

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Core Logic 2004/2005; 1st Semester dr Benedikt Löwe

Homework Set # 9

Deadline: November 17th, 2004

Exercise 26 (9 points total).

Let $\mathcal{L} = \{R\}$ be a language with one binary relation symbol. Consider the following seven \mathcal{L} -sentences:

$$\begin{aligned} \varphi_{(i)} &:= \forall x \neg Rxx \\ \varphi_{(ii)} &:= \forall x \forall y (x \neq y \rightarrow (Rxy \lor Ryx)) \\ \varphi_{(iii)} &:= \forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz) \\ \varphi_{(iv)} &:= \forall x \exists y \exists z (Ryx \land Rxz) \\ \varphi_{ME} &:= \exists x \forall y (Ryx \lor x = y) \\ \varphi_{LEP} &:= \forall x \exists y \forall z (Rxz \rightarrow (Rzy \lor y = z)) \end{aligned}$$

Check whether the following sets of sentences are consistent. If they are, give a model. If they aren't, derive a contradiction (3 points each).

- (1) $\{\varphi_{(i)}, \varphi_{(iii)}, \varphi_{(iv)}, \varphi_{ME}\},\$
- (2) $\{\varphi_{(i)}, \varphi_{(iii)}, \varphi_{\text{LEP}}, \neg \varphi_{\text{ME}}\},\$
- (3) $\{\varphi_{(i)}, \varphi_{(ii)}, \varphi_{(iii)}, \varphi_{\text{LEP}}, \neg \varphi_{\text{ME}}\},\$

Exercise 27 (7 points total).

Let $\mathcal{L} := \{+, \cdot, 0, 1, -\}$ be the language of Boolean algebras and Φ_{BA} be the axioms of Boolean algebras. Let

$$\varphi := \forall x \forall y \left(\left((x \neq x \cdot y) \land (y \neq x \cdot y) \right) \to (x \cdot y = 0) \right), \\ \psi := \exists x \left((x \neq 0) \land (x \neq 1) \right).$$

Let Φ_0 , Φ_1 and Φ_2 be the deductive closures of Φ_{BA} , $\Phi_{BA} \cup \{\varphi\}$ and $\Phi_{BA} \cup \{\varphi, \psi\}$, respectively. Investigate whether Φ_i is a complete theory. If it isn't, give a formula σ such that $\sigma \notin \Phi_i$ and $\neg \sigma \notin \Phi_i$. If it is complete, give a brief argument why.

Exercise 28 (6 points total).

Let PA be the first-order axiom system of Peano Arithmetic. Assume that PA is consistent.

- (1) Show that there is a model \mathfrak{M} of PA + \neg Cons(PA) (1 point).
- (2) Give an example of a sentence that is true in \mathfrak{M} but not true in the metatheory (1 point).
- (3) Consider the following symmetric version of Gödel's Second Incompleteness Theorem SymG2:

If T is a consistent recursively axiomatized theory such that $PA \subseteq T$, then the theories T + Cons(T) and $T + \neg Cons(T)$ are consistent as well. Give a counterexample to SymG2 (4 points).

Exercise 29 (3 points total).

Give the names of the following logicians and mathematicians (1 point each):

- X was one of the students of David Hilbert who was a teacher at the *Gymnasium* Arnoldinum from 1929 to 1948.
- Y was an important figure in the history of the *Deutsche Mathematiker-Vereinigung*. He was married to the granddaughter of Hegel, and is popularly known for the "Y bottle", a two-dimensional manifold not embeddable into \mathbb{R}^3 .
- Z received his PhD degree in 1924 at the UvA for a thesis entitled *Intuitionistische axiomatiek der projectieve meetkunde* and was the PhD supervisor of one of our guest speakers.

(*One extra point:* What is the canonical webpage for finding information about super-visor-student relations in mathematics?)

http://staff.science.uva.nl/~bloewe/2004-I-CL.html