Algebraic geometry II Winter 2015/16

Toric varieties II

Exercise 1.

Let Σ, Σ' be fans in $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$, respectively, with toric varieties $X(\Sigma), X(\Sigma')$. Let $\varphi \colon \Sigma \to \Sigma'$ be a morphism of fans. Let $\Phi \colon X(\Sigma) \to X(\Sigma')$ be the induced morphism.

- i. Φ is a closed immersion if and only if for all $\sigma' \in \Sigma'$ there is a $\sigma \in \Sigma$ with $\varphi^{-1}(\sigma') = \sigma$ such that $(\sigma')^{\vee} \cap M' \to \sigma^{\vee} \cap M$ is surjective.
- ii. Φ is dominant if and only if N'/N is a torsion group.

Exercise 2.

Let Σ, Σ' be fans in $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$, respectively. Let $\varphi \colon N \to N'$ be a surjective \mathbb{Z} -linear morphism inducing a morphism of fans $\varphi \colon \Sigma \to \Sigma'$. Consider the exact sequence

$$0 \to N_0 \to N \to N' \to 0.$$

Define $\Sigma_0 = \{ \sigma \in \Sigma \mid \sigma \subset (N_0)_{\mathbb{R}} \}.$

- i. Check that Σ_0 is a fan in $(N_0)_{\mathbb{R}}$.
- ii. Let σ, σ' be cones in $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$ respectively, such that φ maps σ bijectively onto σ' . Prove that $\varphi: N \to N'$ has a splitting μ such that μ maps σ' to σ .

Exercise 3. In the situation of exercise 2, the fan Σ is *split* by Σ' and Σ_0 if there is a subfan $\hat{\Sigma} \subset \Sigma$ such that :

- i. φ maps each cone $\hat{\sigma} \in \hat{\Sigma}$ bijectively to a cone $\sigma' \in \Sigma'$ such that $\varphi(\hat{\sigma} \cap N) = \sigma' \cap N'$. Moreover, $\hat{\sigma} \to \sigma'$ is a bijection $\hat{\Sigma} \to \Sigma'$.
- ii. Given cones $\hat{\sigma} \in \hat{\Sigma}$ and $\sigma_0 \in \Sigma_0$, the sum $\hat{\sigma} + \sigma_0$ lies in Σ , and every cone of Σ arises this way.

Show that if Σ is split, then $X(\Sigma')$ has a cover by affine open subsets U such that

$$\Phi^{-1}(U) \cong X(\Sigma_0) \times U.$$

Deduce that all fibres of $X(\Sigma) \to X(\Sigma')$ are isomorphic to $X(\Sigma_0)$.

Exercise 4. Let r be a nonnegative integer. The fan Σ_r in $N_{\mathbb{R}} = \mathbb{R}^2$ given by the four cones $\operatorname{cone}(-e_1 + re_2, e_2), \operatorname{cone}(-e_1 + re_2, -e_2), \operatorname{cone}(e_2, e_1), \operatorname{cone}(e_1, -e_2)$ defines a toric variety, the Hirzebruch surface \mathcal{H}_r .

- i. Show that $\mathcal{H}_0 \cong \mathbb{P}^1 \times \mathbb{P}^1$. Show that there is no toric isomorphism $\mathcal{H}_r \cong \mathbb{P}^1 \times \mathbb{P}^1$ for r > 0.
- ii. Check that the projection on the first factor $\pi_1 \colon \mathbb{Z}^2 \to \mathbb{Z}$ determines a toric morphism $\mathcal{H}_r \to \mathbb{P}^1$.

1

iii. Find a fan Σ_0 such that Σ_r is split by the fan of \mathbb{P}^1 and Σ_0 . Deduce that \mathcal{H}_r is a locally trivial fibration over \mathbb{P}^1 .