The Time Slice Axiom in Perturbative Quantum Field Theory

Klaus Fredenhagen ¹ II. Institut für Theoretische Physik, Hamburg

¹based on joint work with Bruno Chilian

Klaus Fredenhagen The Time Slice Axiom in Perturbative Quantum Field Theory

イロト イヨト イヨト イヨト

1 Introduction

- 2 Time slice axiom for a free scalar field
- 3 The algebra of Wick polynomials
- 4 Time slice axiom for Wick polynomials
- 5 Time slice axiom for interacting field theories
- 6 Conclusions and Outlook

イロト イポト イヨト イヨト

Introduction

Time slice axiom for a free scalar field The algebra of Wick polynomials Time slice axiom for Wick polynomials Time slice axiom for interacting field theories Conclusions and Outlook

Introduction

Principle of determinism: Given initial data, the laws of physics determine the evolution of a system for all times. Valid in

- Classical Mechanics (Newton's Law)
- Quantum Mechanics (Schrödinger equation)
- Classical Electrodynamics (Maxwell's Equation)
- General relativity (somewhat involved consequence of Einstein's equation)

Does it hold also in quantum field theory?

Free fields: Heisenberg's equation coincides with the classical field equation. Thus the well-posedness of the Cauchy problem for the classical field equation implies the determinism of the quantum field.

Introduction

Time slice axiom for a free scalar field The algebra of Wick polynomials Time slice axiom for Wick polynomials Time slice axiom for interacting field theories Conclusions and Outlook

Problems for interacting fields:

- Field equation has to be renormalized.
- Time zero fields i.g. ill defined.

Reformulation as Time Slice Axiom:

The algebra of observables generated by fields within an arbitrary small time slice coincides with the algebra of all observables.

(Haag-Schroer 1962 primitive causality).

イロト イポト イヨト イヨト

The time slice axiom for a free scalar field

 $M \sim \Sigma \times \mathbb{R}$ globally hyperbolic spacetime with Cauchy surfaces $\Sigma \times \{t\}, t \in \mathbb{R}$

The algebra $\mathfrak{F}_0(M)$ of the free scalar field is the unital *-algebra generated by elements $\varphi(f)$, $f \in \mathcal{D}(M)$ with the relations

$$arphi(\lambda f + g) = \lambda arphi(f) + arphi(g) , \ \lambda \in \mathbb{C}, f, g \in \mathcal{D}(M)$$
 $arphi(f)^* = arphi(\overline{f})$
 $[arphi(f), arphi(g)] = i \langle f, \Delta g
angle$
 $arphi(Pf) = 0$

with $\Delta = \Delta_R - \Delta_A$, Δ_R , Δ_A retarded/advanced Green's functions for the Klein-Gordon operator $P = \Box + m^2$.

イロト イポト イヨト イヨト

Time slice axiom:

Let *N* be a neighbourhood of a Cauchy surface Σ and let $f \in \mathcal{D}(M)$ with $\operatorname{supp} f \subset J_+(\Sigma)$. We have to show that there exist $g, h \in \mathcal{D}(M)$ with $\operatorname{supp} g \subset N$ and f = g + Ph. Let $\chi \in C^{\infty}(M)$ with

> $supp(d\chi) \subset N,$ $\chi \equiv 1 \text{ on } J_{+}(\Sigma) \setminus N,$ $\chi \equiv 0 \text{ on } J_{-}(\Sigma) \setminus N.$

Then supp $(f - P\chi\Delta_R f) \subset N$,

hence $g = f - P\chi\Delta_R f$ and $h = \chi\Delta_R f$ solve the problem. (Dimock 1980, Fulling,Narcovich,Wald 1981). (Analogously for supp $f \subset J_{-}(\Sigma)$)

The algebra of Wick polynomials

Problem: $\mathfrak{F}_0(M)$ does not contain Wick products.

Garding-Wightman: Wick products are defined in a Hilbert space representation as operator valued distributions on a dense domain.

$$:\varphi(x_1)\cdots\varphi(x_n):=\frac{\delta^n}{\delta f(x_1)\cdots\delta f(x_n)}e^{\varphi(f)}e^{\frac{1}{2}\langle f,\omega_2f\rangle}|_{f=0}$$

(ω_2 2-point function of a Hadamard state ω , valid in the GNS representation induced by ω on the minimal invariant domain containing the cyclic vector corresponding to ω .)

Disadvantage: Dependence on the representation and on the choice of the dense domain.

・ロン ・回と ・ヨン・

New method (Brunetti-Dütsch-Fredenhagen-Hollands-Köhler-Radzikowski-Wald 1995-2003)

$$\mathfrak{F}_0(M) = \mathfrak{F}_1(M)/\mathfrak{I}_1(M)$$

 $\mathfrak{F}_1(M)$ is the algebra of polynomials on $\mathcal{C}^\infty(M)$ with the product

$$(F \star G)(\varphi) = \sum_{n} \frac{\hbar^{n}}{2^{n} n!} \langle F^{(n)}(\varphi), \omega_{2}^{\otimes n} G^{(n)}(\varphi) \rangle$$

 $F^{(n)} = rac{\delta^n F}{\delta \varphi^n}$ nth functional derivative,

$$\langle F^{(n)}(\varphi), f^{\otimes n} \rangle = \frac{d^n}{d\lambda^n} F(\varphi + \lambda f)|_{\lambda=0} .$$

 $\mathfrak{I}_1(M)$ is the ideal (with respect to \star or, equivalently, the pointwise product) generated by $\varphi(Pf)$.

Extension of $\mathfrak{F}_1(M)$ to polynomials with distributional functional derivatives whose wavefront sets satisfy

$$\operatorname{WF}(F^{(n)}) \cap (\overline{V_{+}}^{n} \cup \overline{V_{-}}^{n}) = \emptyset$$
.

Properties of the extended algebra $\mathfrak{F}_2(M)$:

- *-product well defined because of wave front set of ω_2 .
- ③ 3 3 1(M) sequentially dense in 3 2(M) with respect to Hörmander topology
- ℑ₂(M) contains smeared polynomials $\int dx \varphi(x)^n f(x)$, $f \in D(M)$
- Independence (up to isomorphy) of the choice of the Hadamard state
- $\mathfrak{F}(M) := \mathfrak{F}_2(M)/\mathfrak{I}_1(M)$ isomorphic to an algebra of Hilbert space operators in the GNS representation of the Hadamard state.

Time slice axiom for Wick polynomials

Proof analogous to the case of the free field:

Method: Application of Hörmander's Theorem on the propagation of singularities

Implication: Given a distribution f in n variables which satisfies the condition on the wave front set and with $\operatorname{supp} f \subset K^n$ with a compact region $K \subset J_+(\Sigma)$ for some Cauchy surface Σ . Let N be a neigbourhood of Σ . Then there exists g with $\operatorname{supp} g \subset N^n$ and $h \in \sum \operatorname{image}(P_i)$ such that f = g + h, and g, h satisfy the condition on the wave front set.

Time slice axiom: $\mathfrak{F}_2(M) = \mathfrak{F}_2(N) \mod \overline{\mathfrak{I}_1(M)}$ if $N \subset M$ contains a Cauchy surface of M.

Time slice axiom for interacting field theories

Interacting theories are constructed via time ordered products of Wick polynomials.

Generating functional: Formal S-matrix (time ordered exponential) as a map $S : \mathcal{D}(M, V) \to \mathfrak{F}(M)[[\hbar]]$

(V space of possible interactions).

Functional relation: (Bogoliubov)

 $S(f+g+h) = S(f+g) \star S(g)^{-1} \star S(g+h)$

if suppf is later than supph.

Holds also true for the relative S-matrices (generating functionals of time ordered products of interacting fields with respect to coupling constant $k \in \mathcal{D}(M, V)$)

Algebra of free fields: $\mathfrak{A}_0(\mathcal{O})$ generated by S(f), $supp f \subset \mathcal{O}$.

Algebra of interacting fields :

 $\mathfrak{A}_k(\mathcal{O})$ generated by relative S-matrices $S_k(f)$, $\operatorname{supp} f \subset \mathcal{O}$.

Adiabatic limit: Couplings $k \in C^{\infty}(M)$

Crucial fact: The theory inside a region with compact closure does not depend on the behaviour of $k \in \mathcal{D}(M)$ outside of this region,

 $S_k(f) o S_{k'}(f) \ , \ {
m supp} f \subset {\mathcal O}$

is an isomorphism.

(\mathcal{O} causally convex globally hyperbolic subregion with compact closure, $k \equiv k'$ on a neighbourhood of the closure of \mathcal{O}).

소리가 소문가 소문가 소문가

Reason: $k' - k = a_{+} + a_{-}$, supp $a_{\pm} \cap J_{\mp}(\mathcal{O}) = \emptyset$, hence $S_{k'}(f) = S(k')^{-1}S(k' + f)$ $= S(a_{+} + k + a_{-})^{-1}S(a_{+} + k + f + a_{-})$ $= S(k + a_{-})^{-1}S(k)S(k + a_{+})^{-1}S(k + a_{+})S(k)^{-1}S(k + f + a_{-})$ $= S(k + a_{-})^{-1}S(k + f)S(k)^{-1}S(k + a_{-})^{-1}$ $= S_{k}(a_{-})^{-1}S_{k}(f)S_{k}(a_{-})$

Note, that a_{-} is independent of f, but not of \mathcal{O} . Hence the net of local algebras $(\mathfrak{A}_{k}(\mathcal{O}))$ is well defined for an arbitrary \mathcal{C}^{∞} function k with an inductive limit $\mathfrak{A}_{k}(M)$, but there might be no global embedding of $\mathfrak{A}_{k}(M)$ into $\mathfrak{A}_{0}(M)$.

소리가 소문가 소문가 소문가

Definition of $S_k(f)$ for k with suppk past compact:

 $S_k(f) := S(k_1)^{-1}S(k_1+f)$

where $k_1 \in \mathcal{D}(M)$ with $k_1 \equiv k$ on $J_{-}(\text{supp} f)$ (hence $a_{-} \equiv 0$).

Time slice axiom $\iff \mathfrak{A}_k(\mathcal{O}) \subset \mathfrak{A}_k(N)$

By construction: $\mathfrak{A}_k(\mathcal{O}) \subset \mathfrak{A}_0(M)$

Time slice axiom for the free field: $\mathfrak{A}_0(M) = \mathfrak{A}_0(N')$ for every neighbourhood N' of a Cauchy surface.

We show: $\mathfrak{A}_0(N') \subset \mathfrak{A}_k(N)$ for $N' \subset \subset N$

Idea of proof: Compensate interaction inside N':

$$k' \equiv k \text{ on } N', \operatorname{supp} k' \subset N$$

Let $f \in \mathcal{D}(M)$ with $\operatorname{supp} f \subset N'$
 $S_{k,k'}(f) := S_k(-k'_1)^{-1}S_k(-k'_1 + f) = S(k_1 - k'_1)^{-1}S(k_1 - k'_1 + f)$
 $k'_1 \equiv k' \text{ on } J_-(\operatorname{supp} f), k_1 \equiv k \text{ on } J_-(\operatorname{supp} f \cup \operatorname{supp} k'_1)$
 $\Longrightarrow S_{k,k'}(f) = S_{k-k'}(f)$
We have: $k - k' \equiv 0 \text{ on } N'$
 $\Longrightarrow k - k' = k_+ + k_-$ with $\operatorname{supp} k_{\pm} \cap J_{\mp}(N') = \emptyset$, hence
 $S_{k-k'}(f) = S_{k-}(f) = S(k_{-,1})^{-1}S(f)S(k_{-,1})$
with $k_{-,1} \equiv k_-$ on $J_-(\operatorname{supp} f)$.

▲口> ▲圖> ▲注> ▲注> 二注:

Consequence:

$\alpha_{k_-}:S(f)\to S_{k_-}(f)$

defines an injective endomorphism of $\mathfrak{A}_0(N')$ with image in $\mathfrak{A}_k(N)$.

Remaining step: surjectivity of $\alpha_{k_{-}}$.

Let \tilde{N} be a neighbourhood of a Cauchy surface with $\tilde{N} \cap J_+(\operatorname{supp} k_-) = \emptyset$.

Define an endomorphism $\beta_{k_{-}}$ of $\mathfrak{A}_{0}(\tilde{N})$ in terms of advanced relative S-matrices $S_{g}^{A}(f) = S(f+g)S(g)^{-1}$

$$eta_{k_-}(S(f)) = S^{\mathcal{A}}_{k_-}(f) \;, \; \mathrm{supp} f \subset ilde{N}$$

For relatively compact $\tilde{O} \subset \tilde{N}$ we have $\beta_{k_{-}} = \operatorname{Ad}S(k_{-,1})$ on $\mathfrak{A}_{0}(\tilde{O})$, $k_{-,1} \equiv k_{-}$ on $J_{+}(\tilde{O})$.

Time slice axiom for the free theory \Longrightarrow $\beta_{k_{-}}(\mathfrak{A}_{0}(\tilde{\mathcal{O}})) \subset \mathfrak{A}_{0}(\mathcal{O}) \text{ with } \mathcal{O} \supset J_{+}(\tilde{\mathcal{O}}) \cap N'.$ Choose $k_{-,1} = k_{-} \text{ on } J_{+}(\tilde{\mathcal{O}}) \cup J_{-}(\mathcal{O}) \Longrightarrow$ $\alpha_{k_{-}} \circ \beta_{k_{-}} = \operatorname{Ad}S(k_{-,1})^{-1}S(k_{-,1}) = \operatorname{id}$

on $\mathfrak{A}_0(ilde{\mathcal{O}}),\ ilde{\mathcal{O}}\subset ilde{\mathsf{N}}$

hence

 $\alpha_{k_{-}} \circ \beta_{k_{-}} = \mathrm{id}$

on $\mathfrak{A}_0(\tilde{N}) = \mathfrak{A}_0(N')$ so α_{k_-} is surjective.

This proves the validity of the time slice axiom.

Conclusions and Outlook

- The argument for the validity of the time slice axiom for interacting theories relies only on the functional equation of the S-matrix and the time slice axiom for the free theory. Perturbation theory is only used for the construction of the S-matrix.
- The time slice axiom allows a prezise formulation of a propagation from Cauchy surface to Cauchy surface (Schwinger equation).
- It is not obvious that the proof extends to the gauge invariant fields of a gauge theory.