

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

deformations of associative submanifolds with boundary

Frederik Witt

Universität Regensburg

holonomy groups and applications in string theory Hamburg, 15/07/08

1/21

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Deformations of associative submanifolds with boundary [math/08021283]

joint with Damien Gayet (Lyon)

Associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

1 Associative submanifolds

2 deformations of associative submanifolds

complex subspaces

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Hermitian spaces

 (\mathbb{C}^m, h) standard hermitian vector space **natural substructure**: complex (hermitian) subspaces

real picture

 $(\mathbb{C}^m, h) \leftrightarrow (\mathbb{R}^{2m}, g, J)$, J isometry with $J^2 = -\text{Id}$ complex subspaces \leftrightarrow real subspaces closed under J

complex subspaces

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Hermitian spaces

(\mathbb{C}^m,h) standard hermitian vector space natural substructure: complex (hermitian) subspaces

real picture

 $(\mathbb{C}^m, h) \leftrightarrow (\mathbb{R}^{2m}, g, J)$, J isometry with $J^2 = -\text{Id}$ complex subspaces \leftrightarrow real subspaces closed under J

complex subspaces

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Hermitian spaces

 (\mathbb{C}^m, h) standard hermitian vector space **natural substructure**: complex (hermitian) subspaces

real picture

 $(\mathbb{C}^m, h) \leftrightarrow (\mathbb{R}^{2m}, g, J)$, J isometry with $J^2 = -\mathrm{Id}$ complex subspaces \leftrightarrow real subspaces closed under J

complex submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Kähler manifolds (M^{2m}, g, J) looks $\sim (\mathbb{R}^{2m}, g, J)$ up to 2^{nd} order **natural substructure**: complex submanifolds $Y \subset M$, i.e closed under J

remark

complex manifolds homologically volume minimising [Federer] $Y^{2k} \text{ complex submanifold, } Y' \in [Y] \in H_{2k}(M)$

$$\Rightarrow \operatorname{vol}(Y') = \int_{Y'} \operatorname{vol}_{g_{|Y'}} \ge \operatorname{vol}(Y)$$

complex submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Kähler manifolds (M^{2m}, g, J) looks $\sim (\mathbb{R}^{2m}, g, J)$ up to 2^{nd} order **natural substructure**: complex submanifolds $Y \subset M$, i.e. TYclosed under J

remark

complex manifolds homologically volume minimising [Federer] $Y^{2k} \text{ complex submanifold, } Y' \in [Y] \in H_{2k}(M)$

$$\Rightarrow \operatorname{vol}(Y') = \int_{Y'} \operatorname{vol}_{g_{|Y'}} \ge \operatorname{vol}(Y)$$

complex submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Kähler manifolds

 (M^{2m},g,J) looks $\sim (\mathbb{R}^{2m},g,J)$ up to $2^{\rm nd}$ order natural substructure: complex submanifolds $Y\subset M$, i.e. TY closed under J

remark

complex manifolds homologically volume minimising [Federer] Y^{2k} complex submanifold, $Y' \in [Y] \in H_{2k}(M)$

$$\Rightarrow \operatorname{vol}(Y') = \int_{Y'} \operatorname{vol}_{g_{|Y'}} \ge \operatorname{vol}(Y)$$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

octonians

 $\mathbb{O}=\mathbb{R}\mathbf{1}\oplus\mathrm{Im}\,\mathbb{O}$ normed division algebra, not associative: in general

$$[x,y,z] = x \cdot (y \cdot z) - (x \cdot y) \cdot z \neq 0$$

real picture

 $\mathbb{R}^7 = \operatorname{Im} \mathbb{O} + g + \operatorname{cross} \operatorname{product} x \times y = \operatorname{Im}(\overline{y} \cdot x),$

 $x \times y \perp x, y \quad x \times y = -y \times x \quad \|x \times y\|_g = \|x \wedge y\|_g$

natural substructure

associative subspaces Y: closed under \times $\Rightarrow \dim = 0, 3, 7$ and [x, y, z] = 0 for all $x, y, z \in Y$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

octonians

 $\mathbb{O}=\mathbb{R}\mathbf{1}\oplus\operatorname{Im}\mathbb{O}$ normed division algebra, not associative: in general

$$[x,y,z] = x \cdot (y \cdot z) - (x \cdot y) \cdot z \neq 0$$

real picture

 $\mathbb{R}^7 = \operatorname{Im} \mathbb{O} + g + \operatorname{cross} \operatorname{product} x \times y = \operatorname{Im}(\overline{y} \cdot x),$

 $x \times y \perp x, y \quad x \times y = -y \times x \quad \|x \times y\|_g = \|x \wedge y\|_g$

natural substructure

associative subspaces Y: closed under \times $\Rightarrow \dim = 0, 3, 7$ and [x, y, z] = 0 for all $x, y, z \in Y$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

octonians

 $\mathbb{O}=\mathbb{R}\mathbf{1}\oplus\operatorname{Im}\mathbb{O}$ normed division algebra, not associative: in general

$$[x,y,z] = x \cdot (y \cdot z) - (x \cdot y) \cdot z \neq 0$$

real picture

 $\mathbb{R}^7 = \operatorname{Im} \mathbb{O} + g + \operatorname{cross} \operatorname{product} x \times y = \operatorname{Im}(\overline{y} \cdot x),$

$$x \times y \perp x, y \quad x \times y = -y \times x \quad \|x \times y\|_g {=} \|x \wedge y\|_g$$

natural substructure

associative subspaces Y: closed under \times $\Rightarrow \dim = 0, 3, 7$ and [x, y, z] = 0 for all $x, y, z \in Y$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

octonians

 $\mathbb{O}=\mathbb{R}\mathbf{1}\oplus\operatorname{Im}\mathbb{O}$ normed division algebra, not associative: in general

$$[x,y,z] = x \cdot (y \cdot z) - (x \cdot y) \cdot z \neq 0$$

real picture

 $\mathbb{R}^7 = \operatorname{Im} \mathbb{O} + g + \operatorname{cross} \text{ product } x \times y = \operatorname{Im}(\overline{y} \cdot x),$

$$x \times y \perp x, y \quad x \times y = -y \times x \quad \|x \times y\|_g {=} \|x \wedge y\|_g$$

natural substructure

associative subspaces Y: closed under \times

 $\Rightarrow \dim = 0, \mathbf{3}, 7 \text{ and } [x, y, z] = 0 \text{ for all } x, y, z \in Y$

associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

G_2 -manifolds

 $M^7,g, imes)$ looks $\sim (\mathbb{R}^7,g, imes)$ up to $2^{
m nd}$ order

- associative submanifolds: $Y^3 \subset M^7$ with TY closed under \times
- coassociative submanifolds: $\mathcal{K}^4 \subset \mathcal{M}^5$ with $\mathcal{T}X^4$ is associative

question

associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

G_2 -manifolds $(M^7,g, imes)$ looks $\sim (\mathbb{R}^7,g, imes)$ up to 2^{nd} order

- associative submanifolds: $Y^3 \subset M^7$ with TY closed under \times
- coassociative submanifolds: $X^4 \subset M^7$ with TX^{\perp} is associative

question

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

G_2 -manifolds $(M^7,g, imes)$ looks $\sim (\mathbb{R}^7,g, imes)$ up to 2^{nd} order

- associative submanifolds: $Y^3 \subset M^7$ with TY closed under \times
- coassociative submanifolds: $X^4 \subset M^7$ with TX^{\perp} is associative

question

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

G_2 -manifolds (M^7, q, \times) looks $\sim (\mathbb{R}^7, q, \times)$ up to 2^{nd} order

- associative submanifolds: $Y^3 \subset M^7$ with TY closed under \times
- coassociative submanifolds: $X^4 \subset M^7$ with TX^{\perp} is associative

question

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

G_2 -manifolds (M^7, q, \times) looks $\sim (\mathbb{R}^7, q, \times)$ up to 2^{nd} order

- associative submanifolds: $Y^3 \subset M^7$ with TY closed under \times
- coassociative submanifolds: $X^4 \subset M^7$ with TX^{\perp} is associative

question

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

- au calibration iff for all $x\in M$, $U^k\subset T_xM\colon au_{|U}\leq \mathrm{vol}_{g_{|U}}$
- $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$
- $d\tau = 0 \Rightarrow$ calibrated submanifolds are h.v.m.

examples

- Kähler case: $\omega(x,y) = g(Jx,y)$, $\frac{\omega^m}{m!} \le \operatorname{vol}_{g_{|Y}2m}$ (we calibrated submanifolds = complex submanifolds
- * G_2 case: $\varphi(x, y, z) = g(x \times y, z), \varphi \leq \operatorname{vol}_{g_{VX}}$ remetees calibrated submanifolds = associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

• τ calibration iff for all $x \in M$, $U^k \subset T_x M$: $\tau_{|U} \leq \operatorname{vol}_{g_{|U}}$

• $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$

• $d au=0\Rightarrow$ calibrated submanifolds are h.v.m.

examples

• Kähler case: $\omega(x,y) = g(Jx,y), \frac{\omega^m}{m!} \le \operatorname{vol}_{g_{|Y}^{2m}}$ we calibrated submanifolds = complex submanifolds

 G_2 case: $\varphi(x, y, z) = g(x \times y, z), q \leq \operatorname{vol}_{p_{p_1}} = p_{p_2}$ case: $\varphi(x, y, z) = g(x \times y, z), q \leq \operatorname{vol}_{p_1}$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

- τ calibration iff for all $x \in M$, $U^k \subset T_x M$: $\tau_{|U} \leq \operatorname{vol}_{g_{|U}}$
- $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$

• $d au=0\Rightarrow$ calibrated submanifolds are h.v.m.

examples

- Kähler case: $\omega(x,y) = g(Jx,y)$, $\frac{\omega^m}{m!} \le \operatorname{vol}_{g_{|Y^{2m}}}$ [wind calibrated submanifolds = complex submanifolds
- G_2 case: $\varphi(x, y, z) = g(x \times y, z)$, $\varphi \leq \operatorname{vol}_{g_{Q,S}}$. Hence Lemma calibrated submanifolds = associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

- τ calibration iff for all $x \in M$, $U^k \subset T_x M$: $\tau_{|U} \leq \operatorname{vol}_{g_{|U}}$
- $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$
- $d\tau = 0 \Rightarrow$ calibrated submanifolds are h.v.m.

examples

• Kähler case: $\omega(x,y) = g(Jx,y)$, $\frac{\omega^m}{m!} \le \operatorname{vol}_{g_{|Y^{2m}}}$ calibrated submanifolds = complex submanifolds

[Wirtinger]

• G_2 case: $\varphi(x,y,z)=g(x\times y,z), \ \varphi\leq {\rm vol}_{g_{|Y^3|}}$. From Lemma calibrated submanifolds = associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

- τ calibration iff for all $x \in M$, $U^k \subset T_x M$: $\tau_{|U} \leq \operatorname{vol}_{g_{|U}}$
- $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$
- $d\tau = 0 \Rightarrow$ calibrated submanifolds are h.v.m.

examples

- Kähler case: $\omega(x,y) = g(Jx,y)$, $\frac{\omega^m}{m!} \leq \mathrm{vol}_{g_{|Y^{2m}}}$ [Wirtinger] calibrated submanifolds = complex submanifolds
- G_2 case: $\varphi(x, y, z) = g(x \times y, z)$, $\varphi \leq \operatorname{vol}_{g_{|Y^3}}$ [Harvey-Lawson] calibrated submanifolds = associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

calibrated submanifolds [Harvey-Lawson]

 (M, g, τ) (compact) Riemannian manifold, $\tau \in \Omega^k(M)$.

- τ calibration iff for all $x \in M$, $U^k \subset T_x M$: $\tau_{|U} \leq \operatorname{vol}_{g_{|U}}$
- $Y \subset M$ calibrated iff $\tau_{|Y} = \operatorname{vol}_{g_{|Y}}$
- $d\tau = 0 \Rightarrow$ calibrated submanifolds are h.v.m.

examples

- Kähler case: $\omega(x,y) = g(Jx,y)$, $\frac{\omega^m}{m!} \leq \mathrm{vol}_{g_{|Y}^{2m}}$ [Wirtinger] calibrated submanifolds = complex submanifolds
- G_2 case: $\varphi(x, y, z) = g(x \times y, z), \ \varphi \leq \operatorname{vol}_{g_{|Y^3}}$ [Harvey-Lawson] calibrated submanifolds = associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds Split $\operatorname{Im} \mathbb{O} = \operatorname{Im} \mathbb{H} \oplus \mathbb{H} = \mathbb{R}^3 \oplus \mathbb{R}^4$, $\operatorname{Im} \mathbb{H} = \langle i, j, k \rangle$. When is $\operatorname{graph} f \subset \operatorname{Im} \mathbb{H} \oplus \mathbb{H}, \quad f: U \subset \operatorname{Im} \mathbb{H} \to \mathbb{H}$

calibrated?

• $\mathcal{D}(f) = -i \cdot \frac{\partial f}{\partial x_1} - j \cdot \frac{\partial f}{\partial x_2} - k \cdot \frac{\partial f}{\partial x_3}$ Dirac operator • $C : \mathbb{H} \times \mathbb{H} \times \mathbb{H} \to \mathbb{H}$ triple cross product

theorem [Harvey–Lawson] graph *f* calibrated iff

 $\mathcal{D}(f) = C(f) = C(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3})$

♦ 🗗 ▶ 9/21

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds Split $\operatorname{Im} \mathbb{O} = \operatorname{Im} \mathbb{H} \oplus \mathbb{H} = \mathbb{R}^3 \oplus \mathbb{R}^4$, $\operatorname{Im} \mathbb{H} = \langle i, j, k \rangle$. When is graph $f \subset \operatorname{Im} \mathbb{H} \oplus \mathbb{H}$, $f : U \subset \operatorname{Im} \mathbb{H} \to \mathbb{H}$

calibrated?

D(f) = -i · ∂f/∂x₁ - j · ∂f/∂x₂ - k · ∂f/∂x₃ Dirac operator
C : ℍ × ℍ × ℍ → ℍ triple cross product

theorem [Harvey-Lawson]
graph f calibrated iff

 $\mathcal{D}(f) = C(f) = C(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3})$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds Split $\operatorname{Im} \mathbb{O} = \operatorname{Im} \mathbb{H} \oplus \mathbb{H} = \mathbb{R}^3 \oplus \mathbb{R}^4$, $\operatorname{Im} \mathbb{H} = \langle i, j, k \rangle$. When is graph $f \subset \operatorname{Im} \mathbb{H} \oplus \mathbb{H}$, $f : U \subset \operatorname{Im} \mathbb{H} \to \mathbb{H}$

calibrated?

•
$$\mathcal{D}(f) = -i \cdot \frac{\partial f}{\partial x_1} - j \cdot \frac{\partial f}{\partial x_2} - k \cdot \frac{\partial f}{\partial x_3}$$
 Dirac operator
• $C : \mathbb{H} \times \mathbb{H} \times \mathbb{H} \to \mathbb{H}$ triple cross product

theorem [Harvey–Lawson]

 $\operatorname{graph} f$ calibrated iff

$$\mathcal{D}(f) = C(f) = C(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3})$$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds Split $\operatorname{Im} \mathbb{O} = \operatorname{Im} \mathbb{H} \oplus \mathbb{H} = \mathbb{R}^3 \oplus \mathbb{R}^4$, $\operatorname{Im} \mathbb{H} = \langle i, j, k \rangle$. When is

 $\operatorname{graph} f \subset \operatorname{Im} \mathbb{H} \oplus \mathbb{H}, \quad f: U \subset \operatorname{Im} \mathbb{H} \to \mathbb{H}$

calibrated?

D(f) = -i ⋅ ∂f/∂x₁ - j ⋅ ∂f/∂x₂ - k ⋅ ∂f/∂x₃ Dirac operator
 C : ℍ × ℍ × ℍ → ℍ triple cross product

theorem [Harvey–Lawson] graph f calibrated iff

$$\mathcal{D}(f) = C(f) = C(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3})$$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds Split $\operatorname{Im} \mathbb{O} = \operatorname{Im} \mathbb{H} \oplus \mathbb{H} = \mathbb{R}^3 \oplus \mathbb{R}^4$, $\operatorname{Im} \mathbb{H} = \langle i, j, k \rangle$. When is

 $\operatorname{graph} f \subset \operatorname{Im} \mathbb{H} \oplus \mathbb{H}, \quad f: U \subset \operatorname{Im} \mathbb{H} \to \mathbb{H}$

calibrated?

D(f) = -i ⋅ ∂f/∂x₁ - j ⋅ ∂f/∂x₂ - k ⋅ ∂f/∂x₃ Dirac operator
 C : ℍ × ℍ × ℍ → ℍ triple cross product

theorem [Harvey–Lawson] graph f calibrated iff

$$\mathcal{D}(f) = C(f) = C(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3})$$

deformations of associative submanifolds

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Associative submanifolds

2 deformations of associative submanifolds

10/21

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

unbounded deformation problem

 \boldsymbol{Y} closed associative. Zariski tangent space of

 $\mathfrak{M}_Y = \{Y' \,|\, Y' \text{ associative and isotopic to } Y\}?$

motivating example

 $Y = \operatorname{Im} \mathbb{H} = \operatorname{graph} f \subset \mathbb{R}^7$ with $f \equiv 0$ calibrated, $\nu = \mathbb{H}$

 $\Rightarrow f$ close to 0, linearised equation $\mathcal{D}(f)=0$

- normal bundle $\nu \to Y$ is a (twisted) spinor bundle for Y
- Zariski tangent space $= \ker \mathcal{D}$
 - $\mathcal{D}: \Gamma(X, \nu) \to \Gamma(X, \nu)$ (twisted) Dirac operators
- virtual dimension of $\mathfrak{M}_Y = \operatorname{ind}(\mathcal{D}) = 0$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

unbounded deformation problem

 \boldsymbol{Y} closed associative. Zariski tangent space of

 $\mathfrak{M}_Y = \{Y' \,|\, Y' \text{ associative and isotopic to } Y\}?$

motivating example

- $Y = \operatorname{Im} \mathbb{H} = \operatorname{graph} f \subset \mathbb{R}^7$ with $f \equiv 0$ calibrated, $\nu = \mathbb{H}$
- $\Rightarrow f$ close to 0, linearised equation $\mathcal{D}(f) = 0$

- \bullet normal bundle $\nu \to Y$ is a (twisted) spinor bundle for Y
- Zariski tangent space = ker D
 D : Γ(Y, ν) → Γ(Y, ν) (twisted) Dirac oper
- virtual dimension of $\mathfrak{M}_Y = \operatorname{ind}(\mathcal{D}) = 0$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

unbounded deformation problem

 \boldsymbol{Y} closed associative. Zariski tangent space of

 $\mathfrak{M}_Y = \{Y' \mid Y' \text{ associative and isotopic to } Y\}?$

motivating example

 $Y = \operatorname{Im} \mathbb{H} = \operatorname{graph} f \subset \mathbb{R}^7$ with $f \equiv 0$ calibrated, $\nu = \mathbb{H}$

 $\Rightarrow f$ close to 0, linearised equation $\mathcal{D}(f) = 0$

- normal bundle $\nu \to Y$ is a (twisted) spinor bundle for Y
- Zariski tangent space = ker \mathcal{D} $\mathcal{D}: \Gamma(Y, \nu) \to \Gamma(Y, \nu)$ (twisted) Dirac operator
- virtual dimension of $\mathfrak{M}_Y = \operatorname{ind}(\mathcal{D}) = 0$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

unbounded deformation problem

 \boldsymbol{Y} closed associative. Zariski tangent space of

 $\mathfrak{M}_Y = \{Y' \mid Y' \text{ associative and isotopic to } Y\}?$

motivating example

 $Y = \operatorname{Im} \mathbb{H} = \operatorname{graph} f \subset \mathbb{R}^7$ with $f \equiv 0$ calibrated, $\nu = \mathbb{H}$

 $\Rightarrow f$ close to 0, linearised equation $\mathcal{D}(f) = 0$

theorem [McLean]

- normal bundle $\nu \to Y$ is a (twisted) spinor bundle for Y
- Zariski tangent space = ker \mathcal{D} $\mathcal{D}: \Gamma(Y, \nu) \to \Gamma(Y, \nu)$ (twisted) Dirac operator

• virtual dimension of $\mathfrak{M}_Y = \operatorname{ind}(\mathcal{D}) = 0$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

unbounded deformation problem

 \boldsymbol{Y} closed associative. Zariski tangent space of

 $\mathfrak{M}_Y = \{Y' \mid Y' \text{ associative and isotopic to } Y\}?$

motivating example

 $Y = \operatorname{Im} \mathbb{H} = \operatorname{graph} f \subset \mathbb{R}^7$ with $f \equiv 0$ calibrated, $\nu = \mathbb{H}$

 $\Rightarrow f$ close to 0, linearised equation $\mathcal{D}(f) = 0$

- normal bundle $\nu \to Y$ is a (twisted) spinor bundle for Y
- Zariski tangent space = ker \mathcal{D} $\mathcal{D}: \Gamma(Y, \nu) \to \Gamma(Y, \nu)$ (twisted) Dirac operator
- virtual dimension of $\mathfrak{M}_Y = \operatorname{ind}(\mathcal{D}) = 0$

deformations of associatives with boundary

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

question

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

bounded deformation problem

- X coassociative
- Y compact associative with boundary $\partial Y \subset X$
- $\mathfrak{M}_{X,Y} = \{Y' \mid Y' \text{ associative isotopic to } Y, \, \partial Y' \subset X\}$

- what is the Zariski tangent space to $\mathfrak{M}_{X,Y}$?
- its (virtual) dimension?

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -$ closed
- $= \mu_X \stackrel{\text{lief}}{=} \nu_X^{\perp}$ also $u \times -\text{closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\mathrm{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -$ closed
- $= \mu_X \stackrel{\text{list}}{=} \nu_X^{\perp}$ also $u \times \text{-closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -closed$
- $\mu_X \stackrel{\text{lief}}{=} \nu_X^{-1}$ also $u \times -\text{closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -\text{closed}$
- $\mu_X \stackrel{\text{Lel}}{=} \nu_X^{\perp_{\nu}}$ also $u \times -$ closed
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundless

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -closed$
- $\mu_X \stackrel{\text{Def}}{=} \nu_X^{\perp_{\nu}}$ also $u \times -\text{closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -closed$
- $\mu_X \stackrel{\text{Def}}{=} \nu_X^{\perp_{\nu}}$ also $u \times -\text{closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

near the boundary

- $\nu \to Y$ normal bundle, $\nu_X \stackrel{\text{Def}}{=} T \partial Y^{\perp_{TX}}$
- $\mathcal{C} \subset Y$ collar neighbourhood of ∂Y , u inward pointing normal vector field
- $u \times : \nu_{|\mathcal{C}} \to \nu_{|\mathcal{C}}$ almost complex structure (cf. $u \in \text{Im } \mathbb{H}$ acting on \mathbb{H})

- $\nu_X \subset \nu_{|\partial Y}$ and ν_X is $u \times -closed$
- $\mu_X \stackrel{\text{Def}}{=} \nu_X^{\perp_{\nu}}$ also $u \times -\text{closed}$
- $\overline{\mu}_X \cong \nu_X \otimes_{\mathbb{C}} T \partial Y$ as \mathbb{C} -line bundles

the Zariski tangent space

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

corollary

 $\begin{array}{l} \mathcal{D}\colon \Gamma(Y,\nu) \mathop{\rightarrow} \Gamma(Y,\nu) \text{ Dirac, } \mathcal{B}\colon \Gamma(\partial Y,\nu) \mathop{\rightarrow} \Gamma(\partial Y,\mu_X) \text{ proj} \\ \Rightarrow \text{ Zariski tangent space of } \mathfrak{M}_{X,Y} \text{ given by} \end{array}$

$$\mathcal{D}f = 0 \\ \mathcal{B}(f_{|\partial Y}) = 0$$

- elliptic system?
- if yes, what is its index (= virtual dimension of $\mathfrak{M}_{X,Y}$):

the Zariski tangent space

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

corollary

 $\begin{array}{l} \mathcal{D}\colon \Gamma(Y,\nu) \mathop{\rightarrow} \Gamma(Y,\nu) \text{ Dirac, } \mathcal{B}\colon \Gamma(\partial Y,\nu) \mathop{\rightarrow} \Gamma(\partial Y,\mu_X) \text{ proj} \\ \Rightarrow \text{ Zariski tangent space of } \mathfrak{M}_{X,Y} \text{ given by} \end{array}$

$$\mathcal{D}f = 0 \\ \mathcal{B}(f_{|\partial Y}) = 0$$

question

• elliptic system?

• if yes, what is its index (= virtual dimension of $\mathfrak{M}_{X,Y}$)?

the Zariski tangent space

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

corollary

$$\begin{split} \mathcal{D} \colon \Gamma(Y,\nu) \mathop{\to} & \Gamma(Y,\nu) \text{ Dirac, } \mathcal{B} \colon \Gamma(\partial Y,\nu) \mathop{\to} & \Gamma(\partial Y,\mu_X) \text{ proj} \\ \Rightarrow \text{ Zariski tangent space of } \mathfrak{M}_{X,Y} \text{ given by} \end{split}$$

$$\mathcal{D}f = 0 \\ \mathcal{B}(f_{|\partial Y}) = 0$$

- elliptic system?
- if yes, what is its index (= virtual dimension of $\mathfrak{M}_{X,Y}$)?

elliptic boundary conditions

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Calderón operator associated with $\ensuremath{\mathcal{D}}$

 $\mathcal{Q}_{\mathcal{D}}: \Gamma(\partial Y, \nu) \to \{f_{|\partial Y} \in \Gamma(\partial Y, \nu) \,|\, \mathcal{D}f = 0\}$

definition

 M^{2n+1} with boundary, $S \to M$ spinor bundle with Dirac $\mathcal{D}: \Gamma(M, S) \to \Gamma(M, S), \ \mathcal{B}: \Gamma(\partial M, S) \to \Gamma(\partial M, V)$

 ${\mathcal B}$ defines **local elliptic boundary condition** \Leftrightarrow principal symbol $\sigma({\mathcal B})$ satisfies

• $\operatorname{im} \sigma(B) \cong \pi^* V \ (\pi : T^* \partial M \setminus 0 \to \partial M)$

• $\operatorname{im} \sigma(B) \cong \operatorname{im} (\sigma(B) \circ \sigma(Q_D)) \cong \operatorname{im} \sigma(Q_D)$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Calderón operator associated with $\ensuremath{\mathcal{D}}$

 $\mathcal{Q}_{\mathcal{D}}: \Gamma(\partial Y, \nu) \to \{ f_{|\partial Y} \in \Gamma(\partial Y, \nu) \,|\, \mathcal{D}f = 0 \}$

definition

 M^{2n+1} with boundary, $S \to M$ spinor bundle with Dirac $\mathcal{D}: \Gamma(M,S) \to \Gamma(M,S)$, $\mathcal{B}: \Gamma(\partial M,S) \to \Gamma(\partial M,V)$

 $\mathcal B$ defines **local elliptic boundary condition** \Leftrightarrow principal symbol $\sigma(\mathcal B)$ satisfies

- $\operatorname{im} \sigma(B) \cong \pi^* V \ (\pi : T^* \partial M \setminus 0 \to \partial M)$
- $\operatorname{im} \sigma(B) \cong \operatorname{im} (\sigma(B) \circ \sigma(Q_D)) \cong \operatorname{im} \sigma(Q_D)$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Calderón operator associated with $\ensuremath{\mathcal{D}}$

$$\mathcal{Q}_{\mathcal{D}}: \Gamma(\partial Y, \nu) \to \{f_{|\partial Y} \in \Gamma(\partial Y, \nu) \,|\, \mathcal{D}f = 0\}$$

definition

 M^{2n+1} with boundary, $S \to M$ spinor bundle with Dirac $\mathcal{D}: \Gamma(M,S) \to \Gamma(M,S)$, $\mathcal{B}: \Gamma(\partial M,S) \to \Gamma(\partial M,V)$

 ${\mathcal B}$ defines **local elliptic boundary condition** \Leftrightarrow principal symbol $\sigma({\mathcal B})$ satisfies

• $\operatorname{im} \sigma(B) \cong \pi^* V \ (\pi : T^* \partial M \setminus 0 \to \partial M)$

• $\operatorname{im} \sigma(B) \cong \operatorname{im} (\sigma(\mathcal{B}) \circ \sigma(\mathcal{Q}_{\mathcal{D}})) \cong \operatorname{im} \sigma(\mathcal{Q}_{\mathcal{D}})$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Calderón operator associated with $\ensuremath{\mathcal{D}}$

$$\mathcal{Q}_{\mathcal{D}}: \Gamma(\partial Y, \nu) \to \{f_{|\partial Y} \in \Gamma(\partial Y, \nu) \,|\, \mathcal{D}f = 0\}$$

definition

 M^{2n+1} with boundary, $S \to M$ spinor bundle with Dirac $\mathcal{D}: \Gamma(M,S) \to \Gamma(M,S)$, $\mathcal{B}: \Gamma(\partial M,S) \to \Gamma(\partial M,V)$

 $\mathcal B$ defines **local elliptic boundary condition** \Leftrightarrow principal symbol $\sigma(\mathcal B)$ satisfies

• $\operatorname{im} \sigma(B) \cong \pi^* V \ (\pi : T^* \partial M \setminus 0 \to \partial M)$

• $\operatorname{im} \sigma(B) \cong \operatorname{im} (\sigma(\mathcal{B}) \circ \sigma(\mathcal{Q}_{\mathcal{D}})) \cong \operatorname{im} \sigma(\mathcal{Q}_{\mathcal{D}})$

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Calderón operator associated with $\ensuremath{\mathcal{D}}$

$$\mathcal{Q}_{\mathcal{D}}: \Gamma(\partial Y, \nu) \to \{f_{|\partial Y} \in \Gamma(\partial Y, \nu) \,|\, \mathcal{D}f = 0\}$$

definition

 M^{2n+1} with boundary, $S \to M$ spinor bundle with Dirac $\mathcal{D}: \Gamma(M,S) \to \Gamma(M,S)$, $\mathcal{B}: \Gamma(\partial M,S) \to \Gamma(\partial M,V)$

 $\mathcal B$ defines **local elliptic boundary condition** \Leftrightarrow principal symbol $\sigma(\mathcal B)$ satisfies

- $\operatorname{im} \sigma(B) \cong \pi^* V \ (\pi : T^* \partial M \setminus 0 \to \partial M)$
- $\operatorname{im} \sigma(B) \cong \operatorname{im} (\sigma(\mathcal{B}) \circ \sigma(\mathcal{Q}_{\mathcal{D}})) \cong \operatorname{im} \sigma(\mathcal{Q}_{\mathcal{D}})$

index theorems

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

$\bullet~\mathcal{B}$ defines I.e.b.c. then well–defined

 $\operatorname{ind}(\mathcal{D},\mathcal{B}) = \dim \ker(\mathcal{D} \oplus \mathcal{B}) - \dim \operatorname{coker}(\mathcal{D} \oplus \mathcal{B})$

• $\mathcal{P}^+: \Gamma(M,S) \to \Gamma(\partial M,S^+)$ orthogonal projection on positive spinors

 $\Rightarrow \mathcal{P}^+$ defines l.e.b.c. with $\operatorname{ind}(\mathcal{D}, \mathcal{P}^+) = 0$

• $\mathcal{B}_{1,2}$ define l.e.b.c.

 $\Rightarrow \quad \operatorname{ind}(\mathcal{D}, \mathcal{B}_2) - \operatorname{ind}(\mathcal{D}, \mathcal{B}_1) = \operatorname{ind}(\mathcal{B}_2 \circ \mathcal{Q}_{\mathcal{D}} \circ \mathcal{B}_1)$

index theorems

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds $\bullet~\mathcal{B}$ defines I.e.b.c. then well–defined

 $\operatorname{ind}(\mathcal{D},\mathcal{B}) = \dim \ker(\mathcal{D} \oplus \mathcal{B}) - \dim \operatorname{coker}(\mathcal{D} \oplus \mathcal{B})$

- $\mathcal{P}^+: \Gamma(M,S) \to \Gamma(\partial M,S^+)$ orthogonal projection on positive spinors
 - $\Rightarrow \quad \mathcal{P}^+ \text{ defines l.e.b.c. with } \operatorname{ind}(\mathcal{D}, \mathcal{P}^+) = 0$

• $\mathcal{B}_{1,2}$ define l.e.b.c.

 $\Rightarrow \quad \operatorname{ind}(\mathcal{D}, \mathcal{B}_2) - \operatorname{ind}(\mathcal{D}, \mathcal{B}_1) = \operatorname{ind}(\mathcal{B}_2 \circ \mathcal{Q}_{\mathcal{D}} \circ \mathcal{B}_1)$

index theorems

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds $\bullet~\mathcal{B}$ defines I.e.b.c. then well–defined

 $\operatorname{ind}(\mathcal{D},\mathcal{B}) = \dim \ker(\mathcal{D} \oplus \mathcal{B}) - \dim \operatorname{coker}(\mathcal{D} \oplus \mathcal{B})$

- $\mathcal{P}^+: \Gamma(M,S) \to \Gamma(\partial M,S^+)$ orthogonal projection on positive spinors
 - $\Rightarrow \quad \mathcal{P}^+ \text{ defines l.e.b.c. with } \operatorname{ind}(\mathcal{D}, \mathcal{P}^+) = 0$
- $\mathcal{B}_{1,2}$ define l.e.b.c.
 - $\Rightarrow \quad \operatorname{ind}(\mathcal{D}, \mathcal{B}_2) \operatorname{ind}(\mathcal{D}, \mathcal{B}_1) = \operatorname{ind}(\mathcal{B}_2 \circ \mathcal{Q}_{\mathcal{D}} \circ \mathcal{B}_1)$

the virtual dimension

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

theorem [Gayet–W.] $\mathcal{B}: \Gamma(\partial Y, \nu) \to \Gamma(\partial Y, \mu_X)$ defines a l.e.b.c. with $\operatorname{ind}(\mathcal{D}, \mathcal{B}) = \operatorname{ind}(\overline{\partial}_{\nu_X})$

corollary

 ∂Y connected \Rightarrow ind $(\mathcal{D}, \mathcal{B}) = \int_{\partial Y} c_1(\nu_X) + 1 - g$ (Riemann-Roch)

< 🗇 🕨 17/2

the virtual dimension

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

theorem [Gayet–W.] $\mathcal{B}: \Gamma(\partial Y, \nu) \to \Gamma(\partial Y, \mu_X)$ defines a l.e.b.c. with $\operatorname{ind}(\mathcal{D}, \mathcal{B}) = \operatorname{ind}(\overline{\partial}_{\nu_X})$

corollary

 $\partial Y \text{ connected} \Rightarrow \operatorname{ind}(\mathcal{D}, \mathcal{B}) = \int_{\partial Y} c_1(\nu_X) + 1 - g$ (Riemann-Roch)

17/21

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

• on $\partial Y \times [0, \epsilon)$ collar neighbourhood, we have $\mathcal{D} = u \times (\nabla_u + \mathcal{R})$

• compute
$$\sigma(\mathcal{Q}_{\mathcal{D}})$$
 from $\sigma(\mathcal{R})$ (Calderón–Seeley)

- check definition \Rightarrow l.e.b.c.
- index theory \Rightarrow need only $\sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+)$ $(\mathcal{P}^+ \text{ projector onto } S^+)$
- lemma $\Rightarrow \sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+) = \sigma(\overline{\partial}_{\nu_X})$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds \bullet on $\partial Y \times [0,\epsilon)$ collar neighbourhood, we have

$$\mathcal{D} = u \times (\nabla_u + \mathcal{R})$$

- compute $\sigma(\mathcal{Q}_{\mathcal{D}})$ from $\sigma(\mathcal{R})$ (Calderón–Seeley)
- check definition ⇒ I.e.b.c.
- index theory \Rightarrow need only $\sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+)$ $(\mathcal{P}^+ \text{ projector onto } S^+)$
- lemma $\Rightarrow \sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+) = \sigma(\overline{\partial}_{\nu_X})$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds \bullet on $\partial Y\times [0,\epsilon)$ collar neighbourhood, we have

$$\mathcal{D} = u \times (\nabla_u + \mathcal{R})$$

- compute σ(Q_D) from σ(R) (Calderón–Seeley)
 check definition ⇒ l.e.b.c.
- index theory \Rightarrow need only $\sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+)$ $(\mathcal{P}^+ \text{ projector onto } S^+)$

• lemma $\Rightarrow \sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+) = \sigma(\overline{\partial}_{\nu_X})$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds \bullet on $\partial Y \times [0,\epsilon)$ collar neighbourhood, we have

$$\mathcal{D} = u \times (\nabla_u + \mathcal{R})$$

- compute $\sigma(\mathcal{Q}_{\mathcal{D}})$ from $\sigma(\mathcal{R})$ (Calderón–Seeley)
- check definition \Rightarrow l.e.b.c.
- index theory \Rightarrow need only $\sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+)$ $(\mathcal{P}^+ \text{ projector onto } S^+)$
- lemma $\Rightarrow \sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+) = \sigma(\overline{\partial}_{\nu_X})$

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds \bullet on $\partial Y \times [0,\epsilon)$ collar neighbourhood, we have

$$\mathcal{D} = u \times (\nabla_u + \mathcal{R})$$

- compute $\sigma(\mathcal{Q}_{\mathcal{D}})$ from $\sigma(\mathcal{R})$ (Calderón–Seeley)
- check definition \Rightarrow l.e.b.c.
- index theory \Rightarrow need only $\sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+)$ (\mathcal{P}^+ projector onto S^+)
- lemma $\Rightarrow \sigma(\mathcal{BQ}_{\mathcal{D}}\mathcal{P}^+) = \sigma(\overline{\partial}_{\nu_X})$

< 🗇 🕨 18/21

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a\in \Gamma(\partial Y,
 u)$ nowhere vanishing, real analytic section
- \bullet induced geodesic flow gives N^3 , real analytic, $\varphi_N \equiv 0$ (
- M. determines coassociative germ X₁, ∂Y₁ ⊂ X₁, pressure the second structure of μ₁ → 1 → q.

[compact examples]

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
 - $a\in \Gamma(\partial Y,
 u)$ nowhere vanishing, real analytic section
- ullet induced geodesic flow gives N^3 , real analytic, $arphi_{|N}\equiv 0$
- N determines coassociative germ $X, \ \partial Y \subset X$ [Harvey-Lawson]
- a section of $\nu_X \Rightarrow \text{ind} = 1 g$

[compact examples]

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a \in \Gamma(\partial Y, \nu)$ nowhere vanishing, real analytic section
- ullet induced geodesic flow gives N^3 , real analytic, $arphi_{|N}\equiv 0$
- N determines coassociative germ X, $\partial Y \subset X$ [Harvey-Lawson] • a section of $\nu_X \Rightarrow \operatorname{ind} = 1 - g$

[compact examples]

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a \in \Gamma(\partial Y, \nu)$ nowhere vanishing, real analytic section
- induced geodesic flow gives N^3 , real analytic, $\varphi_{|N}\equiv 0$
- ullet N determines coassociative germ X , $\partial Y \subset X$ [Harvey-Lawson]
- a section of $\nu_X \Rightarrow \text{ind} = 1 g$

[compact examples]

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a \in \Gamma(\partial Y, \nu)$ nowhere vanishing, real analytic section
- induced geodesic flow gives N^3 , real analytic, $\varphi_{|N}\equiv 0$
- N determines coassociative germ X, ∂Y ⊂ X [Harvey-Lawson]
 a section of ν_X ⇒ ind = 1 − a

[compact examples]

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a \in \Gamma(\partial Y, \nu)$ nowhere vanishing, real analytic section
- induced geodesic flow gives N^3 , real analytic, $\varphi_{|N}\equiv 0$
- N determines coassociative germ X, $\partial Y \subset X$ [Harvey-Lawson]
- a section of $\nu_X \Rightarrow \text{ind} = 1 g$

[compact examples]

examples

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

arbitrary genus

- $Y \subset \mathbb{R}^7$ associative, ∂Y connected and real analytic
- $a\in \Gamma(\partial Y,\nu)$ nowhere vanishing, real analytic section
- induced geodesic flow gives N^3 , real analytic, $\varphi_{|N}\equiv 0$
- N determines coassociative germ X, $\partial Y \subset X$ [Harvey-Lawson]
- a section of $\nu_X \Rightarrow \text{ind} = 1 g$

[compact examples]

use Joyce's construction of (co–)associatives to produce examples with non–vanishing index in **compact** holonomy G_2 –manifolds

generalisation of the boundary condition

deforming associatives with boundary conditions

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition

theorem remains true for **topological** G_2 -manifolds

- X⁴ totally non-associative iff T₂X contains no associative subspace (pointwise open condition), for instance X coassociative

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition theorem remains true for topological G_2 -manifolds

- X⁴ totally non-associative iff T_xX contains no associative subspace (pointwise open condition), for instance X coassociative
- "p-free" (cf. "totally real" vs. "Lagrangian").
 theorem remains true with "t.n.a.", instead of "coassociative"

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition theorem remains true for **topological** G_2 -manifolds

relaxing the boundary condition

- X⁴ totally non-associative iff T_xX contains no associative subspace (pointwise open condition), for instance X coassociative
- " φ –**free**" (cf. "totally real" vs. "Lagrangian")

[Harvey–Lawson]

• theorem remains true with "t.n.a." instead of "coassociative"

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition

theorem remains true for **topological** G_2 -manifolds

- X^4 totally non-associative iff $T_x X$ contains no associative subspace (pointwise open condition), for instance X coassociative
- "φ−free" (cf. "totally real" vs. "Lagrangian") theorem remains true with "t.n.a." instead of "coassociative"

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition

theorem remains true for **topological** G_2 -manifolds

- X^4 totally non-associative iff $T_x X$ contains no associative subspace (pointwise open condition), for instance X coassociative
- "φ-free" (cf. "totally real" vs. "Lagrangian") [Harvey-Lawson]
 theorem remains true with "t.n.a." instead of "coassociative"

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

relaxing the integrability condition

theorem remains true for **topological** G_2 -manifolds

relaxing the boundary condition

- X^4 totally non-associative iff $T_x X$ contains no associative subspace (pointwise open condition), for instance X coassociative
- " φ -free" (cf. "totally real" vs. "Lagrangian")

[Harvey–Lawson]

< A >

 theorem remains true with "t.n.a." instead of "coassociative"

Frederik Witt

Associative submanifolds

deformations of associative submanifolds

Thank you!

< 🗇 🕨 21/21