Proof Theory.

Theorem (Gentzen).

Let $T \supseteq \mathbf{PA}$ such that T proves the existence and wellfoundedness of (a code for) all ordinals $\alpha < \varepsilon_0$. Then $T \vdash \operatorname{Cons}(\mathbf{PA})$.

Questions:

- What is ε_0 ?
- How can a theory in the language of arithmetic prove anything about ordinals?

Operations on ordinals (1).

If $L = \langle L, \leq \rangle$ and $M = \langle M, \sqsubseteq \rangle$ are linear orders, we can define their sum and product:

 $\mathbf{L} \oplus \mathbf{M} := \langle L \dot{\cup} M, \preceq \rangle$ where $x \preceq y$ if

- \checkmark $x \in L$ and $y \in M$, or
- $x, y \in L$ and $x \leq y$, or
- $x, y \in M$ and $x \sqsubseteq y$.
- $\mathbf{L} \otimes \mathbf{M} := \langle L \times M, \preceq \rangle$ where $\langle x, y \rangle \preceq \langle x^*, y^* \rangle$ if

$$\checkmark y \sqsubset y^*$$
, or

•
$$y = y^*$$
 and $x \le x^*$.

Operations on ordinals (2).

Fact. $\mathbb{N} \oplus \mathbb{N}$ is isomorphic to $\mathbb{N} \otimes 2$.

Exercise. These operations are not commutative: there are linear orders such that $L \oplus M$ is not isomorphic to $M \oplus L$ and similarly for \otimes . (Exercise 37.)

Observation. If ${\bf L}$ and ${\bf M}$ are wellorders, then so are ${\bf L}\oplus {\bf M}$ and ${\bf L}\otimes {\bf M}.$

Based on \otimes , we can define exponentiation by transfinite recursion for ordinals α and β :

$$\begin{array}{rcl} \alpha^{0} & := & \mathbf{1} \\ \alpha^{\beta+1} & := & \alpha^{\beta} \otimes \alpha \\ \alpha^{\lambda} & := & \bigcup \{ \alpha^{\beta} \, ; \, \beta < \lambda \} \end{array}$$

Hauptzahlen

An ordinal ξ is called γ -number ("Hauptzahl der Addition") if for all $\alpha, \beta < \xi$, we have $\alpha \oplus \beta < \xi$.

Example. $\omega \otimes \omega$ is a γ -number.

An ordinal ξ is called δ -number ("Hauptzahl der Multiplikation") if for all $\alpha, \beta < \xi$, we have $\alpha \otimes \beta < \xi$. **Example.** ω^{ω} is a δ -number.

An ordinal ξ is called ε -number ("Hauptzahl der Exponentiation") if for all $\alpha, \beta < \xi$, we have $\alpha^{\beta} < \xi$.

 ε_0 is the least ε -number.

Arithmetic and orderings (1).

Ordinals are not objects of arithmetic (neither first-order not second-order). So what should it mean that an arithmetical theory proves that " ε_0 is well-ordered"?

Let α be a countable ordinal. By definition, there is some bijection $f : \mathbb{N} \to \alpha$. Define

$$n <_f m :\leftrightarrow f(n) < f(m).$$

Clearly, *f* is an isomorphism between $\langle \mathbb{N}, \langle f \rangle$ and α .

If $g : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ is an arbitrary function, we can interpret it as a binary relation on \mathbb{N} :

$$n <_g m :\leftrightarrow g(n,m) = 1.$$

Arithmetic and orderings (2).

Let us work in second-order arithmetic

$$\langle \mathbb{N}, \mathbb{N}^{\mathbb{N}}, 2^{\mathbb{N} \times \mathbb{N}}, +, \times, 0, 1, \operatorname{app} \rangle$$

 $g: \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ codes a wellfounded relation if and only if

 $\neg \exists F \in \mathbb{N}^{\mathbb{N}} \forall n \in \mathbb{N}(g(F(n+1), F(n)) = 1).$

"Being a code for an ordinal $< \varepsilon_0$ " is definable in the language of second-order arithmetic (ordinal notation systems).

 $TI(\varepsilon_0)$ is defined to be the formalization of "every code g for an ordinal $< \varepsilon_0$ codes a wellfounded relation".

More proof theory (1).

 $TI(\varepsilon_0)$: "every code *g* for an ordinal $< \varepsilon_0$ codes a wellfounded relation"

Generalization: If "being a code for an ordinal $< \alpha$ " can be defined in second-order arithmetic, then let $TI(\alpha)$ mean "every code g for an ordinal $< \alpha$ codes a wellfounded relation".

The proof-theoretic ordinal of a theory T.

$$|T| := \sup\{\alpha \, ; \, T \vdash \mathrm{TI}(\alpha)\}$$

Rephrasing Gentzen. $|PA| = \varepsilon_0$.

More proof theory (2).

Results from Proof Theory.

- The proof-theoretic ordinal of primitive recursive arithmetic is ω^{ω} .
- (Jäger-Simpson) The proof-theoretic ordinal of arithmetic with arithmetical transfinite recursion is Γ₀ (the limit of the Veblen functions).

These ordinals are all smaller than ω_1^{CK} , the least noncomputable ordinal, *i.e.*, the first ordinal α such that there is no computable function $g : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ such that $\langle \mathbb{N}, \langle g \rangle$ is isomorphic to α .

Our open question in set theory...

- inaccessible cardinal a regular, strong limit cardinal.
- measurable cardinal a cardinal κ such that there is a nonprincipal κ-complete ultrafilter on κ ("κ is a generalized solution to the measure problem").

Theorem (Tarski-Ulam, 1930). Every measurable cardinal is inaccessible.

Question. Is every inaccessible cardinal measurable?

Jerzy Łoś 1920-1998

- Invented ultraproducts.
- Introduced the notion of categoricity.
- Conjectured Morley's theorem: If a theory is κ -categorical for an uncountable κ , then it is κ -categorical for all uncountable κ .
- 1955. Quelques remarques, théorèmes et problèmes sur les classes définissable d'algèbres.

Products (1).

Let $\mathcal{L} = {\dot{f}_n, \dot{R}_m; n, m}$ be a first-order language and S be a set.

Suppose that for every $i \in S$, we have an \mathcal{L} -structure

$$\mathbf{M}_i = \langle M_i, f_n^i, R_m^i; n, m \rangle.$$

Let $M_S := \prod_{i \in S} M_i$. For $X_0, ..., X_k \in M$, we let

 $f_n^S(X_0, ..., X_k)(i) := f_n^i(X_0(i), ..., X_k(i))$ and

 $R_m^S(X_0, ..., X_k) :\leftrightarrow \forall i \in S(R_m^i(X_0(i), ..., X_k(i)).$

Products (2).

In general, classes of structures are not closed under products:

Let $\mathcal{L}_F := \{+, \times, 0, 1\}$ be the language of fields and Φ_F be the field axioms. Let $S = \{0, 1\}$ and $\mathbf{M}_0 = \mathbf{M}_1 = \mathbb{Q}$. Then $\mathbf{M}_S = \mathbb{Q} \times \mathbb{Q}$ is not a field: $\langle 1, 0 \rangle \in \mathbb{Q} \times \mathbb{Q}$ doesn't have an inverse.

Theorem (Birkhoff, 1935). If a class of algebras is equationally definable, then it is closed under products.

Garrett Birkhoff (1884-1944)

Garrett **Birkhoff**, On the structure of abstract algebras, **Proceedings of the Cambridge Philosophical Society** 31 (1935), p. 433-454

Ultraproducts (1).

Suppose S is a set, M_i is an \mathcal{L} -structure and U is an ultrafilter on S.

Define \equiv_U on M_S by

$$X \equiv_U Y :\leftrightarrow \{i \, ; \, X(i) = Y(i)\} \in U,$$

and let $M_U := M_S / \equiv_U$. The functions f_n^S and the relations R_m^S are welldefined on M_U (*i.e.*, if $X \equiv_U Y$, then $f_n^S(X) \equiv_U f_n^S(Y)$), and so they induce functions and relations f_n^U and R_m^U on M_U . We call

$$\mathbf{M}_U := \mathrm{Ult}(\langle \mathbf{M}_i \, ; \, i \in S \rangle, U) := \langle M_U, f_n^U, R_m^U \, ; \, n, m \rangle$$

the ultraproduct of the sequence $\langle \mathbf{M}_i ; i \in S \rangle$ with U.

Ultraproducts (2).

Theorem (Łoś.) Let $\langle \mathbf{M}_i ; i \in S \rangle$ be a family of \mathcal{L} -structures and U be an ultrafilter on S. Let φ be an \mathcal{L} -formula. Then the following are equivalent:

- 1. $\mathbf{M}_U \models \varphi([X_0]_{\equiv_U}, ..., [X_k]_{\equiv_U})$, and
- **2.** $\{i \in S; \mathbf{M}_i \models \varphi(X_0(i), ..., X_k(i))\} \in U$.

Ultraproducts (2).

Theorem (Łoś.) Let $\langle \mathbf{M}_i ; i \in S \rangle$ be a family of \mathcal{L} -structures and U be an ultrafilter on S. Let σ be an \mathcal{L} -sentence. Then the following are equivalent:

- 1. $\mathbf{M}_U \models \sigma$, and
- **2.** $\{i \in S; \mathbf{M}_i \models \sigma\} \in U.$

Applications.

- If for all $i \in S$, \mathbf{M}_i is a field, then \mathbf{M}_U is a field.
- Let $S = \mathbb{N}$. Sets of the form $\{n; N \leq n\}$ are called final segments. An ultrafi lter U on \mathbb{N} is called nonprincipal if it contains all final segments. If $\langle \mathbf{M}_n; n \in \mathbb{N} \rangle$ is a family of \mathcal{L} -structures, U a nonprincipal ultrafi lter, and Φ an (infi nite) set of sentences such that each element is "eventually true", then $\mathbf{M}_U \models \Phi$.
- Nonstandard analysis (Robinson). Let \mathcal{L} be the language of fi elds with an additional 0-ary function symbol \dot{c} . Let $\mathbf{M}_i \models \operatorname{Th}(\mathbb{R}) \cup \{\dot{c} \neq 0 \land \dot{c} < \frac{1}{i}\}$. Then \mathbf{M}_U is a model of $\operatorname{Th}(\mathbb{R})$ plus "there is an infi nitesimal".

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985).

Alfred Tarski 1902-1983

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954. Bob Vaught (1926-2002).

Alfred Tarski 1902-1983

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954.
 Bob Vaught (1926-2002). 1957. Solomon Feferman (b. 1928).

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954. Bob Vaught (1926-2002). 1957. Solomon Feferman (b. 1928). 1957. Richard Montague (1930-1971).

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954.
 Bob Vaught (1926-2002). 1957. Solomon Feferman (b. 1928). 1957. Richard
 Montague (1930-1971). 1961. Jerry Keisler.

- *Teitelbaum* (until c. 1923).
- 1918-1924. Studies in Warsaw. Student of Lesniewski.
- 1924. Banach-Tarski paradox.
- 1924-1939. Work in Poland.
- 1933. The concept of truth in formalized languages.
- From 1942 at the University of California at Berkeley.
- Students. 1946. Bjarni Jónsson (b. 1920). 1948. Julia Robinson (1919-1985). 1954.
 Bob Vaught (1926-2002). 1957. Solomon Feferman (b. 1928). 1957. Richard
 Montague (1930-1971). 1961. Jerry Keisler. 1961. Donald Monk (b. 1930). 1962.
 Haim Gaifman. 1963. William Hanf.

Durage Service State Undefinability of Truth.

If a language can correctly refer to its own sentences, then the truth predicate is not definable.

Limitative Theorems.

Provability	Truth	Computability
1931	1933	1935
Gödel	Tarski	Turing

More in the last lecture (Dec 15th).

- Undefinability of Truth.
- Algebraic Logic.
 - Leibniz called for an analysis of relations ("Plato is taller than Socrates" ~> "Plato is tall in as much as Socrates is short").
 - Relation Algebras: Steve Givant, István Németi, Hajnal Andréka, Ian Hodkinson, Robin Hirsch, Maarten Marx.
 - Cylindric Algebras: Don Monk, Leon Henkin, Ian Hodkinson, Yde Venema, Nick Bezhanishvili.

- Undefinability of Truth.
- Algebraic Logic.
- Logic and Geometry.
 - A theory T admits elimination of quantifiers if every first-order formula is T-equivalent to a quantifier-free formula (Skolem, 1919).
 - 1955. Quantifier elimination for the theory of real numbers ("real-closed fields").
 - Basic ideas of modern algebraic model theory.
 - Connections to theoretical computer science: running time of the quantifier elimination algorithms.

Ultraproducts in Set Theory.

Recall: A cardinal κ is called measurable if there is a κ -complete nonprincipal ultrafi lter on κ .

Idea: Apply the theory of ultraproducts to the ultrafilter witnessing measurability.

Let V be a model of set theory and V \models " κ is measurable". Let U be the ultrafilter witnessing this. Define $\mathbf{M}_{\alpha} := \mathbf{V}$ for all $\alpha \in \kappa$ and $\mathbf{M}_U := \mathrm{Ult}(\mathbf{V}, U)$.

By Łoś, \mathbf{M}_U is again a model of set theory with a measurable cardinal.

Theorem (Scott / Tarski-Keisler, 1961). If κ is measurable, then there is some $\alpha < \kappa$ such that α is inaccessible.

Corollary. The least measurable is not the least inaccessible.

More on large cardinals.

Reflection. Some properties of a large cardinal κ reflect down to some (many, almost all) cardinals $\alpha < \kappa$.

- **Lévy** (1960); **Montague** (1961). Reflection Principle.
- Hanf (1964). Connecting large cardinal analysis to infi nitary logic.
- Gaifman (1964); Silver (1966). Connecting large cardinals and inner models of constructibility ("iterated ultrapowers").

Gödel's Programme.

1947. "What is Cantor's Continuum Problem?"

Use new axioms (in particular large cardinal axioms) in order to resolve questions undecidable in ZF.

Lévy-Solovay (1967). Large Cardinals don't solve the continuum problem.

Modal logic (1).

Modalities.

- *"the standard modalities"*. "necessarily", "possibly".
- *temporal.* "henceforth", "eventually", "hitherto".
- *deontic*. "it is obligatory", "it is allowed".
- *pepistemic.* "*p* knows that".
- *doxastic.* "*p* believes that".

Modal logic (2).

Modalities as operators.

McColl (late XIXth century); Lewis-Langford (1932). \diamond as an operator on propositional expressions:

$$\Diamond \varphi \rightsquigarrow$$
 "Possibly φ ".

 \Box for the dual operator:

$$\Box \varphi \rightsquigarrow$$
 "Necessarily φ ".

Iterated modalities:

 $\Box \diamondsuit \varphi \rightsquigarrow$ "It is necessary that φ is possible".

Modal logic (3).

What modal formulas should be axioms? This depends on the interpretation of \diamondsuit and \Box . **Example.** $\Box \varphi \rightarrow \varphi$ ("axiom T").

- Necessity interpretation. "If φ is necessarily true, then it is true."
- Epistemic interpretation. "If p knows that φ , then φ is true."
- Doxastic interpretation. "If p believes that φ , then φ is true."

Early modal semantics.

Topological Semantics (McKinsey / Tarski). Let $\langle X, \tau \rangle$ be a topological space and $V : \mathbb{N} \to \wp(X)$ a valuation for the propositional variables.

 $\langle X, \tau, x, V \rangle \models \Diamond \varphi$ if and only if x is in the closure of $\{z; \langle X, \tau, z, V \rangle \models \varphi\}.$

 $\langle X, \tau \rangle \models \varphi$ if for all $x \in X$ and all valuations V, $\langle X, \tau, x, V \rangle \models \varphi$.

Theorem (McKinsey-Tarski; 1944). $\langle X, \tau \rangle \models \varphi$ if and only if $S4 \vdash \varphi$. ($S4 = \{T, \Box \Box \varphi \rightarrow \Box \varphi\}$)

Possible Worlds.

Leibniz: There are as many possible worlds as there are things that can be conceived without contradiction. φ is necessarily true if its negation implies a contradiction. $\rightsquigarrow \varphi$ is necessarily true if it is true in all possible worlds.

Kripke.

- Saul Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic 24 (1959), p. 1-14.
- "Naming and Necessity".

Kripke semantics (1).

Let *M* be a set and $R \subseteq M \times M$ a binary relation. We call $\mathbf{M} = \langle M, R \rangle$ a Kripke frame. Let $V : \mathbb{N} \to \wp(M)$ be a valuation function. Then we call $\mathbf{M}^V = \langle M, R, V \rangle$ a Kripke model.

$$\begin{split} \mathbf{M}^{V}, x &\models \mathbf{p}_{n} & \text{iff} \quad x \in V(n) \\ \mathbf{M}^{V}, x &\models \Diamond \varphi & \text{iff} \quad \exists y(xRy \& \mathbf{M}^{V}, y \models \varphi) \\ \mathbf{M}^{V}, x &\models \Box \varphi & \text{iff} \quad \forall y(xRy \rightarrow \mathbf{M}^{V}, y \models \varphi) \\ \mathbf{M}^{V} &\models \varphi & \text{iff} \quad \forall x(\mathbf{M}^{V}, x \models \varphi) \\ \mathbf{M} &\models \varphi & \text{iff} \quad \forall V(\mathbf{M}^{V} \models \varphi) \end{split}$$

Kripke semantics (2).

$$\begin{split} \mathbf{M}^{V}, x &\models \Diamond \varphi & \text{iff} & \exists y (x R y \And \mathbf{M}^{V}, y \models \varphi) \\ \mathbf{M}^{V}, x &\models \Box \varphi & \text{iff} & \forall y (x R y \rightarrow \mathbf{M}^{V}, y \models \varphi) \\ \mathbf{M}^{V} &\models \varphi & \text{iff} & \forall x (\mathbf{M}^{V}, x \models \varphi) \\ \mathbf{M} &\models \varphi & \text{iff} & \forall V (\mathbf{M}^{V} \models \varphi) \end{split}$$

- Let $\langle M, R \rangle$ be a reflexive frame, *i.e.*, for all *x* ∈ *M*, *xRx*. Then M ⊨ T. (T = □ $\varphi \rightarrow \varphi$)
- Let $\langle M, R \rangle$ be a transitive frame, *i.e.*, for all $x, y, z \in M$, if xRy and yRz, then xRz. Then $\mathbf{M} \models \Box \Box \varphi \rightarrow \Box \varphi$.

Kripke semantics (3).

Theorem (Kripke).

- 1. $\mathbf{T} \vdash \varphi$ if and only if for all reflexive frames M, we have $\mathbf{M} \models \varphi$.
- 2. S4 $\vdash \varphi$ if and only if for all reflexive and transitive frames M, we have M $\models \varphi$.
- 3. $S5 \vdash \varphi$ if and only if for all frames M with an equivalence relation R, we have $M \models \varphi$.

More about this next week.