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AdS/CFT Correspondence

(Maldacena 1997, AdS: Anti de Sitter space, CFT: conformal field theory)

Witten; Gubser, Klebanov, Polyakov

Duality Quantum Field Theory ⇔ Gravity Theory

Arises from String Theory in a particular low-energy limit

Duality: Quantum field theory at strong coupling

⇔ Gravity theory at weak coupling

Conformal field theory in four dimensions
⇔ Supergravity Theory on AdS5 × S5
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Anti-de Sitter space

Anti de Sitter space: Einstein space with constant negative curvature

has a boundary which is the upper half of the Einstein static universe

(locally this may be conformally mapped to four-dimensional Minkowski space )

Isometry group of AdS5: SO(4, 2)

AdS/CFT:

relates conformal field theory at the boundary of AdS5

to gravity theory on AdS5 × S5

Isometry group of S5: SO(6) (∼ SU(4))
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AdS/CFT correspondence

Anti-de Sitter space: Einstein space with constant negative curvature

AdS space has a boundary

Metric: ds2 = e2r/L ηµνdxµdxν + dr2

Isometry group of (d + 1)-dimensional AdS space coincides with conformal
group in d dimensions (SO(d, 2)).

AdS/CFT correspondence provides dictionary between field theory opera-
tors and supergravity fields

O∆ ↔ φm , ∆ = d
2 +

√
d2

4 + L2m2

Items in the same dictionary entry have the same quantum numbers under
superconformal symmetry SU(2, 2|4).
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Field theory side of AdS/CFT correspondence

Consider (3+1)-dimensional Minkowski space

Quantum field theory at the boundary of Anti-de Sitter space:

N = 4 supersymmetric SU(N) gauge theory (N →∞)

Fields transform in irreps of SU(2, 2|4), superconformal group

Bosonic subgroup: SO(4, 2)× SU(4)R

1 vector field Aµ

4 complex Weyl fermions λαA (4̄ of SU(4)R)

6 real scalars φi (6 of SU(4)R)

(All fields in adjoint representation of gauge group)

β ≡ 0 , theory conformal
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Supergravity side of correspondence

(9 + 1)-dimensional supergravity: equations of motion allow for
D3 brane solutions

(3 + 1)-dimensional (flat) hypersurfaces with invariance group

RI 3,1 × SO(3, 1)× SO(6)

Inserting corresponding ansatz into the equation of motion gives

ds2 = H(y)−1/2ηµνdxµdxν + H(y)1/2dy2

H harmonic with respect to y

Boundary condition: limy→∞H = 1
⇒ H(y) = 1 + L4

y4

L4 = 4πgsNα′2

In addition: self-dual five-form F5
+
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Maldacena limit

For |y| < L: Perform coordinate transformation u = L2/y

Asymptotically for u large:

ds2 = L2

[
1
u2

ηµνdxµdxν +
du2

u2
+ dΩ5

2

]

Metric of AdS5 × S5

Limit:

N →∞ while keeping gsN large and fixed
(ls → 0)

Isometries SO(4, 2)× SO(6) of AdS5 × S5 coincide with

global symmetries of N = 4 Super Yang-Mills theory
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String theory origin of AdS/CFT correspondence

near-horizon geometry
AdS  x  S5

5

D3 branes in 10d

duality

⇓ Low-energy limit

N = 4 SUSY SU(N) gauge
theory in four dimensions
(N →∞)

IIB Supergravity on AdS5 × S5
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Conformal anomaly in field theory

Classical action functional SMatter =
∫

d4x
√
−gLM

Consider variation of the metric gµν → gµν + δgµν

δSM = 1
2

∫
dmx

√
−g Tµνδgµν

Tµν energy-momentum tensor, Tµν = Tνµ, ∇µTµν = 0

In conformally convariant theories: Tµ
µ = 0

Quantised theory: Generating functional

Z[g] ≡ e−W [g] =
∫
DφM exp

[
−

∫
d4x

√
−gLm

]

δW [g] =
∫

d4x 〈Tµν〉δgµν

Consider δgµν = −2σ(x)gµν, Weyl variation: Generically 〈Tµ
µ〉 /= 0!
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Conformal anomaly

In (3+1) dimensions

〈Tµ
µ〉 =

c

16π2
CµνσρCµνσρ −

a

16π2

1
4
εαβγδεµνρσRαβµνRγδρσ

C Weyl tensor, 1
4εαβγδεµνρσRαβµνRγδρσ Euler density

Coefficients c, a depend on LM

Many explicit calculation methods, for instance heat kernel

N = 4 supersymmetric theory: c = a = 1
4(N

2 − 1)

〈Tµ
µ〉 =

N2 − 1
8π2

(
RµνRµν −

1
3
R2

)
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Calculation of anomaly coefficients using AdS/CFT

Henningson+Skenderis ’98, Theisen et al ’99

Calculation of conformal anomaly using Anti-de Sitter space

Powerful test of AdS/CFT correspondence

Write metric of Einstein space in Fefferman-Graham form
(requires equations of motion)

ds2 = L2

(
dρ2

4ρ2
+

1
ρ
gµν(x, ρ)dxµdxν

)

gµν(x, ρ) = ḡµν(x) + ρ g(2)
µν(x) + ρ2 g(4)

µν(x) + ρ2 ln ρ h(4)
µν(x) + . . .
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Calculation of anomaly coefficients using AdS/CFT

Insert Fefferman-Graham metric into five-dimensional action

S = − 1
16πG5

∫
d5z

√
|g|

(
R +

12
L2

)
,

Sε = − 1
16πG5

∫
d4x

∫

ρ=ε

dρ

ρ

(
a(0)(x) + a(2)(x)ρ + a(4)(x)ρ2 + . . .

)

Action divergent as ε→ 0

Regularisation: Minimal Subtraction of counterterm

13



Calculation of anomaly coefficients using AdS/CFT

Weyl transformation gives conformal anomaly:

〈Tµ
µ(x)〉 = − lim

ε→0

1√
|g|

δ

δσ
[Sε[ḡ]− Sct[ḡ]]

=
N2

32π2

(
RµνRµν −

1
3
R2

)

Coincides with N = 4 field theory result

Important: Coefficient determined by volume of internal space:

a = π3

4 N2V ol(S5) (N 0 1)

Field-theory coefficients a, c are related to volume of internal manifold

(S5 for N = 4 supersymmetry)
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Generalizations of AdS/CFT

Ultimate goal: To find gravity dual of the field theories in the Standard Model of
elementary particle physics

First step: Consider more involved internal spaces

Example: Instead of D3 branes in flat space, consider D3 branes at the tip of a
six-dimensional toric non-compact Calabi-Yau cone

Field theory: has N = 1 supersymmetry, ie. U(1)R R symmetry
(instead of the SU(4)R of N = 4 theory)

Quiver gauge theory: Product gauge group SU(N)× SU(M)× SU(P )× . . .

Matter fields in bifundamental representations of the gauge group
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a Maximization

Conformal anomaly coefficient of these field theories can be determined by
a maximization principle

In general for N = 1 theories:

a =
3
32

(3
∑

i

R3
i −

∑

i

Ri)

Ri charges of the different fields under U(1)R symmetry

If other U(1) symmetries are present (for instance flavour symmetries),
it is difficult in general to identify the correct R charges.

Result (Intriligator, Wecht 2004): The correct R charges maximise a!

Local maximum of this function determines R symmetry of theory
at its superconformal point.

Critical value agrees with central charge of superconformal theory.
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Supergravity side of correspondence for N = 1 quiver theories

Metric

ds2 =
L2

r2

(
ηµνdxµdxν + dr2 + r2ds2(Y )

)

with

ds2(X) = dr2 + r2ds2(Y )

(X, ω) Kähler cone of complex dimension n (n = 3)

X = RI + × Y , r > 0

X Kähler and Ricci flat ⇔ Y = X|r=1 Sasaki-Einstein manifold

Lr∂/∂rω = 2ω → ω exact: ω = −1
2d(r2η), η global one-form on Y
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Supergravity side of correspondence for N = 1 quiver theories

Kähler cone X has a covariantly constant complex structure tensor I

Reeb vector K ≡ I(r ∂
∂r)

Constant norm Killing vector field

Reeb vector dual to r2η → η = I(dr
r )

Reeb vector generates the AdS/CFT dual of U(1)R symmetry

Sasaki-Einstein manifold U(1) bundle over Kähler-Einstein manifold,
U(1) generated by Reeb vector
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Geometrical equivalent of a maximization

Martelli, Sparks, Yau 2006

Variational problem on space of toric Sasakian metrics

toric cone X

real torus Tn acts on X preserving the Kähler form –
supersymmetric three cycles

Einstein-Hilbert action on toric Sasaki Y reduces to volume function vol(Y )

Kähler form: ω =
3∑

i=1
dyi ∧ dφi

Symplectic coordinates (yiφi),
φi angular coordinates along the orbit of the torus action

For general toric Sasaki manifold define vector K ′ =
3∑

i=1
bi

∂
∂φi

⇒ vol[Y ] = vol[Y ](bi)
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Geometrical equivalent of a maximization

Reeb vector selecting Sasaki-Einstein manifold corresponds to those bi which
minimise volume of Y

Volume minimization ⇒ Gravity dual of a maximization

Volume calculable even for Sasaki-Einstein manifolds for which metric is not
known (toric data)
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Example: Conifold

Base of cone: Y = T (1,1), T (1,1) = (SU(2)× SU(2))/U(1)

Symmetry SU(2)× SU(2)× U(1), topology S2 × S3

Dual field theory has gauge group SU(N)× SU(N)

V ol(T (1,1)) =
16
27

π3

can be calculated using volume minimisation as described

gives correct result for anomaly coefficient in dual field theory

There exists an infinite family of Sasaki-Einstein metrics Y p,q
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Non-conformal field theories: C-Theorem

C-Theorem (Zamolodchikov 1986) in d = 2: Ċ(gi) ≤ 0, C = C(gi(µ))

UV

IR

So far no field-theory proof in d = 4 exists

There is a version of the C theorem in non-conformal generalisations of
AdS/CFT

Metric: ds2 = e2A(r) ηµνdxµdxν + dr2

C-Function:
C(r) =

c

A′(r)3
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Outlook

To investigate non-conformal examples of gauge theory/gravity duality

with methods of differential geometry
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Conclusions

AdS/CFT provides a powerful relation between gauge theory and gravity.

It originates from string theory.

Calculation of conformal anomaly provides powerful check.

Generalisations to less symmetric field theories are possible.

Further generalisations will provide

– new insights into the structure of string theory
– new non-perturbative tools to describe field theories.
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