Algebraic geometry II Winter 2015/16

Toric varieties I

Exercise 1.

Let d be a positive integer and e_1, e_2 the standard basis of \mathbb{R}^2 . Show that the toric variety U_{σ} determined by the cone $\sigma = (de_1 - e_2, e_2)$ is isomorphic to $\text{Spec}[X_0, \ldots, X_d]/I$ where I is the ideal generated by the 2×2 minors of

$$\begin{pmatrix} X_0 & \dots & X_{d-1} \\ X_1 & \dots & X_d \end{pmatrix}$$

This variety is known as the rational normal cone.

Exercise 2.

Classify all the 1-dimensional toric varieties.

Exercise 3.

i. Let σ be a cone in N and σ' a cone in N'. Show that $\sigma \times \sigma'$ is a cone in $N \oplus N'$ and construct an isomorphism

$$U_{\sigma \times \sigma'} \cong U_{\sigma} \times U'_{\sigma}$$

ii. Let Σ, Σ' be fans in $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$. Show:

$$\Sigma \times \Sigma' := \{ \sigma \times \sigma' \mid \sigma \in \Sigma, \sigma' in \Sigma' \}$$

is a fan in $N_{\mathbb{R}} \times N'_{\mathbb{R}}$. Also, show

$$X(\Sigma \times \Sigma') \cong X(\Sigma) \times X(\Sigma').$$

Exercise 4. Let $S = C \cap M$, $A = k[T_1, T_1^{-1}, \ldots, T_n, T_n^{-1}]$. Suppose A = k[M] with $M = \mathbb{Z}S$. The action α of the torus $\mathbb{G}_m^n = \operatorname{Spec}(A)$ on the affine toric variety $U = \operatorname{Spec}(k[S])$ is given by a morphism

$$\alpha: \mathbb{G}_m^n \times U \to U$$

satisfying a number of axioms. These can also be stated in terms of the coaction

$$\rho: k[S] \to k[S] \otimes A$$

of α . We require

$$(id_A \otimes \epsilon) \circ \rho = id_A$$

and

$$(id_A \otimes \triangle) \circ \rho = (\rho \otimes id_A) \circ \rho$$

Here, \triangle is the comultiplication given by $\triangle = \mu^* \otimes \cdots \otimes \mu^*$, where $\mu^*: k[T, T^{-1}] \to k[T, T^{-1}] \otimes k[T, T^{-1}]$

is the comultiplication on the factors of \mathbb{G}_m^n and is given by $\mu^*(T) = T \otimes T$. Similarly, ϵ is the product $e^* \otimes \cdots \otimes e^*$ of the counits $e^* : k[T, T^{-1}] \to k$ given by $e^*(T) = 1$. Check that the algebra homomorphism $k[S] \to k[M] \otimes k[S]$ given by $\chi^m \to \chi^m \otimes \chi^m$ is a

coaction. This is the algebra homomorphism defining the torus action.