The geometry of hyperbolic polynomials

David Lindemann
Aarhus University
Department of Mathematics

26. October 2022

1 Introduction \& motivation

2 Classification results \& moduli spaces

3 Outlook

Main references:

"Properties of the moduli set of complete connected projective special real manifolds" (DL, 2019), arxiv:1907.06791,
"Special geometry of quartic curves" (DL, 2022), arxiv:2206.12524,
"Special homogeneous curves" (DL, 2022), arxiv:2208.06890,
"Special homogeneous surfaces" (preliminary title, DL \& A.S. Swann, 2022)

Hyperbolic polynomials

Definition

A homogeneous polynomial $h: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is called hyperbolic if $\exists p \in\{h>0\}$, such that $-\partial^{2} h_{p}$ has Minkowski signature. Such a point p is called hyperbolic point of h.

- two hyperbolic polynomials h, \widetilde{h} equivalent $: \Leftrightarrow \exists A \in \operatorname{GL}(n+1)$, such that $A^{*} \widetilde{h}=h$
- there is precisely one equivalence class of quadratic hyperbolic polynomials in each dimension
- there is no general classification for higher degree $\operatorname{deg}(h) \geq 3$

Example 1: $h=x^{4}-x^{2}\left(y^{2}+z^{2}\right)-\frac{2 \sqrt{2}}{3 \sqrt{3}} x y^{3}$, plot of level set $\{h=1\}$

Example 2: Zero set $\{h=0\}$ of two Weierstraß cubics with positive and negative discriminant

Projective special real manifolds \& generalisations

- $\operatorname{hyp}(h):=$ cone of hyperbolic points of h

Definition

For h a hyperbolic polynomial of degree $\tau \geq 3$, a hypersurface

$$
\mathcal{H} \subset\{h=1\} \cap \operatorname{hyp}(h)
$$

is called projective special real (PSR) manifold for $\tau=3$, and generalised PSR (GPSR) manifold for $\tau \geq 4$.

- two (G)PSR mfds. $\mathcal{H}, \widetilde{\mathcal{H}}$ equivalent $: \Leftrightarrow \exists A \in \mathrm{GL}(n+1)$, s.t. $A(\mathcal{H})=\widetilde{\mathcal{H}}$
- $\mathcal{H} \subset\{h=1\}, \widetilde{\mathcal{H}} \subset\{\widetilde{h}=1\}$ equivalent $\Rightarrow h, \widetilde{h}$ equivalent, the converse is in general not true
- (G)PSR mfds. carry a natural Riemannian metric $g=-\left.\partial^{2} h\right|_{T \mathcal{H} \times T \mathcal{H}}$

Example 3: $h=x y z,\{h=1\}$ is a homogeneous \& flat PSR manifold

Why study hyperbolic polynomials?
Geometry of Kähler cones [DP'04, W'04, TW'11]:

- for X a compact Kähler τ-fold, the homogeneous polynomial

$$
h: H^{1,1}(X ; \mathbb{R}) \rightarrow \mathbb{R}, \quad[\omega] \mapsto \int_{X} \omega^{\tau}
$$

is hyperbolic since every point in the Kähler cone $\mathcal{K} \subset H^{1,1}(X ; \mathbb{R})$ is hyperbolic by the Hodge-Riemann bilinear relations

- $\mathcal{H}:=\{h=1\} \cap \mathcal{K}$ is a (G)PSR manifold for $\tau \geq 3$
- in general, \mathcal{H} is not a connected component of $\{h=1\} \cap \operatorname{hyp}(h)$

Why study hyperbolic polynomials?

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

- supergravity r-map constructs from given PSR manifold \mathcal{H} a projective special Kähler (PSK) manifold $M \cong \mathbb{R}^{n+1}+i \mathbb{R}_{>0} \cdot \mathcal{H}$ [DV'92, CHM'12]
- supergravity c-map constructs from given PSK manifold M a (non-compact) quaternionic Kähler manifold $N \cong M \times \mathbb{R}^{2 n+5} \times \mathbb{R}_{>0}$ [FS'90]
- above constructions preserve geodesic completeness

Real algebraic geometry:

- study of real polynomials one of the defining problems of classical algebraic geometry, study of cubics goes back to Newton [N]
- real polynomials h only classified up to degree 2
- Example: homogeneous quadratic polynomials in n variables $\stackrel{1: 1}{\leftrightarrow}$ bilinear forms on \mathbb{R}^{n} equivalent to precisely one of

$$
x_{1}^{2}+\ldots+x_{\ell}^{2}-x_{\ell+1}^{2}-\ldots-x_{m}^{2}, \quad 0 \leq \ell \leq m \leq n
$$

- even when restricting to hyperbolic polynomials and restricting dimension n or degree $\operatorname{deg}(h)$, no general classification in almost all cases
\leadsto need restrictions based on the geometry of associated (G)PSR manifolds

Main tasks:

Classifying hyperbolic polynomials

Goals:

- find canonical representatives for hyperbolic polynomials under linear coordinate change
- understand the symmetry groups of hyperbolic polynomials
- count (inequivalent) c.c.'s of associated (G)PSR mfds. $\{h=1\} \cap \operatorname{hyp}(h)$

Moduli spaces \& global geometry

Goals:

- understand the topology and local properties of moduli spaces

$$
\mathcal{M}_{\tau}:=\operatorname{Sym}_{\mathrm{hyp}}^{\tau}\left(\mathbb{R}^{n+1}\right)^{*} / \mathrm{GL}(n+1)
$$

- analyse (local) differential properties, e.g. dimension of tangent spaces, to describe strata of \mathcal{M}_{τ}
- study asymptotic behaviour of (G)PSR manifolds
- understand curvature properties, in particular of homogeneous (G)PSRs

Why is it difficult to classify hyperbolic polynomials?

Notation: $\tau:=\operatorname{deg}(h)$

- set of hyperbolic polynomials is open in $\operatorname{Sym}^{\tau}\left(\mathbb{R}^{n+1}\right)^{*}$
- GL($n+1$), acting via linear change of coordinates, is non-compact
- $\operatorname{dim}\left(\operatorname{Sym}^{\tau}\left(\mathbb{R}^{n+1}\right)^{*}\right)$ growths with power τ in n while $\operatorname{dim}(\operatorname{GL}(n+1))$ growth only quadratically in n
- in general polynomial equivalence \nRightarrow (G)PSR equivalence:

Example

$\left\{h=x\left(y^{2}-z^{2}\right)+y^{3}=1\right\}$ has four hyperbolic connected components, two of which are equivalent [CDL'14, Thm. 2,5)].

Known classification results: $\operatorname{deg}(h)=3$

Theorem [CHM'12]

Up to equivalence, there exist 3 hyperbolic cubics in 2 variables:
(i) $h=x^{2} y$, PSR curve homogeneous \& closed
(ii) $h=x\left(x^{2}-y^{2}\right)$, PSR curve inhomogeneous \& closed
(iii) $h=x\left(x^{2}+y^{2}\right)$, PSR curve inhomogeneous \& not closed

- in each ob the above cases, $\{h=1\} \cap \operatorname{hyp}(h)$ has 2 connected components
Example: $h=x\left(x^{2}+y^{2}\right)$, plot of $\{h=1\}$:

Theorem [CDL'14]

In 3 variables there are, to equivalence,

- 5 + a 1-parameter family of hyperbolic cubics with at least one closed connected component of $\{h=1\} \cap \operatorname{hyp}(h)$
- 2 + a 1-parameter family of hyperbolic cubics with no closed connected component of $\{h=1\} \cap \operatorname{hyp}(h)$
- two of the above PSR surfaces are homogeneous spaces
- corresponding cubics: $h=x y z$ (flat) $\& h=x\left(x y-z^{2}\right)(\mathcal{H} \cong$ hyperbolic plane)

Theorem [DV'92]

Homogeneous PSR manifolds and their corresponding cubics have been classified in [DV'92].

- in [DV'92], the corresponding homogeneous quaternionic Kähler manifolds obtained via the supergravity cor=q-map are also studied
\leadsto reducible cubics can be comparatively easily be controlled, allowing to obtain the following:

Theorem [CDJL'17]

In $n+1 \geq 3$ real variables, there exist up to equivalence four reducible hyperbolic cubics that define a closed PSR manifold, and one reducible hyperbolic cubic that does not.

Example: $h=x\left(y^{2}-z^{2}\right)$, plot of $\{h=1\}$:

Known classification results: $\operatorname{deg}(h)=4$
\leadsto for hyperbolic quartics, already considerably fewer known results!

Theorem [KW]

The isotopy types of all affine quartic curves $\{h=0\}, h: \mathbb{R}^{3} \rightarrow \mathbb{R}$, have been classified in [KW].

- note: this is unsurprisingly difficult!
\leadsto an example of a quartic GPSR surface has been studied in [T], motivated by the results of [W'04]

Theorem [L'22 (1)]

Quartic GPSR curves \& corresponding quartics have been classified. There are, up to equivalence,

- $3+$ one 1-parameter family of closed quartic GPSR curves
- $2+$ two 1-parameter families of non-closed maximal quartic GPSR curves
- maximal $:=$ coincides with a connected component of $\{h=1\} \cap \operatorname{hyp}(h)$
- in the above, parameter families defined on an open interval
- that's it for quartics! (modulo ε)

Known classification results: $\operatorname{deg}(h) \geq 5$ and special cases

- there are to this date NO classification results for hyperbolic polynomials of degree ≥ 5 in any number of variables
- BUT: when restricting not only to curves, but also requiring homogeneity of the (G)PSR mfds., we have:

Theorem [L'22 (2)]

Homogeneous (G)PSR curves are classified. For $\operatorname{deg}(h)=\tau,\{h=1\}$ contains such a curve iff h is equivalent to

$$
h=x^{\tau-k} y^{k}, \quad k \in\left\{1, \ldots,\left\lfloor\frac{\tau}{2}\right\rfloor\right\} .
$$

- in any of the above cases, the symmetry group G^{h} of h is either $\mathbb{R} \times \mathbb{Z}_{2}$, $\mathbb{R} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, or $\left(\mathbb{R} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \ltimes \mathbb{Z}_{2}$
Example: plots for $(\tau=5, k=1),(\tau=5, k=2),(\tau=4, k=1),(\tau=4, k=2)$

Known global results:

- moduli spaces and global geometric properties of (G)PSR manifolds even less understood
- but: have some nice results for cubics by requiring that one of the c.c.'s of $\{h=1\} \cap \operatorname{hyp}(h)$ is closed in the ambient space
- Note: geometrically, a PSR manifold being closed is equivalent to its geodesic completeness w.r.t. the Riemannian metric $-\left.\partial^{2} h\right|_{T \mathcal{H} \times T \mathcal{H}}$ [CNS'16]
\leadsto we need a technical result:

Proposition [L'19]

For any hyperbolic polynomial $h: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \operatorname{deg}(h)=\tau$, and all $p \in\{h=1\} \cap \operatorname{hyp}(h), \exists A \in \operatorname{GL}(n+1)$, s.t.
(i) $A p=(1,0, \ldots, 0)^{\mathrm{T}}$,
(ii) $A^{*} h=x^{\tau}-x^{\tau-2}\langle y, y\rangle+\sum_{k=3}^{\tau} x^{\tau-k} P_{k}(y)$,
$\left(x, y_{1}, \ldots, y_{n}\right)=(x, y)$ linear coordinates on $\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle$ induced Euclidean scalar product, P_{k} 's homogeneous polynomials of degree k in y.

- the form of h in (ii) is called standard form
- warning: might not be ideal for every problem

Theorem [L'19]

If one of the c.c.'s of $\{h=1\} \cap \operatorname{hyp}(h), h$ hyperbolic cubic, is closed, then h has a representative in

$$
\mathcal{C}_{n}=\left\{x^{3}-x\langle y, y\rangle+P_{3}(y)\left|\max _{\|y\|=1}\right| P_{3}(y) \left\lvert\, \leq \frac{2}{3 \sqrt{3}}\right.\right\} .
$$

- the proof of the above theorem relies mainly on reduction to 2-dim. case \& using available classification
\leadsto the moduli space of closed PSR mfds., respectively their defining cubics, is generated by the compact convex set $\mathcal{C}_{n} \subset \operatorname{Sym}^{3}\left(\mathbb{R}^{n+1}\right)^{*}$

Corollary [L'18]

For closed PSR manifolds there exist curvature bounds depending ONLY on the dimension n.
\leadsto in the case of surfaces, we know optimal curvature bounds:

Proposition [L'18]

The scalar curvature S of PSR surfaces is contained in [$\left.-\frac{9}{4}, 0\right]$. The two homogeneous PSR surfaces maximise, respectively minimise, \boldsymbol{S}.

- note: the proof is explicit (a.k.a. brute force), difficult to generalise...
\leadsto standard form well suited to study asymptotics:

Theorem [L'20]

Asymptotically, closed PSR manifolds admit an action of \mathbb{R} with non-compact orbits.

Explanation:

- "asymptotically" means the geometry of a PSR manifold contained in a limit \bar{h} of the standard form of initial h along lines centrally projected to $\{h=1\} \cap \operatorname{hyp}(h)$
- w.r.t. the generating set, corresponds to curves in \mathfrak{C}_{n} :

\leadsto surprisingly, have the following result for limit geometries:

Proposition [L'20]

If $h \in \mathcal{C}_{n}^{\circ}$, any limit geometry \bar{h} defines a homogeneous PSR manifold, and that one is always the same.

Example: For $n=2, \bar{h} \cong x\left(x y-z^{2}\right)$.
Question: What about $\operatorname{deg}(h) \geq 4$?

Lemma [L'22 (1)]

- Closed quartic GPSR curves are not compactly generated.
- But ALL quartic GPSR curves have well understood asymptotic behaviour: If it exists, the limit polynomial defines a homogeneous curve.

That's more or less it for $\operatorname{deg}(h) \geq 4$, though we have one more result that holds for cubics and quartics:

Definition

A (G)PSR manifold \mathcal{H} is called singular at infinity if $\mathrm{d} h$ vanishes along a ray in $\partial\left(\mathbb{R}_{>0} \cdot \mathcal{H}\right)$.

- the above definition is equivalent to a fitting part of $\{h=0\}$ being singular as a real algebraic variety

Theorem [L’19, L'22 (1)]

Homogeneous PSR \& homogeneous quartic GPSR manifolds are singular at infinity.

Example: projective curves of $h \cong x y z$ and $h \cong x\left(x y-z^{2}\right)$ are singular:

Outlook

\leadsto Which open problems are realistically doable?

Current project 1 [LS'22]

Classify all homogeneous GPSR surfaces.

Advantages:

- can use homogeneous (G)PSR curves classification
- necessary Lie subalgebras of GL(3) well understood

Possible problems:

- strategy employed for curves not helpful
- have run multiple times into combinatorial nightmares, this WILL happen again
- calculation heavy, leading to potential human error

Verdict: expect a positive outcome!

Current project 2

Describe the asymptotic behaviour of maximal non-closed PSR manifolds.
Advantages:

- expect similar formulas as in the closed PSR case
- even for surfaces a result could be published

Possible problems:

- already the closed PSR case was a extremely calculation-heavy, will probably be even worse for maximal non-closed PSRs
- cannot really expect convergence of standard forms
- \exists explicit example with no well-defined asymptotic geometry in our sense, in that case $\overline{\operatorname{hyp}(h)} \cap\{h=0\}$ contains only the origin

Other open questions:

Problem 1

Are closed GPSR manifolds geodesically complete w.r.t. $-\left.\partial^{2} h\right|_{T \mathcal{H} \times T \mathcal{H}}$?

- for PSR manifolds, three different proofs of the above are known [CNS'16, L'19]
- none of these can be generalised to higher degree polynomials
- reasonable attempt: quartic GPSR surfaces

Problem 2

Can one find a meaningful generalisation of the supergravity r-map to quartic GPSR manifolds?

- probably!

Problem 3

Relate asymptotic geometry of (G)PSR manifolds to limits of the volume-preserving Kähler-Ricci flow.

- motivated by the fact that the volume-preserving Kähler-Ricci flow on the level of cohomology is an integral curve in a (G)PSR manifold \mathcal{H}, obtained by projecting $c_{1}(X)$, viewed as constant vector field, centrally to \mathcal{H}

Thank you for your attention!

R－V．Cortés，M．Dyckmanns，and D．Lindemann，Classification of complete projective special real surfaces，Proc．London Math．Soc． 109 （2014），no． 2，423－445．
圊 V．Cortés，M．Dyckmanns，M．Jüngling，and D．Lindemann，A class of cubic hypersurfaces and quaternionic Kähler manifolds of co－homogeneity one（2017），arxiv：1701．07882．
盏 V．Cortés，X．Han，and T．Mohaupt，Completeness in supergravity constructions，Commun．Math．Phys． 311 （2012），no．1，191－213．
E．V．Cortés，M．Nardmann，and S．Suhr，Completeness of hyperbolic centroaffine hypersurfaces，Comm．Anal．Geom．，Vol．24，no． 1 （2016）， 59－92．
氯 J．－P．Demailly and M．Paun，Numerical characterization of the Kähler cone of a compact Kähler manifold，Annals of Mathematics 159 （2004）， 1247－1274．
目
B．de Wit，A．Van Proeyen，Special geometry，cubic polynomials and homogeneous quaternionic spaces，Comm．Math．Phys． 149 （1992），no．2， 307－333．
R
S．Ferrara and S．Sabharwal，Quaternionic manifolds for type II superstring vacua of Calabi－Yau spaces，Nucl．Phys．B332（1990），no．2，317－332．
D. Lindemann, Structure of the class of projective special real manifolds and their generalisations (2018), PhD thesis.
E
A.B. Korchagin and D.A. Weinberg, The isotopy classification of affine quartic curves, Rocky Mt. J. Math., Vol. 32 (2002), No. 1, 255-347.

D. Lindemann, Properties of the moduli set of complete connected projective special real manifolds (2019), arxiv:1907.06791.

D. Lindemann, Limit geometry of complete projective special real manifolds (2020), arxiv:2009.12956.

D. Lindemann, Special geometry of quartic curves, arxiv:2206.12524.

D. Lindemann, Special homogeneous curves, arxiv:2208.06890.D. Lindemann, A.F. Swann, Special homogeneous surfaces, preliminary title, work in progress.I. Newton, Curves, related entry in Lexicon Technicum Vol. II by John Harris (1710).B. Totaro, The curvature of a Hessian metric, Int. J. Math., 15, 369 (2004).
T. Trenner, P.M.H. Wilson, Asymptotic Curvature of Moduli Spaces for Calabi-Yau Threefolds, J. Geometric Analysis 21 (2011), no. 2, 409-428.
P.M.H. Wilson, Sectional curvatures of Kähler moduli, Math. Ann. 330 (2004) 631-664.

T
H. Wu, The spherical images of convex hypersurfaces, J. Differential Geometry 9 (1974), 279-290.

