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Hyperbolic polynomials

Definition
A homogeneous polynomial h ∶ Rn+1 → R is called hyperbolic if ∃p ∈ {h > 0},
such that −∂2hp has Minkowski signature. Such a point p is called hyperbolic
point of h.

● two hyperbolic polynomials h, h̃ equivalent ∶⇔ ∃A ∈ GL(n+ 1), such that
A∗h̃ = h

● there is precisely one equivalence class of quadratic hyperbolic
polynomials in each dimension

● there is no general classification for higher degree deg(h) ≥ 3
Example 1: h = x4 − x2(y2 + z2) − 2
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3 xy3, plot of level set {h = 1}
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Hyperbolic polynomials

Example 2: Zero set {h = 0} of two Weierstraß cubics with positive and
negative discriminant
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Projective special real manifolds & generalisations
● hyp(h) ∶= cone of hyperbolic points of h

Definition
For h a hyperbolic polynomial of degree τ ≥ 3, a hypersurface

H ⊂ {h = 1} ∩ hyp(h)

is called projective special real (PSR) manifold for τ = 3, and generalised
PSR (GPSR) manifold for τ ≥ 4.

● two (G)PSR mfds. H, H̃ equivalent ∶⇔ ∃A ∈ GL(n + 1), s.t. A(H) = H̃
● H ⊂ {h = 1}, H̃ ⊂ {h̃ = 1} equivalent ⇒ h, h̃ equivalent, the converse is in

general not true
● (G)PSR mfds. carry a natural Riemannian metric g = −∂2h∣TH×TH

Example 3: h = xyz, {h = 1} is a homogeneous & flat PSR manifold
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Why study hyperbolic polynomials?
Geometry of Kähler cones [DP’04, W’04, TW’11]:
● for X a compact Kähler τ -fold, the homogeneous polynomial

h ∶H1,1
(X;R)→ R, [ω]↦ ∫

X
ωτ ,

is hyperbolic since every point in the Kähler cone K ⊂H1,1(X;R) is
hyperbolic by the Hodge-Riemann bilinear relations

● H ∶= {h = 1} ∩K is a (G)PSR manifold for τ ≥ 3
● in general, H is not a connected component of {h = 1} ∩ hyp(h)
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Why study hyperbolic polynomials?

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

● supergravity r-map constructs from given PSR manifold H a projective
special Kähler (PSK) manifold M ≅ Rn+1 + iR>0 ⋅H [DV’92, CHM’12]

● supergravity c-map constructs from given PSK manifold M a
(non-compact) quaternionic Kähler manifold N ≅M ×R2n+5 ×R>0
[FS’90]

● above constructions preserve geodesic completeness

M̃
rigid c-map

//

ASK/PSK

��

Ñ

HK/QK

��
H

??

sugra r-map
// M sugra c-map

// N
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Why study hyperbolic polynomials?

Real algebraic geometry:

● study of real polynomials one of the defining problems of classical
algebraic geometry, study of cubics goes back to Newton [N]

● real polynomials h only classified up to degree 2
● Example: homogeneous quadratic polynomials in n variables 1∶1

↔ bilinear
forms on Rn equivalent to precisely one of

x2
1 + . . . + x2

ℓ − x2
ℓ+1 − . . . − x2

m, 0 ≤ ℓ ≤m ≤ n

● even when restricting to hyperbolic polynomials and restricting dimension
n or degree deg(h), no general classification in almost all cases

↝ need restrictions based on the geometry of associated (G)PSR manifolds
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Main tasks:

Classifying hyperbolic polynomials
Goals:
● find canonical representatives for hyperbolic polynomials under linear

coordinate change
● understand the symmetry groups of hyperbolic polynomials
● count (inequivalent) c.c.’s of associated (G)PSR mfds. {h = 1} ∩ hyp(h)

Moduli spaces & global geometry
Goals:
● understand the topology and local properties of moduli spaces

Mτ ∶= Symτ
hyp(R

n+1
)
∗

/GL(n + 1)

● analyse (local) differential properties, e.g. dimension of tangent spaces,
to describe strata of Mτ

● study asymptotic behaviour of (G)PSR manifolds
● understand curvature properties, in particular of homogeneous (G)PSRs

9 / 25



Why is it difficult to classify hyperbolic polynomials?
Notation: τ ∶= deg(h)
● set of hyperbolic polynomials is open in Symτ(Rn+1)∗

● GL(n + 1), acting via linear change of coordinates, is non-compact
● dim(Symτ(Rn+1)∗) growths with power τ in n while dim(GL(n + 1))

growth only quadratically in n
● in general polynomial equivalence ⇏ (G)PSR equivalence:

Example
{h = x(y2 − z2) + y3 = 1} has four hyperbolic connected components, two of
which are equivalent [CDL’14, Thm. 2,5)].
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Known classification results: deg(h) = 3

Theorem [CHM’12]
Up to equivalence, there exist 3 hyperbolic cubics in 2 variables:

(i) h = x2y, PSR curve homogeneous & closed
(ii) h = x(x2 − y2), PSR curve inhomogeneous & closed
(iii) h = x(x2 + y2), PSR curve inhomogeneous & not closed

● in each ob the above cases, {h = 1} ∩ hyp(h) has 2 connected
components

Example: h = x(x2 + y2), plot of {h = 1}:
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Theorem [CDL’14]
In 3 variables there are, to equivalence,
● 5 + a 1-parameter family of hyperbolic cubics with at least one closed

connected component of {h = 1} ∩ hyp(h)
● 2 + a 1-parameter family of hyperbolic cubics with no closed connected

component of {h = 1} ∩ hyp(h)

● two of the above PSR surfaces are homogeneous spaces
● corresponding cubics: h = xyz (flat) & h = x(xy − z2) (H ≅ hyperbolic

plane)

Theorem [DV’92]
Homogeneous PSR manifolds and their corresponding cubics have been
classified in [DV’92].

● in [DV’92], the corresponding homogeneous quaternionic Kähler
manifolds obtained via the supergravity c○r=q-map are also studied
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↝ reducible cubics can be comparatively easily be controlled, allowing to
obtain the following:

Theorem [CDJL’17]
In n + 1 ≥ 3 real variables, there exist up to equivalence four reducible
hyperbolic cubics that define a closed PSR manifold, and one reducible
hyperbolic cubic that does not.

Example: h = x(y2 − z2), plot of {h = 1}:
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Known classification results: deg(h) = 4

↝ for hyperbolic quartics, already considerably fewer known results!

Theorem [KW]
The isotopy types of all affine quartic curves {h = 0}, h ∶ R3 → R, have been
classified in [KW].

● note: this is unsurprisingly difficult!
↝ an example of a quartic GPSR surface has been studied in [T], motivated
by the results of [W’04]

Theorem [L’22 (1)]
Quartic GPSR curves & corresponding quartics have been classified. There
are, up to equivalence,
● 3 + one 1-parameter family of closed quartic GPSR curves
● 2 + two 1-parameter families of non-closed maximal quartic GPSR

curves

● maximal := coincides with a connected component of {h = 1} ∩ hyp(h)
● in the above, parameter families defined on an open interval
● that’s it for quartics! (modulo ε)
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Known classification results: deg(h) ≥ 5 and special cases

● there are to this date NO classification results for hyperbolic polynomials
of degree ≥ 5 in any number of variables

● BUT: when restricting not only to curves, but also requiring
homogeneity of the (G)PSR mfds., we have:

Theorem [L’22 (2)]
Homogeneous (G)PSR curves are classified. For deg(h) = τ , {h = 1} contains
such a curve iff h is equivalent to

h = xτ−kyk, k ∈ {1, . . . , ⌊
τ

2
⌋} .

● in any of the above cases, the symmetry group Gh of h is either R × Z2,
R × Z2 × Z2, or (R × Z2 × Z2) ⋉ Z2

Example: plots for (τ = 5, k = 1), (τ = 5, k = 2), (τ = 4, k = 1), (τ = 4, k = 2)
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Known global results:

● moduli spaces and global geometric properties of (G)PSR manifolds
even less understood

● but: have some nice results for cubics by requiring that one of the c.c.’s of
{h = 1} ∩ hyp(h) is closed in the ambient space

● Note: geometrically, a PSR manifold being closed is equivalent to its
geodesic completeness w.r.t. the Riemannian metric −∂2h∣TH×TH

[CNS’16]
↝ we need a technical result:

Proposition [L’19]
For any hyperbolic polynomial h ∶ Rn+1 → R, deg(h) = τ , and all
p ∈ {h = 1} ∩ hyp(h), ∃ A ∈ GL(n + 1), s.t.

(i) Ap = (1, 0, . . . , 0)T,

(ii) A∗h = xτ − xτ−2⟨y, y⟩ +
τ

∑
k=3

xτ−kPk(y),

(x, y1, . . . , yn) = (x, y) linear coordinates on Rn+1, ⟨⋅, ⋅⟩ induced Euclidean
scalar product, Pk’s homogeneous polynomials of degree k in y.

● the form of h in (ii) is called standard form
● warning: might not be ideal for every problem

16 / 25



Theorem [L’19]
If one of the c.c.’s of {h = 1} ∩ hyp(h), h hyperbolic cubic, is closed, then h
has a representative in

Cn = {x3
− x⟨y, y⟩ + P3(y) ∣ max

∥y∥=1
∣P3(y)∣ ≤

2
3
√

3
} .

● the proof of the above theorem relies mainly on reduction to 2-dim. case
& using available classification

↝ the moduli space of closed PSR mfds., respectively their defining cubics, is
generated by the compact convex set Cn ⊂ Sym3(Rn+1)∗
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Corollary [L’18]
For closed PSR manifolds there exist curvature bounds depending ONLY on
the dimension n.

↝ in the case of surfaces, we know optimal curvature bounds:

Proposition [L’18]
The scalar curvature S of PSR surfaces is contained in [− 9

4 , 0]. The two
homogeneous PSR surfaces maximise, respectively minimise, S.

● note: the proof is explicit (a.k.a. brute force), difficult to generalise...
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↝ standard form well suited to study asymptotics:

Theorem [L’20]
Asymptotically, closed PSR manifolds admit an action of R with non-compact
orbits.

Explanation:
● “asymptotically” means the geometry of a PSR manifold contained in a

limit h of the standard form of initial h along lines centrally projected
to {h = 1} ∩ hyp(h)

● w.r.t. the generating set, corresponds to curves in Cn:
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↝ surprisingly, have the following result for limit geometries:

Proposition [L’20]
If h ∈

○

Cn, any limit geometry h defines a homogeneous PSR manifold, and
that one is always the same.

Example: For n = 2, h ≅ x(xy − z2).
Question: What about deg(h) ≥ 4?

Lemma [L’22 (1)]
● Closed quartic GPSR curves are not compactly generated.
● But ALL quartic GPSR curves have well understood asymptotic

behaviour: If it exists, the limit polynomial defines a homogeneous curve.
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That’s more or less it for deg(h) ≥ 4, though we have one more result that
holds for cubics and quartics:

Definition
A (G)PSR manifold H is called singular at infinity if dh vanishes along a ray
in ∂(R>0 ⋅H).

● the above definition is equivalent to a fitting part of {h = 0} being
singular as a real algebraic variety

Theorem [L’19, L’22 (1)]
Homogeneous PSR & homogeneous quartic GPSR manifolds are singular
at infinity.

Example: projective curves of h ≅ xyz and h ≅ x(xy − z2) are singular:
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Outlook

↝ Which open problems are realistically doable?

Current project 1 [LS’22]
Classify all homogeneous GPSR surfaces.

Advantages:
● can use homogeneous (G)PSR curves classification
● necessary Lie subalgebras of GL(3) well understood

Possible problems:
● strategy employed for curves not helpful
● have run multiple times into combinatorial nightmares, this WILL

happen again
● calculation heavy, leading to potential human error

Verdict: expect a positive outcome!
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Current project 2
Describe the asymptotic behaviour of maximal non-closed PSR manifolds.

Advantages:
● expect similar formulas as in the closed PSR case
● even for surfaces a result could be published

Possible problems:
● already the closed PSR case was a extremely calculation-heavy, will

probably be even worse for maximal non-closed PSRs
● cannot really expect convergence of standard forms
● ∃ explicit example with no well-defined asymptotic geometry in our sense,

in that case hyp(h) ∩ {h = 0} contains only the origin
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Other open questions:

Problem 1
Are closed GPSR manifolds geodesically complete w.r.t. −∂2h∣TH×TH?

● for PSR manifolds, three different proofs of the above are known
[CNS’16, L’19]

● none of these can be generalised to higher degree polynomials
● reasonable attempt: quartic GPSR surfaces

Problem 2
Can one find a meaningful generalisation of the supergravity r-map to quartic
GPSR manifolds?

● probably!

Problem 3
Relate asymptotic geometry of (G)PSR manifolds to limits of the
volume-preserving Kähler-Ricci flow.

● motivated by the fact that the volume-preserving Kähler-Ricci flow on the
level of cohomology is an integral curve in a (G)PSR manifold H, obtained
by projecting c1(X), viewed as constant vector field, centrally to H
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Thank you for your attention!
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