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Killing spinor equations

A parallel transport equation for the supercovariant connection D

δψA| = DAε = ∇Aε + ΣA(e, F)ε = 0

and possibly algebraic equations

δλ| = A(e, F)ε = 0

where∇ is the Levi-Civita connection, Σ(e, F) a Clifford algebra element

Σ(e, F) =
∑

k

Σ[k](e, F)Γ[k]

e frame and F fluxes, ε spinor, Γ gamma matrices.

Can the KSE be solved without any assumptions on the metric and fluxes?

ie find those (e, F) such that the KSE admit ε "= 0 solutions.
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Spinorial geometry

The ingredients of the spinorial method to solve the supergravity KSE [J Gillard, U
Gran, GP; hep-th/0410155] are

! Gauge symmetry of KSE
It is used to choose the Killing spinor directions or their normals. Very effective
for backgrounds with small and large number of solutions

! Spinors in terms of forms
! An oscillator basis in the space of Dirac spinors

Allows to extract the geometric information using the linearity of KSE.

All three ingredients are essential for the effectiveness of the method.
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Gauge symmetry and holonomy

The gauge symmetry G of the KSE are the (local) transformations such that

%−1D(e, F)% = D(e!, F!) , %−1A(e, F)% = A(e!, F!)

i.e. preserve the form of the Killing spinor equations.

SUGRA Gauge Holonomy

D = 11 Spin(10, 1) SL(32, R)

IIB Spinc(9, 1) SL(32, R)

Heterotic Spin(9, 1) Spin(9, 1)

N = 1, D = 4 Spinc(3, 1) Pinc(3, 1)

The holonomy groups have been found in [Hull, Duff, Lu, Tsimpis, GP].

! Backgrounds related by a gauge transformation are identified
! 2 generic spinors ε1, ε2 in D=11 and IIB have isotropy group Stab(ε1, ε2) in G,

Stab(ε1, ε2) = {1}
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Killing spinor equations

The geometric data of N = 1 supergravity are
! A 4-d Lorentzian manifold M, the spacetime.
! A (Hodge) Kähler manifold N with Kähler potential K which admits a

holomorphic, metric preserving, group action and the associated Killing
holomorphic vectors fields and moment maps are ξ and µ, respectively.

! The scalar fields φ are maps from M to the Kähler manifold.
! A gauge connection B over the spacetime M which gauges the holomorphic

isometries of N.
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The gravitino Killing spinor equation of N = 1 supergravity is

2∇AεL +
1
2
(∂iKDAφi − ∂̄iKDAφī)εL + ie

K
2 WΓAεR = 0

The gaugino is

Fa
ABΓ

ABεL − 2iµaεL = 0

and the matter multiplet KSE is

iΓAεRDAφi − e
K
2 GījD̄jW̄εL = 0

where K Kähler potential, W holomorphic, µ moment map and

DAφi = ∂Aφi − Ba
Aξi

a



Spinorial Geometry N = 1 supergravity Heterotic Non-compact holonomy Compact holonomy N = 8 solutions Conclusions

Spin(3, 1) Spinors

Spin(3, 1) = SL(2, C). The chiral and anti-chiral representations are 2 and 2̄. Dirac
representation Λ∗(C2). Weyl representations Λev(C2) and Λodd(C2).
Gamma matrices

Γ0 = −e2 ∧+e2! , Γ2 = e2 ∧+e2!
Γ1 = e1 ∧+e1! , Γ3 = i(e1 ∧ −e1!)

The Majorana spinors are found using the reality condition R = −Γ012∗. The real
components of the Weyl spinors 1 and i1 are

1 + e1 , i(1− e1)

Thus

ε = 1 + e1 , εL = 1 , εR = e1
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N = 1 backgrounds

Based on [U Gran, J Gutowski, GP; arXiv:0802.1779].

Spin(3, 1) = SL(2, C) has a single orbit in C2. So the first Killing spinor can be
chosen as

ε = 1 + e1

Solving the Killing spinor equations, the spacetime admits a null, Killing, integrable
vector field X

∇(AXB) = 0 , X ∧ dX = 0 , g(X, X) = 0

The spacetime metric can be written as

ds2 = fdu(dv + Vdu + widxi) + grsdxrdxs , r, s = 1, 2

where X = ∂v and f = f (u, xr). The conditions on the rest of the fields are known.
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N = 2 backgrounds

The isotropy group of the first Killing spinor ε = ε1 in Spin(3, 1) is C. Using this, the
second Killing spinor can be chosen either as

ε2 = a1 + āe1

or as

ε2 = be12 − b̄e2

where a, b complex spacetime functions.

N Stab(ε1, . . . , εN) ε

1 C 1 + e1

2 C 1 + e1, i(1− e1)

{1} 1 + e1, e2 − e12

3, 4 {1}
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ε1 = 1 + e1, ε2 = a1 + āe1

The spacetime admits a parallel, null, vector field X = ∂v

∇X = 0 , g(X, X) = 0

The spacetime is a pp-wave

ds2 = du(dv + Vdu + wrdxr) + grsdxrdxs

The scalar fields φ are holomorphic, W = ∂jW = 0 and

Fa
11̄ = −iµa
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ε1 = 1 + e1, ε2 = −b̄e2 + be12

The spacetime admits three Killing vector fields X, Y, Z and a vector field W such
that

[W, X] = [W, Y] = [W, Z] = 0

and

[X, Y] = cZ , [X, Z] = −2cX , [Y, Z] = 2cY

where c is a constant.
The spacetime metric is

ds2 = 2|b|2[ds2(M3) + dy2]

where W = ∂y

ds2(M3) = du(dv− c2v2du) + (dx− cvdu)2

ie either AdS3 for c "= 0 or R2,1 for c = 0. Therefore, the spacetime is a domain wall
with homogeneous sections AdS3 or R2,1.
Moreover

Fa = µa = 0

The scalars φ and b depend only on y, and satisfy appropriate flow equations.
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N = 3 and N = 4 backgrounds

Start from the N = 3 case. The gauge group is used to find a representative for the
normal to the 3 Killing spinors. Choose for example

ν = ie2 + ie12

The Killing spinors are

εr = frsηs

where (ηs) = (1 + e1, i(1− e1), e2 − e12) and f = (frs) an invertible 3× 3 matrix of
spacetime functions.
The KSE imply that the gauge connection is flat and the scalars are constant

Fa
AB = DAφi = DiW = µa = 0

and

RAB,CDΓCDηr + 2eKWW̄ΓABηr = 0
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Since the above integrability condition takes values in spin(3, 1) and three linearly
independent spinors have isotropy group {1}

RAB,CD = −eKWW̄(gACgBD − gBCgAD)

and the spacetime is locally either R3,1 or AdS4.

! All N = 3 backgrounds are locally maximally supersymmetric
! There are N = 3 backgrounds which arise from discrete identifications of

maximally supersymmetric ones [J Figueroa O’Farrill, Gutowski, Sabra]
! The maximally supersymmetric backgrounds are locally isometric to either R3,1

or to AdS4
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Killing spinor equations

The Killing spinor equations of Heterotic supergravities are

Dε = ∇̂ε = ∇ε +
1
2

Hε +O(α′) = 0 , Fε = Fε +O(α′) = 0 ,

Aε = dΦε− 1
2

Hε +O(α′) = 0

These are valid up to 2-loops in the sigma model calculation.
It is convenient to solve them in the order

gravitino → gaugino → dilatino

The gravitino and gaugino have a straightforward Lie algebra interpretation while the
solution of the gaugino is more involved. All have been solved [Gran, Lohrmann, GP;
hep-th/0510176], [Gran, Roest, Sloane, GP; hep-th/0703143].
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Spin(9, 1) Spinors

Spin(9, 1) admits two inequivalent real chiral (Majorana-Weyl) representations ∆+
16,

∆−
16. They can be described in terms of forms as follows: Take

C5 = C < e1, . . . , e5 >, equipped with the standard Hermitian inner product
< ·, · >.
The Dirac representation ∆c is identified with the exterior algebra Λ∗(C5) and the
complex chiral representations are ∆+

c = Λeven(C5) and ∆−
c = Λodd(C5).

In particular

Γ0η = −e5 ∧ η + e5!η , Γ5 = e5 ∧ η + e5!η
Γi = ei ∧ η + ei!η , Γi+5 = iei ∧ η − iei!η

A reality condition can be constructed using the anti-linear map R = −Γ0B∗, ie the
real spinors are those that satisfy

η∗ = Γ6789η

The real and imaginary parts of 1 are

1 + e1234 , i(1− e1234)

The real spinors are multi-forms.
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Gravitino

The gravitino Killing spinor equation is

Dε = ∇̂ε = ∇ε +
1
2

Hε = 0

where ∇̂ is a metric connection with skew-symmetric torsion H, and so for generic
backgrounds

hol(∇̂) = G = Spin(9, 1)

In addition

∇̂ε = 0 ⇒ R̂ε = 0

So either

Stab(ε) = {1} =⇒ R̂ = 0

all spinors are parallel and M is parallelizable (group manifold if dH = 0) [Figueroa
O’Farrill, Kawano, Yamaguchi] or

Stab(ε) "= {1} =⇒ ε singlets

Stab(ε) ⊂ Spin(9, 1) and hol(∇̂) ⊆ Stab(ε).
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Parallel spinors

L Stab(ε1, . . . , εL) parallel ε

1 Spin(7) ! R8 1 + e1234

2 SU(4) ! R8 1

3 Sp(2) ! R8 1, i(e12 + e34)

4 (SU(2)× SU(2)) ! R8 1, e12

5 SU(2) ! R8 1, e12, e13 + e24

6 U(1) ! R8 1, e12, e13

8 R8 1, e12, e13, e14

2 G2 1 + e1234, e15 + e2345

4 SU(3) 1, e15

8 SU(2) 1, e12, e15, e25

16 {1} ∆+
16
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! There are differences with the holonomy groups that appear in the Berger
classification

! There are compact and non-compact isotropy groups which lead to geometries
with different properties

! There is a restriction on the number of parallel spinors. This is a difference with
the type II case

! The isotropy group of more than 8 spinors is {1}

! The table has been given constructed at various stages in [Acharya,
Figueroa-O’Farrill, Spence, Stanciu], [Figueroa-O’Farrill] and [ Gran, Roest, Sloane,
GP].
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Dilatino

The dilatino KSE is

dΦζ − 1
2

Hζ = 0

Some of the solutions of the gravitino ε1, . . . , εL may not solve the dilatino KSE. To
choose the solutions ζ =

∑
r frεr of the dilatino KSE use as gauge symmetry

transformations,

Σ(P) = Stab(P)/Stab(ε1, . . . , εL)

where P is the L-plane of spinors that solve both the gravitino, and Stab(P) are those
transformations of Spin(9, 1) that preserve P .

! The gaugino KSE can be also solved using the Σ(P) groups.
! If N > L/2, it is convenient to use Σ(P) to choose the normals to the Killing

spinors.



Spinorial Geometry N = 1 supergravity Heterotic Non-compact holonomy Compact holonomy N = 8 solutions Conclusions

L Stab(ε1, . . . , εL) Σ(P)

1 Spin(7) ! R8 Spin(1, 1)

2 SU(4) ! R8 Spin(1, 1)× U(1)

3 Sp(2) ! R8 Spin(1, 1)× SU(2)

4 (SU(2)× SU(2)) ! R8 Spin(1, 1)× Sp(1)× Sp(1)

5 SU(2) ! R8 Spin(1, 1)× Sp(2)

6 U(1) ! R8 Spin(1, 1)× SU(4)

8 R8 Spin(1, 1)× Spin(8)

2 G2 Spin(2, 1)

4 SU(3) Spin(3, 1)× U(1)

8 SU(2) Spin(5, 1)× SU(2)

16 {1} Spin(9, 1)

! The Σ(P) groups are a product of a Spin group and a R-symmetry group,
reminiscent of lower-dimensional supergravities.

The list of all possible cases is as follows:
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L Stab(ε1, . . . , εL) N

1 Spin(7) ! R8 1(1)

2 SU(4) ! R8 1(1), 2(1)

3 Sp(2) ! R8 1(1), 2(1), 3(1)

4 (×2SU(2)) ! R8 1(1), 2(1), 3(1), 4(1)

5 SU(2) ! R8 1(1), 2(1), 3(1), 4(1), 5(1)

6 U(1) ! R8 1(1), 2(1), 3(1), 4(1), 5(1), 6(1)

8 R8 1(1), 2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)

2 G2 1(1), 2(1)

4 SU(3) 1(1), 2(2), 3(1), 4(1)

8 SU(2) 1(1), 2(2), 3(3), 4(6), 5(3), 6(2), 7(1), 8(1)

16 {1} 8(2), 10(1), 12(1), 14(1), 16(1)

! The cases noted in red are those for which all parallel spinors are Killing
N = L, and the case in blue does not occur. In general N ≤ L

! The number in parenthesis denotes the different geometries for a given N



Spinorial Geometry N = 1 supergravity Heterotic Non-compact holonomy Compact holonomy N = 8 solutions Conclusions

Non-compact holonomy

The solutions of the KSE are characterized by the isotropy group of the parallel
spinors Stab(ε1, . . . , εL) and the number N of solutions to the KSE.

Given N ≤ L, N "= 7, there is a case with L̃ parallel spinors such that N = L̃.

! The geometry of backgrounds with N Killing and L parallel, N < L, is a special
case of those with L̃ = N parallel spinors

! The N = 7 case is treated differently.

Thus it suffices to consider those solutions for which all parallel spinors are Killing,
N "= 7.
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Given Stab(ε1, . . . , εL) = K ! R8 and hol(∇̂) ⊆ K ! R8, such backgrounds admit
∇̂-parallel forms of the type

e− , e− ∧ φ

where e− is a null 1-form and φ is a fundamental form of K.

∇̂e− = 0 ⇐⇒ e+ Killing vector, de− = ie+H

where e−(Y) = g(e+, Y), g metric.
Let I the trivial line bundle along e+. Then

0 → I → Ker e− → ξTM → 0

ξTM has rank 8 and is identified with the “transverse to the lightcone” directions in
TM of the spacetime M. Similarly, the “transverse to the lightcone” forms can be
defined.
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SU(4) ! R8, L = 2

The ∇̂-parallel forms are

e− , e− ∧ ω , e− ∧ χ

The metric and 3-form can be written as

ds2 = 2e−e+ + δijeiej , i, j = 1, . . . , 8

H = e+ ∧ de− +
1
2
(hsu(4) + hsu⊥(4))ije− ∧ ei ∧ ej +

1
3!

H̃ijkei ∧ ej ∧ ek

and

∂+Φ = 0 , 2∂iΦ− H−+i = (θ̃ω)i , H̃ = −ĩIdω = − 0 (d̃ω ∧ ω)− 1
2

0 (θ̃ω ∧ ω ∧ ω)

subject to the geometric conditions

de− ∈ su(4)⊕s R8 , Ñ (I) = 0 , θ̃ω = θ̃Re χ

where ω = ω̃, is the Hermitian form, Ñ is the Nijenhuis tensor and

θ̃ω = − 0 (0d̃ω ∧ ω) , θ̃Re χ = −1
4

0 (0d̃Re χ ∧ Re χ)

are Lee forms. The 2-form hsu(4) ∈ su(4) is not determined by the KSE.
The expression for H̃ is as that for 8-manifolds with SU(4) structure and compatible
connection with skew-symmetric torsion [Friedrich, Ivanov].
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N ≥ 3

If the isotropy group is K ! R8, the metric and 3-form can be written as

ds2 = 2e−e+ + δijeiej , i, j = 1, . . . , 8

H = e+ ∧ de− +
1
2
(hk + hk⊥)ije− ∧ ei ∧ ej +

1
3!

H̃ijkei ∧ ej ∧ ek

and

∂+Φ = 0 , 2∂iΦ− H−+i = (θ̃r)i , H̃ = −ĩIr
d̃ωr = − 0 (d̃ωr ∧ ωr)−

1
2

0 (θ̃r ∧ ωr ∧ ωr)

subject to the geometric conditions

de− ∈ k⊕s R8 , Ñ (Ir) = 0 , ĩIr
d̃ωr = ĩIs

d̃ωs , θ̃r = θ̃s , r "= s

where ωr and θr are the Hermitian and Lee forms. The component hk is not
determined by the field equations.
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In addition, the endomorphisms Ir of ξTM associated with ωr satisfy the Clifford
relation as

N Stab(ε1, . . . , εL) Clifford

2 SU(4) ! R8 Cliff(R)

3 Sp(2) ! R8 Cliff(R2)

4 (SU(2)× SU(2)) ! R8 Cliff(R3)

5 SU(2) ! R8 Cliff(R4)

6 U(1) ! R8 Cliff(R5)

7 R8 Cliff(R6)

8 R8 Cliff(R7)

In the N = 8, R8 case, H̃ = 0 and e− ∧ de− = 0.
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Holonomy Reduction

Consider SU(4) ! R8. Since hol(∇̂) ⊆ SU(4) ! R8, the expected ∇̂-parallel forms
are

e− , e− ∧ ωI , e− ∧ Re χ , e− ∧ Im χ

However, the field equations,

dH = 0 , hol(∇̂) ⊆ SU(4) ! R8

imply that

τ1 = H+ijω
ij
I e+ ,

τ2 = N , τ3 = 2dΦ− θωI ,

which do not vanish for N = 1, are ALSO ∇̂-parallel. Similarly for the other K ! R8

cases. The consequences are that
! The existence of N < L supersymmetric backgrounds requires that

hol(∇̂) ⊂ Stab(ε).
! If hol(∇̂) = Stab(ε), then the gravitino KSE implies the dilatino one and ALL

parallel are Killing L = N, i.e. there are no N < L backgrounds
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Compact holonomy

The ∇̂-parallel forms in this case are

ea , φ

where ea are ∇̂-parallel 1-forms and φ are the fundamental forms of
hol(∇̂) ⊆ Stab(ε1, . . . , εL).

∇̂ea = 0 ⇐⇒ ea Killing vector, dea = iea H

where ea(Y) = g(ea, Y), g metric.

Stab(ε1, . . . , εL) 1− forms h

G2 ≥ 3 R3, sl(2, R)

SU(3) ≥ 4 R4, sl(2, R)⊕ R, su(2)⊕ R, cw4

SU(2) ≥ 6 R, sl(2, R), su(2), cw4, cw6

! The second column denotes the minimal number of ∇̂-parallel 1-forms
! The third column denotes the Lorentzian Lie algebra, h, of the associated vector

fields under Lie brackets
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There is no such a straightforward relation between the cases where all parallel
spinors are Killing and the rest.

L Stab(ε1, . . . , εL) N

1 Spin(7) ! R8 1(1)

2 G2 1(1), 2(1)

2 SU(4) ! R8 1(1), 2(1)

4 SU(3) 1(1), 2(2), 3(1), 4(1)

The N = 3, SU(3) case does not have a direct relation to those for which N = L.
There are several SU(2) cases with this property.
To describe the geometry, consider some cases for N = L.
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G2

Consider hol(∇̂) = G2 and N = L = 2, h = R3, sl(2, R). The spacetime
M = P(H, B; π), Lie H = h equipped with a connection λ = e. Then

ds2 = ηabλ
aλb + π∗ds̃2

H =
1
3
ηabλ

a ∧ dλb +
2
3
ηabλ

a ∧ F b + π∗H̃

where (ds̃2, H̃) on B are data compatible with a connection with shew-symmetric
torsion ˆ̃∇ on B such that hol( ˆ̃∇) = G2,

θ̃ϕ = 2d̃Φ , ∂aΦ = 0 ,

and λ G2-instanton connection. In particular, on B [Friedrich, Ivanov]

H̃ = − r
6
(dϕ, 0ϕ)ϕ + 0dϕ + 0(θ̃ϕ ∧ ϕ)

d̃ 0 ϕ = −θ̃ϕ ∧ 0ϕ

r = 0 if λ abelian, and r = 1 if λ non-abelian, where

θ̃ϕ = 0(0d̃ϕ ∧ ϕ)

is the Lee form of the fundamental G2 form ϕ. B is conformally co-symplectic.
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SU(2)

Consider hol(∇̂) ⊆ SU(2) and N = L = 8. First h is a self-dual Lorentzian Lie
algebra

R5,1, sl(2, R)⊕ su(2), cw6

The spacetime M = P(H, B; π), Lie H = h equipped with a connection λ = e. Then

ds2 = ηabλ
aλb + π∗ds̃2

H =
1
3
ηabλ

a ∧ dλb +
2
3
ηabλ

a ∧ F b + π∗H̃

where (ds̃2, H̃) on B are data compatible with a connection with skew-symmetric
torsion ˆ̃∇ on B such that hol( ˆ̃∇) ⊆ SU(2), ie B is an HKT manifold,

θ̃ω1 = 2d̃Φ , ∂aΦ = 0 ,

and λ an instanton connection on B.
Since B is conformally balanced, then B is conformal to a hyper-Kähler, and

H̃ = − 0hk df , e2Φ = f , ds̃2 = fds2
hk .

Moreover

dH = ηabF a ∧ F b + dH̃ .
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Some solutions

Consider the case that dH = 0.

If P is trivial, then one class of solutions is

R5,1 × Bhk , AdS3 × S3 × Bhk , CW6 × Bhk

All these solutions have constant dilaton.

Another solution is the heterotic 5-brane (allowing for delta-function sources) [Callan,
Harvey, Strominger]

ds2 = ds2(R5,1) + fds2(R4) , e2Φ = f , H = − 0R4 df , f = 1 +
Q
|x|2 , Bhk = R4

There are two asymptotic regions.

! The asymptotic infinity |x|→∞.
The metric approaches Minkowski spacetime ds2(R9,1).

! The near horizon limit |x|→ 0. The metric approaches
ds2(R5,1) + ds2(S3) + ds2(R), the dilaton is linear and H = dvol(S3).
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New solutions

Suppose Bhk = R4 and λ is an SU(2) self-dual connection on Bhk. Such connections
can be constructed using the t’Hooft ansatz or ADHM.
The solution for a one instanton connection is

ds2 = ds2(AdS3) + δabλ
aλb + fds2(R4) , e2Φ = f , f = 1 + 4

|x|2 + 2ρ2

(|x|2 + ρ2)2

There is one asymptotic region as |x|→∞ where the metric approaches
ds2(AdS3) + ds2(S3) + ds2(R4) and the dilaton is constant.

The geometry near |x|→ 0 is again ds2(AdS3) + ds2(S3) + ds2(R4) and the dilaton is
constant. But |x| = 0 is not an asymptotic point.

The solution is smooth.

More solutions can be constructed by taking multi-instanton connections.
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R8

The conditions that arise from the Killing spinor equations are

hol(∇̂) ⊆ R8 , ∂+Φ = 0 , e− ∧ de− = 0 , Hijk = 0 , 2∂iΦ− H−+i = 0 .

Takings e+ = ∂u and e− = f−1(y, v)dv, the fields can be written as

ds2 = 2f−1dv(du + Vdv + nIdyI) + δIJdyIdyJ

H = d(e− ∧ e+)
e2Φ = f−1(v, y)g(v)

where e+ = du + Vdv + nIdyI .
These solutions have the interpretation of either a fundamental string, or a pp-wave,
and/or their superpositions which may include a null rotation.



Spinorial Geometry N = 1 supergravity Heterotic Non-compact holonomy Compact holonomy N = 8 solutions Conclusions

Conclusions

! The Killing spinor equations of N = 1 D = 4 supergravity have been solved in
ALL cases. Solutions include pp-waves, and domain walls with homogenous
sections R3,1 and AdS3.

! The Killing spinor equations of heterotic supergravity have been solved in ALL
cases, and the conditions on the geometry of the spacetime have been
determined.

! If the isotropy group of the parallel spinors is non-compact, K ! R8,
K = Spin(7), SU(4),×2SU(2), SU(2), U(1), {1}, then the spacetime admits a
null ∇̂-parallel 1-form, and certain compatible K-structure on the transverse
8-directions to the lightcone.

! If the isotropy group of the parallel spinors is compact, K = G2, SU(3), SU(2),
{1}, then in some cases the spacetime M is a principal bundle with either an
abelian or non-abelian fibre equipped with a connection. The base space admits
an appropriate compatible K-type of structure. There are new solutions with 8
Killing spinors.


