

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Advanced Topics in Set Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 4.

Deadline: November 11th, 2003

Exercise 14 (Lifting measures to ultrapowers).

This exercise is related to **Exercise 13**. We write $\kappa \to (\text{club})^{\kappa}$ for the strong club partition **property**: If $\chi : [\kappa]^{\kappa} \to 2$ is a partition then there is a club set $C \in C_{\kappa}$ such that χ is constant on $[C]^{\kappa}$. The strong club partition property is a strengthening of the strong partition relation $\kappa \to (\kappa)^{\kappa}$ and violates the Axiom of Choice. So make sure that you don't use it in this exercise.

Assume that κ has the strong club partition property, that U is an ultrafilter on κ , and that $\text{Ult}(\kappa, U)$ is wellfounded. Then $\text{Ult}(\kappa, U)$ is isomorphic to an ordinal $\lambda > \kappa$. Prove that lift(U), called the lift of U by itself, and defined by

$$A \in \mathbf{lift}(U) \iff \exists C \in \mathcal{C}_{\kappa} \,\forall f \in C^{\kappa} \,([f]_U \in A)$$

is an ultrafilter on λ .

Exercise 15 (Round brackets and square brackets). Let $\lambda < \kappa, \mu \leq \kappa$. Prove that $\kappa \to (\mu)_{\lambda}^{<\omega}$ implies $\kappa \to [\mu]_{\lambda,<\omega}^{<\omega}$.

Exercise 16 (Ramsey cardinals and infinitary Chang Conjectures).

Let \mathcal{L}_{λ} be the language of set theory augmented with a distinguished predicate symbol $\dot{\mathsf{P}}$ and λ many constant symbols $\langle \dot{\mathsf{c}}_{\alpha}; \alpha < \lambda \rangle$. By the \mathcal{L}_{λ} version of $\langle \kappa, \xi \rangle \twoheadrightarrow \langle \mu, < \nu \rangle$ we mean the statement

"every \mathcal{L}_{λ} structure $\langle X, Y, \langle x_{\alpha}; \alpha < \lambda \rangle \rangle$ with $\operatorname{Card}(X) = \kappa$ and $\operatorname{Card}(Y) = \xi$ has an elementary substructure $\langle X^*, Y^*, \langle x_{\alpha}; \alpha < \lambda \rangle \rangle$ such that $\operatorname{Card}(X^*) = \mu$ and $\operatorname{Card}(Y^*) < \nu$ ".

Prove that if κ is Ramsey, then for all $\lambda < \kappa$, the \mathcal{L}_{λ} version of $\langle \kappa, \lambda^+ \rangle \twoheadrightarrow \langle \kappa, < \lambda^+ \rangle$ holds.

Hint. You may use without proof that $\kappa \to (\kappa)_{\lambda}^{<\omega}$ for all $\lambda < \kappa$ (Kanamori, Proposition 7.14 (c)). Develop a notion of Skolem function for the infinitary language \mathcal{L}_{λ} and follow the idea of Rowbottom's Skolemization Theorem with **Exercise** 15 in mind. Note that this exercise is close to Kanamori, Theorem 8.4.

Exercise 17 (Measurable cardinals and the size of **L**).

Assume that there is a proper class of measurable cardinals. Then every regular cardinal in \mathbf{V} is inaccessible in \mathbf{L} .

Hint. Use **Exercise 16** and the proof idea of "If there is a Rowbottom cardinal, then $\omega_1^{\mathbf{L}}$ is countable" to show that if κ is Ramsey and $\lambda < \kappa$, then $\operatorname{Card}(\wp^{\mathbf{L}}(\lambda)) = \operatorname{Card}(\lambda)$. Compare Kanamori, Corollary 8.5.

http://staff.science.uva.nl/~bloewe/2003-I-AST.html