

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Advanced Topics in Set Theory

2003/2004; 1st Semester dr Benedikt Löwe

Deadline: November 25th, 2003

Homework Set # 6.

Exercise 20 ("All sets are Borel") [Repeated from Homework Set # 5].

Assume that $\mathbb{N}^{\mathbb{N}}$ is the countable union of countable sets.

Show that every set of reals is Δ_4^0 . Why is this not in conflict with the construction of a Π_4^0 -universal set?

Remark. Note that "For every countable family $\langle X_i ; i \in \mathbb{N} \rangle$ of countable sets there is a family $\langle x_{ij} ; i, j \in \mathbb{N} \rangle$ listing all elements of $\bigcup_{i \in I} X_i$ " is a particular instance of the Axiom of Choice. If the reals are a countable union of countable sets, this statement must be false. (Thus, our assumption is a very blatant violation of the Axiom of Choice – be extremely careful to avoid any use of the Axiom of Choice in this exercise.)

It is a result of Feferman and Lévy that " $\mathbb{N}^{\mathbb{N}}$ is the countable union of countable sets" is consistent with ZF.

Exercise 21. (Marczewski-Burstin algebras).

Recall that for a set $\mathcal{A} \subseteq \wp(\mathbb{N}^{\mathbb{N}})$ the **Marczewski-Burstin algebra MB**(\mathcal{A}) is defined by

 $\mathbf{MB}(\mathcal{A}) := \{ S \, ; \, \forall A \in \mathcal{A} \, \exists A^* \in \mathcal{A} \, (A^* \subseteq A \, \& \, (A^* \subseteq S \, \lor \, A^* \cap S = \emptyset) \,) \, \}.$

Let \mathcal{B} be the standard basis of the topology of the Baire space. Show that $\mathbf{MB}(\mathcal{B})$ is not a σ -algebra. In particular, there is a Borel set which is not in $\mathbf{MB}(\mathcal{B})$.

Exercise 22. (The Marczewski ideal).

Let \mathcal{P} be the set of perfect subsets of the Baire space. Recall that we say that we defined the Marczewski ideal $(s^0) = \mathbf{MB}^0(\mathcal{P})$ by

$$\mathbf{MB}^{0}(\mathcal{P}) := \{ S \, ; \, \forall A \in \mathcal{A} \, \exists A^{*} \in \mathcal{A} \, (A^{*} \subseteq A \, \& \, (A^{*} \cap S = \emptyset) \,) \, \}.$$

Prove that the Marczewski ideal is a σ -ideal, *i.e.*, countable unions of sets in the ideal are again in the ideal.

Hint. Think of the perfect sets as trees and construct what is called a **fusion sequence of trees**: keep splittings while thinning out the tree below the splitting nodes.

http://staff.science.uva.nl/~bloewe/2003-I-AST.html