable transitive set M such
that

1. M is A-closed and M is X-closed;

2. (M, e) EZFC;
3. (H(w2)M, (Ine)M, X N M, €) E ¢, where

H(w2)M ={ae M| (M,€)E“a e Hw2)"},

and
InsM ={aeM| (M, €)F “aeins”}.

These are the relevant sets as computed in M.
With these definitions in hand, I come to the de-
finition of the axiom (x). The version I give is an-
chored in the projective sets; stronger versions of
the axiom are naturally obtained by allowing more
universally Baire sets in the definition.

Axiom (x): There is a proper class of
Woodin cardinals, and for each projec-
tive set X < R, for each Il sentence ¢,
if the theory

ZFC+ “(H(w2),Ins, X, €) F ¢”
is Q-consistent, then

(H(w?2),Ins, X, €) F ¢.

What kinds of assertions are there which can be
formulated in the form (H(w?»), €) F ¢ for some
IT> sentence ¢? There are many examples. One ex-
ample is Martin’s Axiom (w1). Another, which
identifies a consequence of the axiom (%), is the
assertion thatif A ¢ R and B C R are each nowhere
countable and of cardinality X1, then A and B are
order isomorphic. A set X C R is nowhere count-
able if X N O is uncountable for each (nonempty)
open set O < R. Thus, assuming the axiom (x),
there is exactly one possible order type for nowhere
countable subsets of R which have cardinality X1.
I refer the reader to [Shelah 1998] for details, ref-
erences, and other examples.

The axiom () is really a maximality principle
somewhat analogous to asserting algebraic clo-
sure for a field.

A cardinal k is an inaccessible cardinal if it
is a limit cardinal with the additional property
that any cofinal subset of k necessarily has
cardinality k. For example, w is an inaccessible
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cardinal. The axiom which asserts the existence
of an uncountable inaccessible cardinal is the
weakest traditional large cardinal axiom.

Theorem. Suppose that there exists a proper class
of Woodin cardinals and that there is an inaccessi-
ble cardinal which is a limit of Woodin cardinals.
Then ZFC + axiom () is Q) -consistent. O

There is an elaborate machinery of iterated forc-
ing: this is the technique of iterating Cohen’s
method of building extensions [Shelah 1998]. It is
through application of this machinery that, for ex-
ample, the consistency of

ZFC + “Martin’s Maximum”

is established (assuming the consistency of ZFC to-
gether with a specific large cardinal axiom, much
stronger than, for example, the axiom that there
is a Woodin cardinal).

Iterated forcing can be used to show the consis-
tency of statements of the form “(H(w>),€) E ¢”
for arich variety of IT> sentences ¢.

The previous theorem, on the Q-consistency of
the axiom (), is proved using the method of forc-
ing but notusing any machinery of iterated forcing.
Further, the theorem is not proved as a corollary of
some deep analysis of which IT, sentences can hold
in H(wo).

The axiom (x) settles in Q-logic the full theory
of the structure (H(w?>), €). The stronger version
of the following theorem, obtained by replacing
(H(w?), €) with (H(w?2), X, €) where X is a pro-
jective set, is also true.

Theorem. Suppose that there exists a proper
class of Woodin cardinals. Then for each sentence
¢, either

ZFC + axiom (%) q “(H(w2), €) E ¢p” or
ZFC + axiom (%) q “(H(w32), €Y E ~¢”. O

Suppose that ¢ is a II> sentence and that
X c R is a projective set such that

ZFC + “(H(w2),Ins, X, €) F ¢p”

is not Q-consistent. Then the analysis behind the
proof of the Q-consistency of the axiom (x ) yields
a projective witness for the corresponding Q-proof.

Thus the axiom () is in essence an axiom which
can be localized to H(w2). More precisely, there is
a (recursive) set of axioms, i.e., a recursive theory T,
such that, assuming the existence of a proper
class of Woodin cardinals, the axiom () holds if

and only if
(H(w2),€)ET.

Finally, assuming there is a proper class of
Woodin cardinals, the axiom () is equivalent to a
strong form of a bounded version of Martin’s Max-
imum, so again seemingly disparate threads are
woven into a single tapestry.
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The Axiom () and 250
There is a I1> sentence Yac, which if true in the
structure (H(w3»), €) implies that 280 = x>,

The statement “(H(w?»), €) E Yac” is Q-consis-
tent, and so as a corollary the axiom (x) implies
280 = o,

Definition @yac: Suppose S and T are each
stationary, co-stationary, subsets of w;. Then
there exist: a closed unbounded set C < w; a
well-ordering (L, <) of cardinality wi; and a
bijection 17 : w1 — L such that for all « € C,

xeS—a*eT,

where o* is the countable ordinal given by the
order type of {mm(B) | B < «} as a suborder of
(L, <). O

By standard methods ¢ac can be shown to be
expressible in the required form (as a II> sen-
tence).

Lemma. Suppose that Yac holds. Then 280 = 8y. O

There is a subtle aspect to this lemma. Suppose
that CH holds and that (x4 : @ < w1) is an enu-
meration of R.

Thus @ ac must fail. However, it is possible that
there is no counterexample to Yac which is de-
finable from the given enumeration (xy : @ < w1).

I note that Martin’s Maximum can be shown to
imply @ac. This gives a completely different view
of why the axiom Martin’s Maximum implies that
280 = Ko,

And What about CH?

The basic question is the following. Is there an ana-
log of the axiom (x) in the context of CH? Con-
tinuing the analogy with the theory of fields, one
seeks to complete the similarity:

?+CH
axiom (k)

real closed + ordered
algebraically closed

More generally: Under what circumstances can the
theory of the structure (H(w?>), €) be finitely ax-
iomatized, over ZFC, in Q-logic?

Formally the sentences of our language, £L(, €),
are (certain) finite sequences of elements of the un-
derlying alphabet, which in this case can be taken
to be N. There is a natural (recursive) bijection of
N with the set of all finite sequences from N. This
associates to each sentence ¢ of L(=, &) a positive
integer k¢, which is the Gddel number of ¢.

To address the questions above, I require a de-
finition generalizing the definition of 0" where 0’
is the set

{ke | ¢ is a Xy sentence and (H(w), €) F ¢}.

Assuming ZFC is consistent, then the set
tkg | ¢ is a sentence and ZFC + ¢}

is recursively equivalent to 0’ (a simple, though
somewhat subtle, claim). In fact, one could
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reasonably take this as the definition of 0’. This
suggests the definition of 0,

Definition. Suppose that there exists a proper
class of Woodin cardinals. Then

0@ = {kg | ZFC - ¢}. ]

Suppose that M is a transitive set and A < M.
Then the set A is definable in the structure (M, €)
if there is a formula @(x1) of £(£, &) such that

A={a| (M, e)F ylal}.

The following theorem is one version of Tarski’s
theorem on the undefinability of truth.

Theorem (Tarski). Suppose that M is a transitive set
with H(w) € M. Then the set {ky | (M,€) F ¢} is
not definable in the structure (M, €). O

For each sentence ¥, the set {k¢ | ZFC+¥ + ¢}
is definable in the structure (H(w), €). Thus by
Tarski’s theorem, for each sentence ¥ the set

{¢ | ZFC+Y¥Y +“(H(w),e) F ¢”}

is not equal to the set {¢ | (H(w), €) F ¢}. Thisis
a special case of Godel’s First Incompleteness The-
orem.

Analogous considerations apply in our situation,
and so our basic problem of determining when the
theory of the structure (H(w3»), €) can be finitely
axiomatized, over ZFC, in Q-logic naturally leads
to the problem: How complicated is 0€2?

This set looks potentially extremely compli-
cated, for it is in essence Q-logic. Note that since

{p | ZFC o “(H(w1), €) F ¢}

is equal to the set {¢p | (H(w1), €) F ¢} by Tarski’s
theorem, 02 is not definable in the structure
(H(w1), €).

The calculation of the complexity of 0¢? in-
volves adapting the Inner Model Program to ana-
lyze models of Determinacy Axioms rather than
models of Large Cardinal Axioms.

This analysis, which is a bit involved and tech-
nical, yields the following result where c* denotes
the least cardinal greater than c. Suppose that
there exists a proper class of Woodin cardinals.
Then 0®Y is definable in the structure (H(c*), €).
Now if the Continuum Hypothesis holds, then
c=w; and so H(ct) = H(w?). Therefore, if the
Continuum Hypothesis holds, then 0¢? is definable
in the structure (H(w?), €).

Appealing to Tarski’s theorem, we obtain as a
corollary our main theorem.

Theorem. Suppose that there exists a proper class
of Woodin cardinals, Vi E ZFC +¥, and for each
sentence ¢ of L(=, &) either

ZFC+Y o “(H(w2), €) E ¢ or
ZFC+Y o “(H(w>), €) E —¢p”.
Then CH is false. O
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There are more precise calculations of the com-
plexity of 02 than I have given. For the indicated
application on CH, one is actually interested in the
complexity of sets X = N which are Q-recursive.
Ultimately, it is not really CH which is the critical
issue, but effective versions of CH.

The O Conjecture

Perhaps Q-logic is not the strongest reasonable
logic.

Definition (Q* -logic). Suppose that there exists a
proper class of Woodin cardinals and that ¢ is a
sentence. Then

ZFC q* ¢
if for all ordinals « and for all complete Boolean
algebras B, if VE £ ZFC, then VE F ¢. O

Generic Soundness is immediate for Q*-logic,
and evidently Q*-logic is the strongest possible
logic satisfying this requirement.

The property of generic invariance also holds
for O* -logic.

Theorem (Generic Invariance). Suppose that
there exists a proper class of Woodin cardinals
and that ¢ is a sentence. Then for each complete
Boolean algebra B, ZFC +q+ ¢ if and only if

VB E “ZEC o« ¢ i

Having defined Q*-logic, a natural question arises.
Is Q*-logic the same as Q-logic (at least for II-
sentences)? The restriction to Ilo sentences is a
necessary one.

Q Conjecture: Suppose that there ex-
ists a proper class of Woodin cardinals.
Then for each Il sentence ¢,
ZFC g+ ¢ if and only if ZFC +q ¢.

If the Q Conjecture is true, then I find the ar-
gument against CH, based on strong logics, to be
a more persuasive one. One reason is that the Q
Conjecture implies that if theory of the structure
(H(w?), €) is finitely axiomatized, over ZFC, in
QO*-logic, then CH is false.

Connections with the Logic of Large Cardinal
Axioms

Q-logic is intimately connected with an abstract no-
tion of what a large cardinal axiom is. If the ) Con-
jecture is true, then the validities of ZFC in Q-
logic—these are the sentences ¢ such that
ZFC +q ¢ —calibrate the large cardinal hierarchy.

To illustrate this claim I make the following ab-
stract definition of a large cardinal axiom, essen-
tially identifying large cardinal axioms with one
fundamental feature of such axioms. This is the
feature of “generic stability”. It is precisely this as-
pect of large cardinal axioms which underlies the
fact that such axioms cannot settle the Continuum
Hypothesis. A formula ¢ is a » formula if it is of
the form (Ix;(Vx;y)) where ¢ is a 3¢ formula.
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Suppose that k is an ordinal and that ¢ is a 3»
formula. Then “V E ¢p[k]” indicates that ¢ is true
of k in V, the universe of sets. Similarly, if B is a
complete Boolean algebra, then “VB E ¢p[k]” indi-
cates that ¢ is true of k in the Cohen extensions
of V that B could be used to define.

An inaccessible cardinal « is strongly inacces-
sible if for each cardinal A < k, 2* < k.

Definition. (3x1¢) is a large cardinal axiom if
¢(x1) is a X»-formula; and, as a theorem of ZFC,
if k is a cardinal such that V E ¢[k], then k is un-
countable, strongly inaccessible, and for all com-
plete Boolean algebras B of cardinality less than
K, VB E ¢p[k]. O

Definition. Suppose that (3x;¢) is a large cardi-
nal axiom. Then V is ¢-closed if for every set X
there exist a transitive set M and k € M n Ord

such that
(M, ) E ZFC,

X € Mg and such that (M, €) F ¢l[k]. O

The connection between Q-logic and first order
logic is now easily identified.

Lemma. Suppose that there exists a proper class of
Woodin cardinals and thatV¥ is aIl» sentence. Then
ZFC +q Y if and only if there is a large cardinal
axiom (3x1¢) such that

ZFC +q “V is ¢-closed”
and such that ZFC + “V is ¢-closed” + V.

An immediate corollary of this lemma is that the
Q Conjecture is equivalent to the following con-
jecture, which actually holds for all (conventional)
large cardinal axioms currently within reach of
the Inner Model Program.

Conjecture: Suppose that there exists
a proper class of Woodin cardinals. Sup-
pose that (Ix;¢) is a large cardinal
axiom such that V is ¢-closed.

Then ZFC +q “V is ¢-closed.”

The equivalence of this conjecture with the Q Con-
jecture is essentially a triviality.

Nevertheless, reformulating the Q Conjecture
in this fashion does suggest a route toward prov-
ing the Q Conjecture. Moreover, the reformula-
tion, in conjunction with the preceding lemma,
shows quite explicitly that if the Q Conjecture is
true, then Q-logic is simply the natural logic
associated to the set of large cardinal axioms
(Ix1¢) for which V is ¢-closed.

The Q Conjecture and the Hierarchy of Large
Cardinals

To the uninitiated the plethora of large cardinal ax-
ioms seems largely a chaotic collection founded on
a wide variety of unrelated intuitions. An enduring
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mystery of large cardinals is that empirically they
really do seem to form a well-ordered hierarchy.
The search for an explanation leads to the fol-
lowing question.

Is it possible to formally arrange the
large cardinal axioms (dx1¢) into a
well-ordered hierarchy incorporating
the known comparisons of specific
axioms?

If the Q) Conjecture is true, then the answer is affir-
mative, at least for those axioms suitably realized
within the universe of sets. More precisely, suppose
there exists a proper class of Woodin cardinals. The
large cardinal axioms (3x1 ¢b) such that

ZFC +q “V is ¢-closed”

are naturally arranged in a well-ordered hierarchy
by comparing the minimum possible lengths of the
Q-proofs, ZFC +q“V is ¢-closed”.

If the Q Conjecture holdsin V, then this hierarchy
includes alllarge cardinal axioms (3x1 ¢) such that
the universe V is ¢-closed. This, arguably, accounts
for the remarkable success of the view that all
large cardinal axioms are comparable. Of course,
it is not the large cardinals themselves (k such
that ¢b[k] holds) which are directly compared, but
the auxiliary notion that the universe is ¢-closed.
Nevertheless, restricted to those large cardinal
axioms (3Ix1 ¢p) currently within reach of the Inner
Model Program, this order coincides with the usual
order which is (informally) defined in terms of
consistency strength.

Finally, this hierarchy explains, albeit a poste-
riori, the intertwining of large cardinal axioms and
determinacy axioms.

Resolving the Q Conjecture is essential if we are
to advance our understanding of large cardinal
axioms. If the Q Conjecture is true, we obtain, at
last, a mathematically precise definition of this
hierarchy. But, as one might expect, with this
progress come problems (of comparing specific
large cardinal axioms) which seem genuinely out
of reach of current methods. If the Q Conjecture
is refuted from some large cardinal axiom (which
likely must transcend every determinacy axiom),
then the explicit hierarchy of large cardinal axioms
as calibrated by the validities of Q-logic is simply
an initial segment of something beyond.

Concluding Remarks

So, is the Continuum Hypothesis solvable? Per-
haps I am not completely confident the “solution”
I have sketched is the solution, but it is for me con-
vincing evidence that there is a solution. Thus, I now
believe the Continuum Hypothesis is solvable,
which is a fundamental change in my view of set
theory. While most would agree that a clear reso-
lution of the Continuum Hypothesis would be a

NOTICES OF THE AMS

remarkable event, it seems relatively few believe
that such a resolution will ever happen.

Of course, for the dedicated skeptic there is al-
ways the “widget possibility”. This is the future
where it is discovered that instead of sets we
should be studying widgets. Further, it is realized
that the axioms for widgets are obvious and, more-
over, that these axioms resolve the Continuum
Hypothesis (and everything else). For the eternal
skeptic, these widgets are the integers (and the Con-
tinuum Hypothesis is resolved as being meaning-
less).

Widgets aside, the incremental approach
sketched in this article comes with a price. What
about the general continuum problem; i.e. what
about H(w3), H(wa), H(W(w,+2010)), etc.?

The view that progress towards resolving the
Continuum Hypothesis must come with progress
on resolving all instances of the Generalized Con-
tinuum Hypothesis seems too strong. The under-
standing of H(w) did not come in concert with an
understanding of H(w1), and the understanding
of H(w1) failed to resolve even the basic myster-
ies of H(w?). The universe of sets is a large place.
We have just barely begun to understand it.
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