Cantor (1).

Georg Cantor (1845-1918) studied in Zürich, Berlin, Göttingen Professor in Halle

- Work in analysis leads to the notion of cardinality (1874): most real numbers are transcendental.
- Correspondence with Dedekind (1831-1916): bijection between the line and the plane.
- Perfect sets and iterations of operations lead to a notion of ordinal number (1880).

Cantor (2).

Georg Cantor (1845-1918)

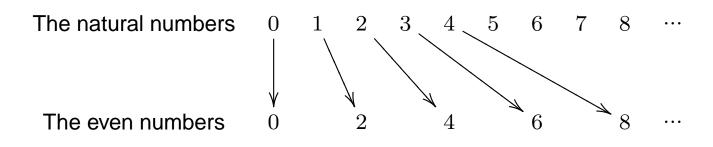
1877. Leopold Kronecker (1823-1891) tried to prevent publication of Cantor's work.

Cantor (2).

Georg Cantor (1845-1918)

- 1877. Leopold Kronecker (1823-1891) tried to prevent publication of Cantor's work.
- Cantor is supported by Dedekind and Felix Klein.
- 1884: Cantor suffers from a severe depression.
- 1888-1891: Cantor is the leading force in the foundation of the Deutsche Mathematiker-Vereinigung.
- Development of the foundations of set theory: 1895-1899.

Cardinality (1).



- There is a 1-1 correspondence (bijection) between N and the even numbers.
- There is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .
- There is a bijection between \mathbb{Q} and \mathbb{N} .
- There is no bijection between the set of infinite 0-1 sequences and N.
- There is no bijection between \mathbb{R} and \mathbb{N} .

Cardinality (2).

Theorem (Cantor). There is no bijection between the set of infinite 0-1 sequences and \mathbb{N} .

Theorem (Cantor). There is a bijection between the real line and the real plane.

Proof. Let's just do it for the set of infi nite 0-1 sequences and the set of pairs of infi nite 0-1 sequences:

If x is an infi nite 0-1 sequence, then let

$$x_0(n) := x(2n)$$
, and

$$x_1(n) := x(2n+1).$$

Let $F(x) := \langle x_0, x_1 \rangle$. *F* is a bijection. **Cantor to Dedekind (1877):** "*Ich sehe es, aber ich glaube es nicht!*"

Transfiniteness (1).

If $X \subseteq \mathbb{R}$ is a set of reals, we call $x \in X$ isolated in X if no sequence of elements of X converges to x.

Cantor's goal: Given any set *X*, give a construction of a nonempty subset that doesn't contain any isolated points.

Idea: Let X^{isol} be the set of all points isolated in X, and define $X' := X \setminus X^{isol}$.

Problem: It could happen that $x \in X'$ was the limit of a sequence of points isolated in *X*. So it wasn't isolated in *X*, but is now isolated in *X'*.

Solution: Iterate the procedure: $X_0 := X$ and $X_{n+1} := (X_n)'$.

Transfiniteness (2).

 $X' := X \setminus X^{\text{isol}}; X_0 := X \text{ and } X_{n+1} := (X_n)'.$

Question: Is $\bigcap_{n \in \mathbb{N}} X_n$ a set without isolated points?

Answer: In general, no!

So, you could set $X_{\infty} := \bigcap_{n \in \mathbb{N}} X_n$, and then $X_{\infty+1} := (X_{\infty})'$; in general, $X_{\infty+n+1} := (X_{\infty+n})'$.

The indices used in transfinite iterations like this are called ordinals.

Sets.

The notion of cardinality needs a general notion of function as a special relation between sets. In order to make the notion of an ordinal precise, we also need sets.

What is a set?

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

The Full Comprehension Scheme. Let *X* be our universe of discourse ("the universe of sets") and let Φ be any formula. Then the collection of those *x* such that $\Phi(x)$ holds is a set:

 $\{x\,;\,\Phi(x)\}.$

Frege (1).

Gottlob Frege (1848-1925)

Frege's Comprehension Principle. If Φ is any formula, then there is some *G* such that

 $\forall x(G(x) \leftrightarrow \Phi(x)).$

The ε **operator.** In Frege's system, we can assign to "concepts" *F* (second-order objects) a first-order object εF ("the extension of *F*").

Frege (2).

Basic Law V. If *F* and *G* are concepts (second-order objects), then

$$\varepsilon F = \varepsilon G \quad \leftrightarrow \quad \forall x (F(x) \leftrightarrow G(x)).$$

Frege's Foundations of Arithmetic. Let *F* be an absurd concept ("round square"). Let *G* be the concept "being equinumerous to εF ". We then define $\mathbf{0} := \varepsilon G$. Suppose 0, ..., n are already defined. Then let *H* be the concept "being either 0 or ... or n" and let \overline{H} be the concept "being equinumerous to εH ". Then let $\mathbf{n} + \mathbf{1} := \varepsilon \overline{H}$.

Russell (1).

Bertrand Arthur William 3rd Earl Russell (1872-1970)

- Grandson of John 1st Earl Russell (1792-1878); British prime minister (1846-1852 & 1865-1866).
- 1901: Russell discovers Russell's paradox.
- 1910-13: Principia Mathematica with Alfred North Whitehead (1861-1947).
- 1916: Dismissed from Trinity College for anti-war protests.
- 1918: Imprisoned for anti-war protests.
- 1940: Fired from City College New York for anti-war protests.
- 1950: Nobel Prize for Literature.
- 1957: First Pugwash Conference.

Russell (2).

Frege's Comprehension Principle. Every formula defines a concept. **Basic Law V.** If *F* and *G* are concepts, then $\varepsilon F = \varepsilon G \leftrightarrow \forall x(F(x) \leftrightarrow G(x))$.

Theorem (Russell). Basic Law V and the Full Comprehension Principle together are inconsistent.

Proof. Let *R* be the concept "being the extension of a concept which you don't fall under", *i.e.*, the concept described by the formula

$$\Phi(x) :\equiv \exists F(x = \varepsilon F \land \neg F(x)).$$

This concept exists by **Comprehension**. Let $r := \varepsilon R$. Either R(r) or $\neg R(r)$:

- 1. If R(r), then there is some F such that $r = \varepsilon F$ and $\neg F(r)$. Thus $\varepsilon F = \varepsilon R$, and by **Basic Law V**, we have that $F(r) \leftrightarrow R(r)$. But then $\neg R(r)$. Contradiction!
- 2. If $\neg R(r)$, then for all *F* such that $r = \varepsilon F$ we have F(r). But *R* is one of these *F*, so R(r). Contradiction!

q.e.d.

Russell (3).

Theorem (Russell). The Full Comprehension Principle cannot be an axiom of set theory.

Proof. Suppose the Full Comprehension Principle holds, *i.e.*, every formula Φ describes a set $\{x; \Phi(x)\}$. Take the formula $\Phi(x) :\equiv x \notin x$ and form the set $r := \{x; x \notin x\}$ ("the Russell class").

Either $r \in r$ or $r \notin r$.

- 1. If $r \in r$, then $\Phi(r)$, so $r \notin r$. Contradiction!
- 2. If $r \notin r$, then $\neg \Phi(r)$, so $\neg r \notin r$, *i.e.*, $r \in r$. Contradiction!

q.e.d.

Frege & Russell.

- Russell discovered the paradox in June 1901.
- Russell's Paradox was discovered independently by Zermelo (Letter to Husserl, dated April 16, 1902).

B. Rang, W. Thomas, Zermelo's discovery of the "Russell paradox", Historia Mathematica 8 (1981), p. 15-22.

- Letter to Frege (June 16, 1902) with the paradox.
- Frege's reply (June 22, 1902): "with the loss of my Rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic, seem to vanish".

Attempts to resolve the paradoxes.

Theory of Types.

Russell (1903, "simple theory of types"; 1908, "ramified theory of types"). *Principia Mathematica*.

Axiomatization of Set Theory. Zermelo (1908). Skolem/Fraenkel (1922). Von Neumann (1925). "Zermelo-Fraenkel set theory" ZF.

 Foundations of Mathematics.
 Hilbert's 2nd problem: Consistency proof of arithmetic (1900). Hilbert's Programme (1920s).

Principia Mathematica.

Alfred North Whitehead (1861-1947).

- Mathematician at Trinity College, one of Russell's teachers.
- Continuation of Frege's logicistic programme.
- Later: Philosophy of Science, in particular Process Ontologies.

Principia Mathematica: three volumes with a type-theoretic foundations for mathematics; including an axiomatization of arithmetic (1910, 1912, 1913).

Zermelo.

Ernst Zermelo (1871-1953)

- 1894: PhD in Berlin, student of Hermann Amandus Schwarz (1843-1921).
- Assistant of Max Planck, working in hydrodynamics (1894-1897).
- 1904: Proof of the Zermelo Wellordering Theorem (more next week).
- 1905: Professor in Göttingen.
- 1908: Zermelo's Axiom System for Set Theory: Zermelo Set Theory Z.
- 1912: Applications of set theory to mathematical games: Zermelo's Theorem on the determinacy of finite games.

Hilbert's Programme (1).

- 1917-1921: Hilbert develops a predecessor of modern first-order logic.
- Paul Bernays (1888-1977)

- Assistant of Zermelo in Zürich (1912-1916).
- Assistant of Hilbert in Göttingen (1917-1922).
- Completeness of propositional logic.
- "Hilbert-Bernays" (1934-1939).
- Hilbert-Ackermann (1928).
- Goal. Axiomatize mathematics and find a finitary consistency proof.

Hilbert's Programme (2).

- 1922: Development of ε-calculus (Hilbert & Bernays).
 General technique for consistency proofs:
 "ε-substitution method".
- 1924: Ackermann presents a (false) proof of the consistency of analysis.

1925: John von Neumann (1903-1957) corrects some errors and proves the consistency of an ε -calculus without the induction scheme.

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann constitutes a proof of the consistency of arithmetic.

Brouwer (1).

L.E.J. (Luitzen Egbertus Jan) Brouwer (1881-1966)

- Student of Korteweg at the UvA.
- 1909-1913: Development of topology. Brouwer's Fixed Point Theorem.
- 1913: Succeeds Korteweg as full professor at the UvA.
- 1918: "Begründung der Mengenlehre unabhängig vom Satz des ausgeschlossenen Dritten".

Brouwer (2).

1920: "Besitzt jede reelle Zahl eine Dezimalbruch-Entwickelung?". Start of the Grundlagenstreit.

1921: Hermann Weyl (1885-1955), "Über die neue Grundlagenkrise der Mathematik"

- 1922: Hilbert, "Neubegründung der Mathematik".
- 1928-1929: ICM in Bologna; Annalenstreit. Einstein and Carathéodory support Brouwer against Hilbert.

Intuitionism.

- Constructive interpretation of existential quantifiers.
- As a consequence, rejection of the *tertium non datur*.
- More in the guest lecture on November 17.
- The big three schools of philosophy of mathematics: logicism, formalism, and intuitionism.
- Nowadays, different positions in the philosophy of mathematics are distinguished according to their view on ontology and epistemology. Main positions are: (various brands of) Platonism, Social Constructivism, Structuralism, Formalism.

Gödel (1).

Kurt Gödel (1906-1978)

- Studied at the University of Vienna; PhD supervisor Hans Hahn (1879-1934).
- Thesis (1929): Gödel Completeness Theorem.
- 1931: "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". Gödel's First Incompleteness Theorem and a proof sketch of the Second Incompleteness Theorem.

Gödel (2).

- 1935-1940: Gödel proves the consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the axioms of set theory (solving one half of Hilbert's 1st Problem).
- 1940: Emigration to the USA: Princeton.
- Close friendship to Einstein, Morgenstern and von Neumann.
- Suffered from severe hypochondria and paranoia.
- Strong views on the philosophy of mathematics.

Gödel's Incompleteness Theorem (1).

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann constitutes a proof of the consistency of arithmetic.

- 1930: Gödel announces his result (G1) in Königsberg in von Neumann's presence.
- Von Neumann independently derives the Second Incompleteness Theorem (G2) as a corollary.
- Letter by Bernays to Gödel (January 1931): There may be finitary methods not formalizable in PA.
- 1931: Hilbert suggests new rules to avoid Gödel's result. Finitary versions of the ω -rule.
- By 1934, Hilbert's programme in the original formulation has been declared dead.

Gödel's Incompleteness Theorem (2).

Theorem (Gödel's Second Incompleteness Theorem). If *T* is a consistent axiomatizable theory containing PA, then $T \nvDash \operatorname{Cons}(T)$.

- "consistent": $T \not\vdash \bot$.
- "axiomatizable": T can be listed by a computer ("computably enumerable", "recursively enumerable").
- "containing \mathbf{PA} ": $T \vdash \mathbf{PA}$.
- "Cons(T)": The formalized version (in the language of arithmetic) of the statement 'for all *T*-proofs *P*, \perp doesn't occur in *P*'.

Gödel's Incompleteness Theorem (3).

- Thus: Either PA is inconsistent or the deductive closure of PA is not a complete theory.
- All three conditions are necessary:
 - Theorem (Presburger, 1929). There is a weak system of arithmetic that proves its own consistency ("Presburger arithmetic").

Mojzesz Presburger (1904-c. 1943)

Gödel's Incompleteness Theorem (3).

- Thus: Either PA is inconsistent or the deductive closure of PA is not a complete theory.
- All three conditions are necessary:
 - Theorem (Presburger, 1929). There is a weak system of arithmetic that proves its own consistency ("Presburger arithmetic").
 - If T is inconsistent, then $T \vdash \varphi$ for all φ .
 - If N is the standard model of the natural numbers, then Th(N) is a complete extension of PA (but not axiomatizable).

Gentzen.

Gerhard Gentzen (1909-1945)

- Student of Hermann Weyl (1933).
- 1934: Hilbert's assistant in Göttingen.
- 1934: Introduction of the Sequent Calculus.
- 1936: Proof of the consistency of PA from a transfinite wellfoundedness principle.

Theorem (Gentzen). Let $T \supseteq \mathbf{PA}$ such that T proves the existence and wellfoundedness of (a code for) the ordinal ε_0 . Then $T \vdash \operatorname{Cons}(\mathbf{PA})$.