
Foundations of Mathematics.

Does mathematics need foundations? (Not until 1900.)

Mathematical approach: Work towards an axiom
system of mathematics with purely mathematical
means. Hilbert’s Programme). In its naïve interpretation
crushed by Gödel’s Incompleteness Theorem.

Extra-mathematical approach: Use external arguments
for axioms and rules: pragmatic, philosophical,
sociological, (theological ?).

Foundations of number theory: test case.
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Sets are everything (1).

Different areas of mathematics use different primitive
notions: ordered pair, function, natural number, real
number, transformation, etc.

Set theory is able to incorporate all of these in one
framework:

Ordered Pair. We define

〈x, y〉 := {{x}, {x, y}}.

(Kuratowski pair)
Function. A set f is called a function if there are
sets X and Y such that f ⊆ X × Y and

∀x, y, y′
(

〈x, y〉 ∈ f&〈x, y′〉 ∈ f → y = y′
)

.
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Sets are everything (2).

Set theory incorporates basic notions of mathematics:

Natural Numbers. We call a set X inductive if it
contains ∅ and for each x ∈ X, we have x ∪ {x} ∈ X.
Assume that there is an inductive set. Then define N

to be the intersection of all inductive sets.
Rational Numbers. We define

P := {0, 1} × N × N\{0}, then

〈i, n, m〉 ∼ 〈j, k, `〉 : ⇐⇒ i = j & n · ` = m · k, and

Q := P/∼.
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Sets are everything (3).

Set theory incorporates basic notions of mathematics:

Real Numbers. Define an order on Q by

〈i, n, m〉 ≤ 〈j, k, `〉 : ⇐⇒ i < j ∨ (i = j & n · ` ≤ k · m).

A subset X of Q is called an initial segment if

∀x, y(x ∈ X & y ≤ x → y ∈ X).

Initial segments are linearly ordered by inclusion.
We define R to be the set of initial segments of Q.

These definitions implicitly used a lot of set theoretic
assumptions.
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Sets.

What is a set?
Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

The Full Comprehension Scheme. Let X be our universe
of discourse (“the universe of sets”) and let Φ be any
formula. Then the collection of those x such that Φ(x) holds
is a set:

{x ; Φ(x)}.
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Frege (1).

Gottlob Frege (1848-1925)

Frege’s Comprehension Principle. If Φ is any formula,
then there is some G such that

∀x(G(x) ↔ Φ(x)).

The ε operator. In Frege’s system, we can assign to
“concepts” F (second-order objects) a first-order object εF
(“the extension of F ”).
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Frege (2).

Basic Law V. If F and G are concepts (second-order
objects), then

εF = εG ↔ ∀x(F (x) ↔ G(x)).

Frege’s Foundations of Arithmetic. Let F be an absurd
concept (“round square”). Let G be the concept “being
equinumerous to εF ”. We then define 0 := εG.
Suppose 0, ... , n are already defined. Then let H be the
concept “being either 0 or ... or n” and let H be the concept
“being equinumerous to εH”. Then let n + 1 := εH.
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Russell (1).

Bertrand Arthur William
3rd Earl Russell (1872-1970)

Grandson of John 1st Earl Russell (1792-1878); British prime minister (1846-1852 &
1865-1866).

1901: Russell discovers Russell’s paradox.

1910-13: Principia Mathematica with Alfred North Whitehead (1861-1947).

1916: Dismissed from Trinity College for anti-war protests.

1918: Imprisoned for anti-war protests.

1940: Fired from City College New York for anti-war protests.

1950: Nobel Prize for Literature.

1957: First Pugwash Conference.
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Russell (2).

Frege’s Comprehension Principle. Every formula defines a concept.
Basic Law V. If F and G are concepts, then εF = εG ↔ ∀x(F (x) ↔ G(x)).

Theorem (Russell). Basic Law V and the Full
Comprehension Principle together are inconsistent.
Proof. Let R be the concept “being the extension of a concept which you don’t fall under”,
i.e., the concept described by the formula

Φ(x) :≡ ∃F (x = εF ∧ ¬F (x)).

This concept exists by Comprehension. Let r := εR.
Either R(r) or ¬R(r):

1. If R(r), then there is some F such that r = εF and ¬F (r). Thus εF = εR, and by
Basic Law V, we have that F (r) ↔ R(r). But then ¬R(r). Contradiction!

2. If ¬R(r), then for all F such that r = εF we have F (r). But R is one of these F , so
R(r). Contradiction!

q.e.d.
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Russell (3).

Theorem (Russell). The Full Comprehension Principle
cannot be an axiom of set theory.
Proof. Suppose the Full Comprehension Principle holds, i.e., every formula Φ describes a
set {x ; Φ(x)}. Take the formula Φ(x) :≡ x /∈ x and form the set r := {x ; x /∈ x} (“the
Russell class”).
Either r ∈ r or r /∈ r.

1. If r ∈ r, then Φ(r), so r /∈ r. Contradiction!

2. If r /∈ r, then ¬Φ(r), so ¬r /∈ r, i.e., r ∈ r. Contradiction!

q.e.d.
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Frege & Russell.

Russell discovered the paradox in June 1901.

Russell’s Paradox was discovered independently by
Zermelo (Letter to Husserl, dated April 16, 1902).

B. Rang, W. Thomas, Zermelo’s discovery of the “Russell paradox", Historia
Mathematica 8 (1981), p. 15-22.

Letter to Frege (June 16, 1902) with the paradox.

Frege’s reply (June 22, 1902):
“with the loss of my Rule V, not only the foundations of my arithmetic, but also
the sole possible foundations of arithmetic, seem to vanish”.
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Attempts to resolve the paradoxes.

Theory of Types.
Russell (1903, “simple theory of types”; 1908, “ramified
theory of types”). Principia Mathematica.

Axiomatization of Set Theory.
Zermelo (1908). Skolem/Fraenkel (1922). Von
Neumann (1925). “Zermelo-Fraenkel set theory” ZF.

Foundations of Mathematics.
Hilbert’s 2nd problem: Consistency proof of arithmetic
(1900). Hilbert’s Programme (1920s).
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The Axiomatization of Set Theory (1).

Ernst Zermelo (1871-1953).

Zermelo Set Theory (1908) Z−. Union Axiom, Pairing
Axiom, Aussonderungsaxiom (Separation), Power Set
Axiom, Axiom of Infinity.

Zermelo Set Theory with Choice ZC
−. Axiom of

Choice.
Hausdorff (1908/1914). Are there any regular limit
cardinals? “weakly inaccessible cardinals”.

“The least among them has such an exorbitant magnitude that it will hardly
be ever come into consideration for the usual purposes of set theory.”
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The Axiomatization of Set Theory (2).

1911-1913. Paul Mahlo generalizes Hausdorff’s
questions in terms of fixed point phenomena ( Mahlo
cardinals).

Thoralf Skolem Abraham Fraenkel
(1887-1963) (1891-1965)

1922: Ersetzungsaxiom (Replacement) ZF
− and

ZFC
−.

von Neumann (1929): Axiom of Foundation Z, ZF

and ZFC.
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The Axiomatization of Set Theory (3).

Zermelo (1930): ZFC doesn’t solve Hausdorff’s
question (independently proved by Sierpiński and
Tarski).

Question. Does ZF prove AC?
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Cardinals & Ordinals (1).

Cardinality. Two sets A and B are called equinumerous if
there is a bijection π : A → B. Equinumerosity is an
equivalence relation. The cardinality of A is its
equinumerosity equivalence class.
Ordinals. A linear order 〈X,≤〉 is called a well-order if there
is no infinite strictly descending chain, i.e., a sequence

x0 > x1 > x2 > ...

Examples. Finite linear orders, 〈N,≤〉.

Nonexamples. 〈Z,≤〉, 〈Q,≤〉, 〈R,≤〉.
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Cardinals and Ordinals (2).

Important: If 〈X,≤〉 is not a wellorder, that does not mean
that the set X cannot be wellordered.

-1 -2 -3 -4 -5 . . .

. . . -4 -3 -2 -1 0 1 2 3 4 . . .

 0 -1 1 -2 2 . . .

z v z∗ :↔ |z| < |z∗| ∨ (|z| = |z∗| & z ≤ z∗)

There is an isomorphism between 〈N,≤〉 and 〈Z,v〉. The
order 〈Z,v〉 is a wellorder, thus Z is wellorderable.
If L and L

∗ are wellorders then either L is orderisomorphic
to an initial segment of L

∗ or vice versa.
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Cardinals and Ordinals (3).

If L and L
∗ are wellorders then either L is orderisomorphic to an initial segment of L∗ or

vice versa.

The class of wellorders is wellordered by

L 4 L
∗ ↔ L is orderisomorphic to an initial segment of L

∗.

Ordinals are the equivalence classes of orderisomorphism.
We let Ord be the class of all ordinals.
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Operations on ordinals (1).

If L = 〈L,≤〉 and M = 〈M,v〉 are linear orders, we can
define their sum and product:

L ⊕ M := 〈L∪̇M,�〉 where x � y if

x ∈ L and y ∈ M , or

x, y ∈ L and x ≤ y, or

x, y ∈ M and x v y.

L ⊗ M := 〈L × M,�〉 where 〈x, y〉 � 〈x∗, y∗〉 if

y @ y∗, or

y = y∗ and x ≤ x∗.
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Operations on ordinals (2).

Fact. N ⊕ N is isomorphic to N ⊗ 2.

Exercise. These operations are not commutative: there are
linear orders such that L ⊕ M is not isomorphic to M ⊕ L

and similarly for ⊗. (Exercise 35.)

Observation. If L and M are wellorders, then so are L⊕M

and L ⊗ M.

Based on ⊗, we can define exponentiation by transfinite
recursion for ordinals α and β:

α0 := 1

αβ+1 := αβ ⊗ α

αλ :=
⋃

{αβ ; β < λ}
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Hauptzahlen

An ordinal ξ is called γ-number (“Hauptzahl der Addition”) if
for all α, β < ξ, we have α ⊕ β < ξ.
Example. ω ⊗ ω is a γ-number.

An ordinal ξ is called δ-number (“Hauptzahl der
Multiplikation”) if for all α, β < ξ, we have α ⊗ β < ξ.
Example. ωω is a δ-number.

An ordinal ξ is called ε-number (“Hauptzahl der
Exponentiation”) if for all α, β < ξ, we have αβ < ξ.
ε0 is the least ε-number.
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The Axiom of Choice (1).

The Axiom of Choice (AC). For every function f defined on
some set X with the property that f(x) 6= ∅ for all x, there is
a choice function F defined on X, such that

for all x ∈ X, we have F (x) ∈ f(x).

Implicitly used in Cantor’s work.

Isolated by Peano (1890) in Peano’s Theorem on the
existence of solutions of ordinary differential equations.

1904. Zermelo’s wellordering theorem.
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The Continuum Hypothesis (1).

If AC holds, then the real numbers R are wellorderable. That
means there is an ordinal α such that R and α are
equinumerous. Let c be the least such ordinal. We know by
Cantor’s theorem that this cannot be a countable ordinal.
There is an ordinal that is not equinumerous to the natural
numbers. We call it ω1.
Question. What is the relationship between c and ω1?

CH. ω1 = c. The least ordinal that is not equinumerous to
the natural numbers is the least ordinal that is
equinumerous to the real numbers.
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The Continuum Hypothesis (2).

Hilbert (1900). ICM in Paris: Mathematical Problems for
the XXth century.

“Es erhebt sich nun die Frage, ob das Continuum auch als wohlgeordnete
Menge aufgefaßt werden kann, was Cantor bejahen zu müssen glaubt.”

In other words: CH implies “there is a wellordering of the
real numbers”.

Question 1. Does ZF ` AC?

Question 2. Does ZF ` CH?

Question 2*. Does ZFC ` CH?

All of these questions were wide open in 1930.
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Hilbert’s Programme (1).

1900: Hilbert’s 2nd problem. “Is there a finitistic proof of
the consistency of the arithmetical axioms?”

1917-1921: Hilbert develops a predecessor of modern
first-order logic.

Paul Bernays (1888-1977)
Assistant of Zermelo in Zürich (1912-1916).

Assistant of Hilbert in Göttingen (1917-1922).

Completeness of propositional logic.

“Hilbert-Bernays” (1934-1939).

Hilbert-Ackermann (1928).

Goal. Axiomatize mathematics and find a finitary
consistency proof.
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Hilbert’s Programme (2).

1922: Development of ε-calculus (Hilbert & Bernays).
General technique for consistency proofs:
“ε-substitution method”.

1924: Ackermann presents a (false) proof of the
consistency of analysis.

1925: John von Neumann (1903-1957)
corrects some errors and proves the con-
sistency of an ε-calculus without the in-
duction scheme.

1928: At the ICM in Bologna, Hilbert claims that the
work of Ackermann and von Neumann constitutes a
proof of the consistency of arithmetic.
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Brouwer (1).

L. E. J. (Luitzen Egbertus Jan) Brouwer
(1881-1966)

Student of Korteweg at the UvA.

1909-1913: Development of topology. Brouwer’s Fixed
Point Theorem.

1913: Succeeds Korteweg as full professor at the UvA.

1918: “Begründung der Mengenlehre unabhängig vom
Satz des ausgeschlossenen Dritten”.
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Brouwer (2).

1920: “Besitzt jede reelle Zahl eine
Dezimalbruch-Entwickelung?”. Start of the
Grundlagenstreit.

1921: Hermann Weyl (1885-1955),
“Über die neue Grundlagenkrise der
Mathematik”

1922: Hilbert, “Neubegründung der Mathematik”.

1928-1929: ICM in Bologna; Annalenstreit. Einstein
and Carathéodory support Brouwer against Hilbert.
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Intuitionism.

Constructive interpretation of existential quantifiers.

As a consequence, rejection of the tertium non datur.

The big three schools of philosophy of mathematics:
logicism, formalism, and intuitionism.

Nowadays, different positions in the philosophy of
mathematics are distinguished according to their view
on ontology and epistemology. Main positions are:
(various brands of) Platonism, Social Constructivism,
Structuralism, Formalism.
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