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(C™, h) standard hermitian vector space
natural substructure: complex (hermitian) subspaces
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(C™, h) standard hermitian vector space
natural substructure: complex (hermitian) subspaces

real picture
(C™ h) < (RQm,g, J), J isometry with J? = —Id
complex subspaces < real subspaces closed under J
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Kahler manifolds

(M?™ g, J) looks ~ (R*™, g, J) up to 2" order

natural substructure: complex submanifolds Y € M, i.e. TY
closed under J
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Kahler manifolds

(M?™ g, J) looks ~ (R*™, g, J) up to 2" order

natural substructure: complex submanifolds Y € M, i.e. TY
closed under J

remark
complex manifolds homologically volume minimising  [rederer

Y2* complex submanifold, Y’ € [Y] € Hor(M)

= vol(Y’) —/ volg .., = vol(Y)

!/
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octonians
O = R1 & Im O normed division algebra, not associative: in
general

[z,y,2] =2 (y-2) —(z-y)-2#0

real picture
R” = Im Q@ + g+ cross product = x y = Im(y - z),

rxylay zxy=-yxz |zxyl,=|zAyl,



associative subspaces

deforming
associatives
with boundary

conditions OCtonia ns

TG O = R1 & Im O normed division algebra, not associative: in
Associative general

submanifolds

o,y 2l =2 (y-2) = (@-y) 2 #0

real picture
R” = Im Q@ + g+ cross product = x y = Im(y - z),

rxylay zxy=-yxz |zxyl,=|zAyl,

natural substructure
associative subspaces Y: closed under x

= dim =0,3,7 and [z,y,2] =0 for all z,y,z € Y
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submanifolds (M7, g, x) looks ~ (R7, g, x) up to 2" order

e associative submanifolds: Y3 ¢ M7 with TY closed
under x
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Go—manifolds
(M7, g, x) looks ~ (R7, g, x) up to 2" order

e associative submanifolds: Y3 ¢ M7 with TY closed
under X

e coassociative submanifolds: X* ¢ M7 with TX~ is
associative
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associative submanifolds

Go—manifolds
(M7, g, x) looks ~ (R7, g, x) up to 2" order

e associative submanifolds: Y3 ¢ M7 with TY closed
under X

e coassociative submanifolds: X* ¢ M7 with TX~ is
associative

question

homologically volume minimising?
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(M, g,7) (compact) Riemannian manifold, 7 € QF(M).
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calibrated submanifolds [Harvey—Lawson]
(M, g,7) (compact) Riemannian manifold, 7 € QF(M).
o 7 calibration iff for all z € M, U* Cc T, M: T < vol
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Fupmenteld o 7 calibration iff for all z € M, U* C T, M: 7y < voly,

© Y C M calibrated iff 7y = volg,,

Frederik Witt
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calibrated submanifolds [Harvey—Lawson]

(M, g,7) (compact) Riemannian manifold, 7 € QF(M).
o 7 calibration iff for all z € M, U* Cc T, M: T < vol
© Y C M calibrated iff 7y = volg,,
@ dr = 0 = calibrated submanifolds are h.v.m.

9u
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calibrated submanifolds [Harvey—Lawson]

(M, g,7) (compact) Riemannian manifold, 7 € QF(M).

o 7 calibration iff for all x € M, U* c T, M: T < V019|U

© Y C M calibrated iff 7y = volg,,
@ d7 = 0 = calibrated submanifolds are h.v.m.

examples

o Kihler case: w(z,y) = g(Jz,y), Lr < Volg o,

m!
calibrated submanifolds = complex submanifolds

[Wirtinger]
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calibrated submanifolds [Harvey—Lawson]

(M, g,7) (compact) Riemannian manifold, 7 € QF(M).
o 7 calibration iff for all z € M, U* Cc T, M: Ty < volg,,
© Y C M calibrated iff 7y = volg,,
@ dr = 0 = calibrated submanifolds are h.v.m.

examples

o Kahler case: w(z,y) = g(Jx,y), % < volg ., [Wirtinger]

calibrated submanifolds = complex submanifolds

(*] G2 case: gO(ZE, Y, Z) = g(w XY, Z), %) S VOlleS [Harvey—Lawson]
calibrated submanifolds = associative submanifolds
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Split InO=ImH®H =R3® R, ImH = (i, 5, k). When is
graphf CImHeH, f:UCImH—H

calibrated?
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e Split InO =ImH o H =R3®R*, ImH = (i, j, k). When is
obmanifotds graphf CImHeH, f:UCImH—H

calibrated?
e D(f)=—i- aafl J- 812 — k- 5., Dirac operator
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associative submanifolds of R’

Split InO=ImH®H =R3® R, ImH = (i, 5, k). When is
graphf CImHeH, f:UCImH—H

calibrated?
e D(f)=—i- aafl J- 812 — k- 5., Dirac operator
o C:H x H x HH — H triple cross product
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SRRV Split In O = ImH & H = R3 @ R4, ImH = (i, j, k). When is

Associative

submanifolds graphf C ImH D H, f : U C ImH — H

calibrated?
e D(f)=—i- aafl J- 812 — k- 5., Dirac operator
o C:H x H x HH — H triple cross product

theorem [Harvey—Lawson]
graph f calibrated iff

0 0 0
D(f) = C(f) = 0((%{1, 8; aj;)
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unbounded deformation problem
Y closed associative. Zariski tangent space of

My = {Y'| Y’ associative and isotopic to Y'}?
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unbounded deformation problem
Y closed associative. Zariski tangent space of

My = {Y'| Y’ associative and isotopic to Y'}?

motivating example
Y = ImH = graph f € R” with f = 0 calibrated, v = H
= f close to 0, linearised equation D(f) =0
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deformations of associatives without boundary

unbounded deformation problem
Y closed associative. Zariski tangent space of

My = {Y'| Y’ associative and isotopic to Y'}?

motivating example
Y = ImH = graph f € R” with f = 0 calibrated, v = H
= f close to 0, linearised equation D(f) =0

theorem [McLean]

@ normal bundle v — Y is a (twisted) spinor bundle for Y’
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deformations of associatives without boundary

unbounded deformation problem
Y closed associative. Zariski tangent space of

My = {Y'| Y’ associative and isotopic to Y'}?

motivating example
Y = ImH = graph f € R” with f = 0 calibrated, v = H
= f close to 0, linearised equation D(f) =0

theorem [McLean]

@ normal bundle v — Y is a (twisted) spinor bundle for Y’

@ Zariski tangent space = ker D
D:TI'(Y,v) — I'(Y,v) (twisted) Dirac operator
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deformations of associatives without boundary

unbounded deformation problem
Y closed associative. Zariski tangent space of

My = {Y'| Y’ associative and isotopic to Y'}?
motivating example

Y = ImH = graph f € R” with f = 0 calibrated, v = H
= f close to 0, linearised equation D(f) =0

theorem [McLean]

@ normal bundle v — Y is a (twisted) spinor bundle for Y’

@ Zariski tangent space = ker D
D:TI'(Y,v) — I'(Y,v) (twisted) Dirac operator

e virtual dimension of My = ind(D) =0



deformations of associatives with boundary

deforming

associatives
with boundary

conditions

Frederik Witt .
bounded deformation problem

deformations
of associative
submanifolds




deforming

associatives
with boundary

conditions

Frederik Witt

deformations
of associative
submanifolds

deformations of associatives with boundary

bounded deformation problem

@ X coassociative
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@ X coassociative
@ Y compact associative with boundary 9Y C X
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@ X coassociative
@ Y compact associative with boundary 9Y C X
o Mxy = {Y'|Y’ associative isotopic to Y, 9Y' C X}
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deformations of associatives with boundary

bounded deformation problem

@ X coassociative
@ Y compact associative with boundary 9Y C X
o Mxy = {Y'|Y’ associative isotopic to Y, 9Y' C X}

question

e what is the Zariski tangent space to Mx y?
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deformations of associatives with boundary

bounded deformation problem

@ X coassociative
@ Y compact associative with boundary 9Y C X
o Mxy = {Y'|Y’ associative isotopic to Y, 9Y' C X}

question

e what is the Zariski tangent space to Mx y?

@ its (virtual) dimension?
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near the boundary

Def
@ v — Y normal bundle, vy =

ToY Ltrx
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near the boundary

Def
e v — Y normal bundle, vy = TOYLrx

@ C C Y collar neighbourhood of Y, u inward pointing
normal vector field
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near the boundary

Def
e v — Y normal bundle, vy = TOYLrx

@ C C Y collar neighbourhood of Y, u inward pointing
normal vector field

® uX : V¢ — ¢ almost complex structure
(cf. w € Im H acting on H)



deforming

associatives
with boundary

conditions

Frederik Witt

deformations
of associative
submanifolds

geometry on the boundary

near the boundary

Def
e v — Y normal bundle, vy = TOYLrx

@ C C Y collar neighbourhood of Y, u inward pointing
normal vector field

® uX : V¢ — ¢ almost complex structure
(cf. u € Im H acting on H)

lemma [Gayet-W.]

° vx C Vjgy and vy is ux—closed
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[S)
e v — Y normal bundle, vy = ToYLtrx

@ C C Y collar neighbourhood of Y, u inward pointing
deformations normal vector field

of associative

submanifolds

® uX : V¢ — ¢ almost complex structure
(cf. u € Im H acting on H)

lemma [Gayet-W.]

° vx C Vjgy and vy is ux—closed

Def
o ux = V)J;” also ux—closed
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geometry on the boundary

near the boundary

Def
e v — Y normal bundle, vy = TOYLrx

@ C C Y collar neighbourhood of Y, u inward pointing
normal vector field

® uX : V¢ — ¢ almost complex structure
(cf. u € Im H acting on H)

lemma [Gayet-W.]

° vx C Vjgy and vy is ux—closed

Def
o ux = V)J;” also ux—closed

° iy 2 vx ®c TOY as C-line bundles
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corollary
D:T(Y,v)—TI(Y,v) Dirac, B: T'(9Y,v)—=T'(9Y, ux) proj
= Zariski tangent space of M x y given by

Df — 0
B(fiay) = 0

question

o elliptic system?
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the Zariski tangent space

corollary
D:T(Y,v)—TI(Y,v) Dirac, B: T'(9Y,v)—=T'(9Y, ux) proj
= Zariski tangent space of M x y given by

Df — 0
B(fiay) = 0

question

o elliptic system?
o if yes, what is its index (= virtual dimension of Mix y)?
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elliptic boundary conditions

Calderén operator associated with D

Qp : I'(0Y,v) = {floy € I'(0Y,v)|Df = 0}
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elliptic boundary conditions

Calderén operator associated with D

Qp : I'(0Y,v) = {floy € I'(0Y,v)|Df = 0}

definition

M2+ with boundary, S — M spinor bundle with Dirac
D:T(M,S)—-T(M,S), B:T(0M,S) - T'(0OM,V)

B defines local elliptic boundary condition < principal
symbol o(B) satisfies
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elliptic boundary conditions

Calderén operator associated with D

Qp : I'(0Y,v) = {floy € I'(0Y,v)|Df = 0}

definition
M2+ with boundary, S — M spinor bundle with Dirac
D:T(M,S)—-T(M,S), B:T(0M,S) - T'(0OM,V)
B defines local elliptic boundary condition < principal
symbol o(B) satisfies

e imo(B) = n*V (r: T*OM\0 — OM)
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elliptic boundary conditions

Calderén operator associated with D

Qp : I'(0Y,v) = {floy € I'(0Y,v)|Df = 0}

definition
M2+ with boundary, S — M spinor bundle with Dirac
D:T(M,S)—-T(M,S), B:T(0M,S) - T'(0OM,V)
B defines local elliptic boundary condition < principal
symbol o(B) satisfies

e imo(B) = n*V (r: T*OM\0 — OM)

o imo(B) = im(o(B)oo(Qp)) = imao(Qp)
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@ BB defines l.e.b.c. then well-defined

ind(D, B) = dimker(D & B) — dim coker(D & B)
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index theorems

@ BB defines l.e.b.c. then well-defined
ind(D, B) = dimker(D & B) — dim coker(D & B)

o Pt :T'(M,S) — T'(OM,S™) orthogonal projection on
positive spinors

= P defines l.e.b.c. with ind(D,P) =0
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index theorems

@ BB defines l.e.b.c. then well-defined

ind(D, B) = dimker(D & B) — dim coker(D & B)

o Pt :T'(M,S) — T'(OM,S™) orthogonal projection on
positive spinors

= P defines l.e.b.c. with ind(D,P) =0

@ 12 define l.e.b.c.

=

ind(D, B2) — ind(D, B;) = ind(B2 o Qp o By)
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B:T'(9Y,v)—T(9Y, px) defines a l.e.b.c. with
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ind(D, B) = ind (9, )
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the virtual dimension

theorem [Gayet-W.]
B:T'(9Y,v)—T(9Y, px) defines a l.e.b.c. with

ind(D, B) = ind (9, )

corollary

dY connected = ind(D, B) = fay alvx)+1—g
(Riemann—Roch)
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sketch of the proof

@ on 9Y x [0, ¢€) collar neighbourhood, we have

D=ux(Vy+R)
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@ on 9Y x [0, ¢€) collar neighbourhood, we have
D=ux(Vy+R)

e compute o(Qp) from o(R) (Calderén—Seeley)
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@ on 9Y x [0, ¢€) collar neighbourhood, we have
D=ux(Vy+R)

e compute o(Qp) from o(R) (Calderén—Seeley)
o check definition = l.e.b.c.
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sketch of the proof

@ on 9Y x [0, ¢€) collar neighbourhood, we have
D=ux(Vy+R)

e compute o(Qp) from o(R) (Calderén—Seeley)
o check definition = l.e.b.c.

@ index theory = need only o(BOpP™)
(P projector onto S™)
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sketch of the proof

@ on 9Y x [0, ¢€) collar neighbourhood, we have
D=ux(Vy+R)

e compute o(Qp) from o(R) (Calderén—Seeley)
o check definition = l.e.b.c.

@ index theory = need only o(BOpP™)
(P projector onto S™)

o lemma = o(BOpP") = 0(dyy)
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e Y C R associative, Y connected and real analytic

e a € I'(9Y, v) nowhere vanishing, real analytic section
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arbitrary genus

e Y C R associative, Y connected and real analytic
e a € I'(9Y, v) nowhere vanishing, real analytic section

e induced geodesic flow gives N3, real analytic, pNn=0
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examples

arbitrary genus

e Y C R associative, Y connected and real analytic

e a € I'(9Y, v) nowhere vanishing, real analytic section

e induced geodesic flow gives N3, real analytic, pNn=0

@ N determines coassociative germ X, 0Y C X

[Harvey—Lawson]
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examples

arbitrary genus

e Y C R associative, Y connected and real analytic

e 6 o6 o

a € T'(9Y,v) nowhere vanishing, real analytic section

induced geodesic flow gives N3, real analytic, pNn=0

N determines coassociative germ X, 0Y C X

a section of vy = ind=1—g

[Harvey—Lawson]
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examples

arbitrary genus

e Y C R associative, Y connected and real analytic

e a € I'(9Y, v) nowhere vanishing, real analytic section

e induced geodesic flow gives N3, real analytic, pNn=0

@ N determines coassociative germ X, Y C X [Harvey-Lawson]

@ asectionof vy =ind=1—¢g

[compact examples]

use Joyce's construction of (co—)associatives to produce
examples with non—vanishing index in compact holonomy
Go—manifolds
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relaxing the integrability condition
theorem remains true for topological Ga—manifolds
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theorem remains true for topological Ga—manifolds

relaxing the boundary condition

o X* totally non—associative iff 7, X contains no
associative subspace (pointwise open condition),
for instance X coassociative
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generalisation of the boundary condition

relaxing the integrability condition
theorem remains true for topological Ga—manifolds

relaxing the boundary condition

o X* totally non—associative iff 7, X contains no
associative subspace (pointwise open condition),
for instance X coassociative

o “p—free” (cf. “totally real” vs. “Lagrangian”) [Haney-Lawson]
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generalisation of the boundary condition

relaxing the integrability condition
theorem remains true for topological Ga—manifolds

relaxing the boundary condition

o X* totally non—associative iff 7, X contains no
associative subspace (pointwise open condition),
for instance X coassociative

o “p—free” (cf. “totally real” vs. “Lagrangian”) [Haney-Lawson]

@ theorem remains true with “t.n.a.” instead of
“coassociative”
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