

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Advanced Topics in Set Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 3.

Deadline: October 28th, 2003

Exercise 8 (Relative constructibility) [Repeated from Set # 2].

Let x be a real number (pick your favourite set-theoretic concept of "real number": Dedekind cuts, Cauchy sequences, subsets of ω , *etc.*). Show that $\mathbf{L}(x) = \mathbf{L}[x]$. Furthermore, argue why this result doesn't depend on the choice of the concept of "real number" you chose.

Exercise 9 (The Continuum and \aleph_2).

Prove using relative constructibility that if $\mathsf{ZFC} \vdash 2^{\aleph_0} \neq \aleph_2$, then $\mathsf{ZFC} \vdash \mathsf{CH}$. (Of course, Cohen has proved in 1963 that the antecedent of this implication is false, so the exercise has a trivial solution. Do not use this fact. You may use the result that for $A \subseteq \kappa^+$, we have that $\mathbf{L}[A] \models 2^{\kappa} = \kappa^+$.) **Hint.** Assume $2^{\aleph_0} > \aleph_1$. Find an appropriate $A \subseteq \aleph_2$ such that $\mathbf{L}[A] \models 2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$.

Exercise 10 (Measurable cardinals and relativized constructibility). Let κ be the least measurable cardinal and $A \subseteq \kappa$. Show that $\mathbf{V} \neq \mathbf{L}(A)$.

Exercise 11 (More on strong cardinals).

Remember from **Exercise 6** that a cardinal κ is called $\kappa + \alpha$ -strong if there is an elementary embedding $j : \mathbf{V} \prec M$ with critical point κ such that $\mathbf{V}_{\kappa+\alpha} \subseteq M$. We call a cardinal strong if it is α -strong for all ordinals α . (Note that the embeddings witnessing α -strength can be different from each other.) Formulate and prove extensions of **Exercise 10** for α -strong and strong cardinals.

Exercise 12 (Weakly compact cardinals and linear orderings).

Let κ be weakly compact, *i.e.*, $\kappa \to (\kappa)_2^2$. Let $A \subseteq \kappa$ and let \preceq be a linear ordering on A. Show that there is a subset $B \subseteq A$ of cardinality κ such that either $\langle B, \preceq \rangle$ or $\langle B, \succeq \rangle$ is wellordered.

Exercise 13 (Infinitary partition relations and ultrafilters).

Let $\lambda < \kappa$ be regular, and assume that for all $\gamma < \kappa$, we have $\kappa \to (\kappa)^{\lambda}_{\gamma}$. (Note that this assumption contradicts the Axiom of Choice, so be sure to work in ZF in this exercise.) Let

$$\mathcal{C}^{\lambda}_{\kappa} := \{ X \subseteq \kappa \, ; \, \exists C \in \mathcal{C}_{\kappa} \, (C \cap \{\xi \, ; \, \mathrm{cf}(\xi) = \lambda\} \subseteq X \}$$

the so-called λ -club filter on κ . Show that under the assumption of the above partition relation, it is a κ -complete ultrafilter.

Hint. If $\langle X_{\alpha}; \alpha < \gamma \rangle$ is a partition of κ , let H be a homogeneous set for the colouring $\chi: [\kappa]^{\lambda} \to \gamma$ with

$$\chi(S) = \alpha \iff \sup S \in X_{\alpha}.$$

Show that $C := \{\xi; \sup (H \cap \xi) = \xi \& \operatorname{cf}(\xi) = \lambda\}$ witnesses that some $X_{\alpha} \in \mathcal{C}_{\kappa}^{\lambda}$.

http://staff.science.uva.nl/~bloewe/2003-I-AST.html