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Motivation
CY3 manifolds provide one of the most important approaches 
to phenomenological contact between realistic physics and 
string/M-theory.

The standard embedding of an SU(3) spin connection into 
the heterotic string’s E8xE8 gauge group breaks the YM 
gauge group down to E8xE6 and E6 is physically appealing.

At the same time, from an M-theory perspective, the 4+7 
split is unnatural. A more “democratic” formulation of the 
spatial dimensions would seem more natural. 

Cosmology could naturally involve a 1+10 split. All space 
dimensions would initially be treated as compact, in 
anticipation of 3 of them expanding.
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Overview
Review of bosonic sector of D=11 supergravity including 
normalizations

Topological considerations and flux quantization in M-
theory

topological constraint on compact 10-manifolds

CY moduli sigma model

2-component local supersymmetry in D=1

Effect of       corrections on CY5 geometrical structure

Supersymmetry preservation and generalized 
holonomy

α′

Bilal
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D=11 supergravity

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-dimensional
space-time manifold M, A is the 3-form gauge potential and G its corresponding 4-field strength,
i.e. G = dA. The equations of motion from ICJS,B for the two independent fields, gMN and AMNP ,
are

RMN =
1
12

GMM2...M4GN
M2...M4 − 1

144
gMNGM1...M4G

M1...M4 , (2.3)

d ∗G +
1
2
G ∧G = 0. (2.4)

The gravitino dynamics is encoded in the fermionic action

ICJS,F = − 1
2κ2

11

∫

M
d11x

√
−g

{
ψ̄MΓMNP DN (ω)ψP

+
1
96

(
ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR

)
GNPQR + (fermi)4

}
, (2.5)

where ψM is Majorana, ψ̄M := iψ†MΓ0 and DN (ω)ψP = (∂N + 1
4ω

QR

N ΓQR)ψP . The corresponding
equation of motion for ψM is

ΓMNP DN (ω)ψP +
1
96

(
ΓMNPQRSψS + 12δMNΓPQψR

)
GNPQR + (fermi)3 = 0, (2.6)

and the supersymmetry transformations for all fields are

δεgMN = 2ε̄Γ(M ψN),

δεAMNP = −3ε̄Γ[MN ψP ],

δεψM = 2DM (ω)ε +
1

144
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + (fermi)3.

(2.7)

The Green-Schwarz term is given by1

IGS = −
(

(2π)2

2κ2
11

)1/3 ∫

M
A ∧X8, (2.8)

where X8 is defined in terms of the first and second Pontrjagin classes p1 and p2 of the tangent
bundle TM:

X8 : =
1
48

((p1

2

)2
− p2

)
,

p1(TM) = −1
2

(
1
2π

)2

trR2,

p2(TM) =
1
8

(
1
2π

)4 (
(trR2)2 − 2trR4

)
.

(2.9)

with R the curvature two-form of M. From eqs. (2.2) and (2.8), one finds a corrected 3-form
equation of motion:

d ∗G +
1
2
G ∧G + (2π)4βX8 = 0, (2.10)

where β := (2π)2(α′)3 and 2κ2
11 = (2π)8(α′)9/2.

3 Calabi-Yau five-folds

4 Compactification on Calabi-Yau fivefolds

We begin our discussion of Calabi-Yau fivefold compactifications in M-theory by studying the
implications of taking R × X, where X is a Calabi-Yau fivefold, as M-theory background and

1The subtlety [?, ?, ?] here is the relative sign between the Chern-Simons term, GGA, and the Green-Schwarz term

in the full action (2.1) and there exist apparently different versions in the literature. The sign of the Chern-Simons

term is fixed by supersymmetry and then the relative sign is fixed by the anomaly cancellation condition [?]. In [?] it is

proved in three different ways that the relative sign has to be plus (in our conventions) [SHOULD WE INCLUDE THIS

FOOTNOTE OR NOT?].
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at order β, in particular a flux scalar fields potential at this order, should be expected. A main
theme of this paper is the relation between Calabi-Yau topology/geometry and the structure of the
one-dimensional supermechanics which M-theory provides. Some of these relations are analogous to
what happens compactifications on lower-dimensional Calabi-Yau manifolds, others, as we will see,
are perhaps less expected. The topology of a Calabi-Yau five-fold X is characterised by six a priori
independent Hodge numbers, namely h1,1(X), h2,1(X), h3,1(X), h2,2(X), h4,1(X) and h3,2(X). As
we will see, using the index theorem and c1(X) = 0, one relation between those six numbers can be
derived, in analogy with the four-fold case [?]. The moduli space of a Calabi-Yau manifold consists
(locally) of a direct product of a Kahler and a complex structure moduli space [?]. Here, these two
parts of the moduli space are associated with the (1, 1) and the (4, 1) sectors, respectively. As we
will see, the associated Kahler and complex structure moduli are part of 2a and 2b multiplets [?]
of one-dimensional N = 2 supersymmetry. A further set of bosonic zero modes originates from
the M-theory three form C in the (2, 1) sector. We will show that these modes become part of 2b

multiplets. This exhausts the list of bosonic zero modes. Expanding the 11-dimensional gravitino
effectively leads to fermionic zero modes in the sectors (q, 1) where q = 1, 2, 3, 4. For q = 1, 2, 4
these pair up into super-multiplets with the aforementioned bosons but the (3, 1) fermions have
no bosonic zero mode partners. We will show that this apparent contradiction can be resolved
by the introduction of fermionic 2b multiplets, that is 2b multiplets with a fermion as their lowest
component. With this assignment of zero modes to super-multiplets, the one-dimensional effective
theory is an N = 2 sigma model which we present both in its component and superspace form. Some
of its features are worth mentioning. For example, the sigma model metric for the 2a multiplets
in the (1, 1) sector is not the standard Calabi-Yau Kahler moduli space metric [?] as is usually the
case although the two metrics are related in a straightforward way. Also, it turns out that the
sigma model metrics in the (2, 1) and (3, 1) sector depend on the Kahler moduli, so that we require
a coupling of 2a and 2b multiplets. As far as we know such a coupling between 2a and 2b multiplets
has not been studied in the context of one-dimensional N = 2 supersymmetry before.

The plan of the paper is as follows. In Sections 2 we review some basic facts about 11-dimensional
supergravity. Some general results on the topology and moduli space geometry of Calabi-Yau five-
folds are collected in Section 3. More details on this and derivations of some of the results are
given in Appendix ??. In Section 4 we introduce Calabi-Yau five-fold backgrounds including some
specific examples and perform the reduction of M-theory on such backgrounds. Section 5 shows
that the one-dimensional effective actions obtained in this way have indeed two local supercharges
and can be written in superspace form. Many of the necessary details and technical results on one-
dimensional N = 2 supersymmetry and supergravity are collected in Appendix ??. Conventions
and notation used throughout this paper are summarised in Appendix ??. Finally, we conclude in
Section 6.

2 The M-theory low energy effective action

The starting point for our studies is the following 11-dimensional action:

I11 = ICJS,B + ICJS,F + IGS + . . . . (2.1)

The first and second terms are the bosonic and fermionic part of 11-dimensional supergravity [?],
respectively. IGS is the Green-Schwarz term coming from the M5-brane anomaly cancellation
condition [?] and the dots indicate additional higher order contributions, which are not the subject
of this paper.

In order to keep equations concise, we shall use index-free notation where possible (our conven-
tions largely follow [?] and are summarized in Appendix C). The bosonic Cremmer-Julia-Scherk
(CJS) supergravity action then reads as follows:

ICJS,B =
1

2κ2
11

∫

M

{
R ∗ 1− 1

2
G ∧ ∗G− 1

6
G ∧G ∧ C

}
, (2.2)
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The above terms combine to form an invariant under the 
classical supersymmetry transformations

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-dimensional
space-time manifold M, A is the 3-form gauge potential and G its corresponding 4-field strength,
i.e. G = dA. The equations of motion from ICJS,B for the two independent fields, gMN and AMNP ,
are

RMN =
1
12

GMM2...M4GN
M2...M4 − 1

144
gMNGM1...M4G

M1...M4 , (2.3)

d ∗G +
1
2
G ∧G = 0. (2.4)

The gravitino dynamics is encoded in the fermionic action

ICJS,F = − 1
2κ2

11

∫

M
d11x

√
−g

{
ψ̄MΓMNP DN (ω)ψP

+
1
96

(
ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR

)
GNPQR + (fermi)4

}
, (2.5)

where ψM is Majorana, ψ̄M := iψ†MΓ0 and DN (ω)ψP = (∂N + 1
4ω

QR

N ΓQR)ψP . The corresponding
equation of motion for ψM is

ΓMNP DN (ω)ψP +
1
96

(
ΓMNPQRSψS + 12δMNΓPQψR

)
GNPQR + (fermi)3 = 0, (2.6)

and the supersymmetry transformations for all fields are

δεgMN = 2ε̄Γ(M ψN),

δεCMNP = −3ε̄Γ[MN ψP ],

δεψM = 2DM (ω)ε +
1

144
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + (fermi)3.

(2.7)

The Green-Schwarz term is given by1

IGS = −
(

(2π)2

2κ2
11

)1/3 ∫

M
A ∧X8, (2.8)

where X8 is defined in terms of the first and second Pontrjagin classes p1 and p2 of the tangent
bundle TM:

X8 : =
1
48

((p1

2

)2
− p2

)
,

p1(TM) = −1
2

(
1
2π

)2

trR2,

p2(TM) =
1
8

(
1
2π

)4 (
(trR2)2 − 2trR4

)
.

(2.9)

with R the curvature two-form of M. From eqs. (2.2) and (2.8), one finds a corrected 3-form
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G[4] = dC[3]

4-form field strength for
    3-form gauge field
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Variation of the Cremmer-Julia-Scherk action leads to the 
classical supergravity field equations:

 Quantum corrections change these equations in a way 
that is important for CY5 compactifications. Among 
the!!!!!!!!!!!!!!!!!!!!!!!!!!quantum corrections is a Green-Schwarz 
type term needed for M5-brane worldvolume anomaly 
cancellations. 

This GS term is a superpartner of the             effective 
action corrections.

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-dimensional
space-time manifold M, A is the 3-form gauge potential and G its corresponding 4-field strength,
i.e. G = dA. The equations of motion from ICJS,B for the two independent fields, gMN and AMNP ,
are

RMN =
1
12

GMM2...M4GN
M2...M4 − 1

144
gMNGM1...M4G

M1...M4 , (2.3)

d ∗G +
1
2
G ∧G = 0. (2.4)

The gravitino dynamics is encoded in the fermionic action

ICJS,F = − 1
2κ2

11

∫

M
d11x

√
−g

{
ψ̄MΓMNP DN (ω)ψP

+
1
96

(
ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR

)
GNPQR + (fermi)4

}
, (2.5)

where ψM is Majorana, ψ̄M := iψ†MΓ0 and DN (ω)ψP = (∂N + 1
4ω

QR

N ΓQR)ψP . The corresponding
equation of motion for ψM is

ΓMNP DN (ω)ψP +
1
96

(
ΓMNPQRSψS + 12δMNΓPQψR

)
GNPQR + (fermi)3 = 0, (2.6)

and the supersymmetry transformations for all fields are

δεgMN = 2ε̄Γ(M ψN),

δεCMNP = −3ε̄Γ[MN ψP ],

δεψM = 2DM (ω)ε +
1

144
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + (fermi)3.

(2.7)

The Green-Schwarz term is given by1

IGS = −
(

(2π)2

2κ2
11

)1/3 ∫

M
A ∧X8, (2.8)

where X8 is defined in terms of the first and second Pontrjagin classes p1 and p2 of the tangent
bundle TM:

X8 : =
1
48

((p1

2

)2
− p2

)
,

p1(TM) = −1
2

(
1
2π

)2

trR2,

p2(TM) =
1
8

(
1
2π

)4 (
(trR2)2 − 2trR4

)
.

(2.9)

with R the curvature two-form of M. From eqs. (2.2) and (2.8), one finds a corrected 3-form
equation of motion:

d ∗G +
1
2
G ∧G + (2π)4βX8 = 0, (2.10)

where β := (2π)2(α′)3 and 2κ2
11 = (2π)8(α′)9/2.

3 Calabi-Yau five-folds

4 Compactification on Calabi-Yau fivefolds

We begin our discussion of Calabi-Yau fivefold compactifications in M-theory by studying the
implications of taking R × X, where X is a Calabi-Yau fivefold, as M-theory background and

1The subtlety [?, ?, ?] here is the relative sign between the Chern-Simons term, GGA, and the Green-Schwarz term

in the full action (2.1) and there exist apparently different versions in the literature. The sign of the Chern-Simons

term is fixed by supersymmetry and then the relative sign is fixed by the anomaly cancellation condition [?]. In [?] it is

proved in three different ways that the relative sign has to be plus (in our conventions) [SHOULD WE INCLUDE THIS

FOOTNOTE OR NOT?].

5

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-dimensional
space-time manifold M, A is the 3-form gauge potential and G its corresponding 4-field strength,
i.e. G = dA. The equations of motion from ICJS,B for the two independent fields, gMN and AMNP ,
are

RMN =
1
12

GMM2...M4GN
M2...M4 − 1

144
gMNGM1...M4G

M1...M4 , (2.3)

d ∗G +
1
2
G ∧G = 0. (2.4)

The gravitino dynamics is encoded in the fermionic action

ICJS,F = − 1
2κ2

11

∫

M
d11x

√
−g

{
ψ̄MΓMNP DN (ω)ψP

+
1
96

(
ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR

)
GNPQR + (fermi)4

}
, (2.5)

where ψM is Majorana, ψ̄M := iψ†MΓ0 and DN (ω)ψP = (∂N + 1
4ω

QR

N ΓQR)ψP . The corresponding
equation of motion for ψM is

ΓMNP DN (ω)ψP +
1
96

(
ΓMNPQRSψS + 12δMNΓPQψR

)
GNPQR + (fermi)3 = 0, (2.6)

and the supersymmetry transformations for all fields are

δεgMN = 2ε̄Γ(M ψN),

δεCMNP = −3ε̄Γ[MN ψP ],

δεψM = 2DM (ω)ε +
1

144
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + (fermi)3.

(2.7)

The Green-Schwarz term is given by1

IGS = −
(

(2π)2

2κ2
11

)1/3 ∫

M
A ∧X8, (2.8)

where X8 is defined in terms of the first and second Pontrjagin classes p1 and p2 of the tangent
bundle TM:

X8 : =
1
48

((p1

2

)2
− p2

)
,

p1(TM) = −1
2

(
1
2π

)2

trR2,

p2(TM) =
1
8

(
1
2π

)4 (
(trR2)2 − 2trR4

)
.

(2.9)

with R the curvature two-form of M. From eqs. (2.2) and (2.8), one finds a corrected 3-form
equation of motion:

d ∗G +
1
2
G ∧G + (2π)4βX8 = 0, (2.10)

where β := (2π)2(α′)3 and 2κ2
11 = (2π)8(α′)9/2.

3 Calabi-Yau five-folds

4 Compactification on Calabi-Yau fivefolds

We begin our discussion of Calabi-Yau fivefold compactifications in M-theory by studying the
implications of taking R × X, where X is a Calabi-Yau fivefold, as M-theory background and

1The subtlety [?, ?, ?] here is the relative sign between the Chern-Simons term, GGA, and the Green-Schwarz term

in the full action (2.1) and there exist apparently different versions in the literature. The sign of the Chern-Simons

term is fixed by supersymmetry and then the relative sign is fixed by the anomaly cancellation condition [?]. In [?] it is

proved in three different ways that the relative sign has to be plus (in our conventions) [SHOULD WE INCLUDE THIS

FOOTNOTE OR NOT?].

5

β = (2π)2α′3

R4
µνρσ

Vafa & Witten
Duff, Liu & Minasian
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The classical CJS equation for        

is accordingly modified by the Green-Schwarz 
correction

where

This gives rise to the quantum-corrected equation

C[3]

d ∗G+
1
2

G∧G = 0

IGS =
−(2π)4β

2κ2
11

Z
C∧X8

X8 =
1

(2π)4

[
− 1

768
(trR2)2 +

1
192

trR4
]
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The Green-Schwarz correction term is necessary for 
cancelation of anomalies on the d=6 worldvolumes of 
5-branes:

One also has the Dirac quantization condition

and the condition 

which is needed, e.g., for invariance under large 3-
form gauge transformations.

Putting these together, have

β =
1

(2π)3T5
T5 = 5-brane tension

T2T5 =
2π

2κ2
11

T5 =
1

2π
T 2

2

T2 =
(

2π2

κ2
11

)1/3

β =
(

2κ2
11

(2π)5

)2/3

T2 = 2-brane tension

de Alwis

Lavrinenko, Lü, Pope & K.S.S
Kalkkinen & K.S.S

where κ11 is the 11-dimensional gravitational constant, R is the Ricci scalar of the 11-dimensional
space-time manifold M, A is the 3-form gauge potential and G its corresponding 4-field strength,
i.e. G = dA. The equations of motion from ICJS,B for the two independent fields, gMN and AMNP ,
are

RMN =
1
12

GMM2...M4GN
M2...M4 − 1

144
gMNGM1...M4G

M1...M4 , (2.3)

d ∗G +
1
2
G ∧G = 0. (2.4)

The gravitino dynamics is encoded in the fermionic action

ICJS,F = − 1
2κ2

11

∫

M
d11x

√
−g

{
ψ̄MΓMNP DN (ω)ψP

+
1
96

(
ψ̄MΓMNPQRSψS + 12ψ̄NΓPQψR

)
GNPQR + (fermi)4

}
, (2.5)

where ψM is Majorana, ψ̄M := iψ†MΓ0 and DN (ω)ψP = (∂N + 1
4ω

QR

N ΓQR)ψP . The corresponding
equation of motion for ψM is

ΓMNP DN (ω)ψP +
1
96

(
ΓMNPQRSψS + 12δMNΓPQψR

)
GNPQR + (fermi)3 = 0, (2.6)

and the supersymmetry transformations for all fields are

δεgMN = 2ε̄Γ(M ψN),

δεCMNP = −3ε̄Γ[MN ψP ],

δεψM = 2DM (ω)ε +
1

144
(ΓM

NPQR − 8δN
MΓPQR)εGNPQR + (fermi)3.

(2.7)

The Green-Schwarz term is given by1

IGS = −
(

(2π)2

2κ2
11

)1/3 ∫

M
C ∧X8, (2.8)

where X8 is defined in terms of the first and second Pontrjagin classes p1 and p2 of the tangent
bundle TM:

X8 : =
1
48

((p1

2

)2
− p2

)
,

p1(TM) = −1
2

(
1
2π

)2

trR2,

p2(TM) =
1
8

(
1
2π

)4 (
(trR2)2 − 2trR4

)
.

(2.9)

with R the curvature two-form of M. From eqs. (2.2) and (2.8), one finds a corrected 3-form
equation of motion:

d ∗G +
1
2
G ∧G + (2π)4βX8 = 0, (2.10)

where β := (2π)2(α′)3 and 2κ2
11 = (2π)8(α′)9/2.

3 Calabi-Yau five-folds

4 Compactification on Calabi-Yau fivefolds

We begin our discussion of Calabi-Yau fivefold compactifications in M-theory by studying the
implications of taking R × X, where X is a Calabi-Yau fivefold, as M-theory background and

1The subtlety [?, ?, ?] here is the relative sign between the Chern-Simons term, GGA, and the Green-Schwarz term

in the full action (2.1) and there exist apparently different versions in the literature. The sign of the Chern-Simons

term is fixed by supersymmetry and then the relative sign is fixed by the anomaly cancellation condition [?]. In [?] it is

proved in three different ways that the relative sign has to be plus (in our conventions) [SHOULD WE INCLUDE THIS

FOOTNOTE OR NOT?].
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Corrected 3-form field equation:

where

Now specialize to                              and
simplify above relations:

                     so                      is given by 

Topological considerations

X8 =
1

48

((p1

2

)2
− p2

)

p(T (M10)) p(T (CY 5))

M11 = R×CY 5

p(T (R)) = 1

1st & 2nd
Pontriagin classes

A. Haupt, A. Lukas & K.S.S.

d ∗G+
1
2

G∧G+(2π)4βX8 = 0

p1 =−1
2

(
1

2π

)2

trR2

p2 =
1
8

(
1

2π

)4(
(trR2)2−2trR4)

p(T (R×CY 5)) = p(T (R))∧ p(T (CY 5))

8



Now, for complex manifolds, there are relations between 
Pontriagin and Chern classes:

so for the case of a Calabi-Yau manifold with
             one has
and consequently

Define                                 and use the corrected field 
equations together with the fact that            is exact to 
deduce                                                 giving the 
topological constraint

p1=c2
1−2c2

p2=2c4−2c1c3 + c2
2

c1 = 0
(p1

2

)2
− p2 =−2c4

X8 =− 1
24

c4

g =
1

(2π)2β1/2G

d ∗G

c4(CY 5)−12[g]∧ [g] = 0

T. Hübsch

[
1
2

G∧G+(2π)4βX8

]
= 0

9



2-branes couple to the        background via

This gives the flux quantization condition                

or, for              ,               

Thus, depending on the value of the 2nd Chern class
      , the normalized flux     is quantized in integer or 
half-integer units.

Happily, this is consistent with the topological 
constraint

4-form flux quantization

[g]− p1

4
∈ H4(CY 5,Z)

c1 = 0

[g]+
c2

2
∈ H4(CY 5,Z)

c4(CY 5)−12[g]∧ [g] = 0

gc2

C[3]

Witten

S2br
WZ = T2

Z

W3

C→ T2

Z

D4

G

g =
T2

2π
G

∂D4 = W3

10



For complete intersection compact          , analysis 
shows that                              requiring                so 
4-form flux must be turned on at order

However, one can make orbifold constructions
with             .

Non-compact          can also have              .

In cases with              , the flux is turned on at order    

CY 5

c4
(
CY c.i.

5
)

> 0 [g] != 0√
β

c4 = 0

c4 = 0CY 5

c4 = 0 β

11



CY5 moduli            Supersymmetric sigma model
CY5 Hodge diamond: 

Hirzebruch-Riemann-Roch theorem with             :

so there are 6-1=5 independent Hodge numbers. The 
corresponding harmonic forms contribute

massless Kaluza-Klein modes.

D = 1

1
0 0

0 h1,1 0
0 h1,2 h1,2 0

0 h1,3 h2,2 h1,3 0
1 h1,4 h2,3 h2,3 h1,4 1

c1 = 0

11h1,1−10h1,2−h2,2 +h2,3 +10h1,3−11h1,4 = 0

D = 1

12



Metric:

in complex coordinates

3-form field:

ds2 =−Ndτ2 +2grs(x,ϕI(τ))dxrdxs

ϕI(τ) = (ti(τ),za(τ),zā(τ))
moduli

µ, ν̄ = 1, . . . ,5

h1,1 h1,4

xr→ xµ, xν̄

δgµν̄ = δtiωiµν̄ δgµν = δzābāµν δgµ̄ν̄ = δzabaµ̄ν̄

(4,1) harmonic
           form

(5,0) volume
            form

δC = ξp(τ)νp + c.c.

ωi ∈ Harm(1,1)

χa ∈ Harm(1,4)

νp ∈ Harm(1,2)

h1,2

bāµν =
i

||Ω||2Ωµ
ōρ̄σ̄τ̄ χā ōρ̄σ̄τ̄ν

13



Expand                  using the Killing spinor           on CY5, 
e.g. 

For                             the expansion  uses the

(1,1), (2,1), (3,1) and (4,1) harmonic forms:

The (3,1) species has no bosonic partners, however. 
This points out a strange feature of supersymmetric 
life in             : on-shell bosonic and fermionic degrees 
of freedom do not have to balance. 

Fermionic zero modes
ΨM(τ,xr) η(xr)

Ψµ(xr) , Ψν̄(xr)

(1,1) (2,1)

(3,1) (4,1)

D = 1
Coles & 
Papadopoulos

Ψ0(τ,xr) = ψ̄0(τ)η(xr)+ cc η†η = 1

and since ωi are harmonic (1, 1)-forms, ALGT is closed. Inserting the new A into the action (2.1)
and keeping only terms involving ALGT, we find

ICS,LGT

∣∣∣
R×X

= −
∫ (

12[gflux]2 − c4(X)
)
∧ALGT = −

∫
dτN

(
12[gflux]2 − c4(X)

)
i
µi(τ). (4.11)

Thus, the µi act as Lagrange multipliers whose field equations impose eq. (4.1) as a dynamical
constraint.

This completes the bosonic reduction and, in a moment, we will turn to the fermionic side, but
before that we summarize the results of this section in the following equation:

ICJS,B

∣∣∣
R×X

= −m

2

∫
dτN−1

{
1
4
V G(1,1)

ij (u)u̇iu̇j +
9
5
V −1V̇ 2 + V 2/5G(2,1)

pq̄ (u)ξ̇p ˙̄ξq̄

−4V G(4,1)
ab̄

(Z, Z̄)Ża ˙̄Z b̄ + N2
(
12[gflux]2 − c4(X)

)
i
µi(τ)

} (4.12)

where m := κ−2
11 . [MAYBE ALSO INCLUDE CONSTRAINT K(u) = 5! AS LAGRANGE MUL-

TIPLIER TERM?]

4.2 Performing the dimensional reduction: the fermionic part

One may ask whether it is necessary to explicitly dimensionally reduce the fermionic part of eq. (2.1),
for in many other cases this is left out with reference to supersymmetry... [INCLUDE JUSTIFI-
CATION FOR STUDYING FERMIONIC SIDE?]

As reduction ansatz for the 11-dimensional gravitino ψM , we take

ψ0 = ψ0(τ)⊗ η∗ + ψ̄0(τ)⊗ η, (4.13)

ψµ̄ = V 1/5(ψi(τ) +
ui

5V
ψ̃(τ))⊗ (ωiα1µ̄γα1η) +

1
4
λp(τ)⊗ (νpα1α2µ̄γα1α2η)

+
1
4!

ρx(τ)⊗ (+xα1...α3µ̄γα1...α3η)− 1
4!

κa(τ)⊗ (||Ω||−1χaα1...α4µ̄γα1...α4η),
(4.14)

ψµ = (ψµ̄)∗, (4.15)

where (η, η∗) is a pair of (Grassmann even) globally defined covariantly constant spinors3 of opposite
on X. The tensor product reflects the splitting R×X and the numerical factors have been inserted
for later convenience. The one-dimensional (Grassmann odd) fermionic fields are decomposed into
(1, 1), (2, 1), (3, 1) and (4, 1)-modes just as on the bosonic side and their multiplicity is similarly
given by the respective Hodge numbers of X, i.e. h(1,1)(X), h(2,1)(X), h(3,1)(X) and h(4,1)(X).
The peculiar form of the (1, 1)-sector is reflecting the fact that we are treating the volume V as
independent modulus, i.e. ψi and ψ̃ are the superpartners of ui and V , respectively. Just as the
bosonic ui are subjected to a constraint, namely K(u) = 5!, so are the ψi. The constraint they
satisfy is in fact nothing but the supersymmetrically transformed version of K(u) = 5!. The bosonic
constraint turns under a supersymmetry transformation into a “tracelessness” constraint on the
ψi:

Kiψ
i = 0, (and: Kiψ̄

i = 0). (4.16)

The ansatz (4.14) seems, at first sight, to not exhaust all possible Hodge numbers on X. However,
it is in fact the most general ansatz, for it turns out that the other fermionic fields (corresponding
to h(2,2)(X), h(3,2)(X) and h(5,0)(X)) are either dual to the already existing fields or vanish due to
the gamma matrix algebra and the properties of η.

Plugging in eqs. (4.13) and (4.14) into eq. (2.5) produces a vast number of terms. To make the
problem more tractable, we are henceforth going to ignore terms quartic in fermions. Let us begin

3A detailed account of the properties of fermions on Calabi-Yau fivefolds can be found in Appendix A.4.
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What happens to the other possible types of harmonic 
forms, e.g. (3,2), (2,2) and (5,0)?

These are reabsorbed into the (1,1) and (2,1) 
harmonic types.

To see this, one needs to use the                 property 
of CY Killing spinors together with the Dirac 
algebra                             and Fierz identities to reduce 
these species to other types. E.g. the (5,0) type is 
converted into a (1,1) species, and is the 
superpartner of the CY volume modulus.

γµ̄η = 0

{γµ,γν̄} = 2gµν̄

15



Bosonic sigma model 

G(1,1)
i j = ∂i∂ jK(1,1)−25

KiKj

K2 K(1,1) =−1
2

lnK

gauge N=1

complex structure

: intersection numbersdi1...i5

IB
CJS

−→
M11=R×CY 5

Z
dτ

{
1
4

G(1,1)
i j (t)ṫ iṫ j +G(2,1)

pq̄ (t)ξ̇p ˙̄ξq̄−4V (t)G(4,1)
ab̄ (z, z̄)ża ˙̄zb̄

}

Canonical inner product

K =
Z

J∧ J∧ J∧ J∧ J J = tiωi

=di1...i5t
i1 . . . ti5

Ki=
Z

ωi∧ J∧ J∧ J∧ J = di j1... j4t
j1... j4

G(4,1)
ab̄ =∂a∂b̄K(4,1) K(4,1) =−ln(i(Gāzā− zaḠa))

G(2,1)
pq̄ =−2

Z

X
νp∧∗ν̄q̄ = idpq̄ i jt it j
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Notes

The (1,1) metric is not a canonical special Kähler 
metric but it is determined by intersection numbers 
(topological data), as is the canonical (2,1) metric.

The (4,1) metric is the canonical Weil-Peterson metric 
(very special Kähler) but it is determined by a 
prepotential (involving non-topological data).

The Kähler and complex structure sectors don’t 
decouple owing to the V(t) factor.
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Inserting the D=11 supersymmetry transformations into the 
reduction ansatz, one finds the surviving 2-component D=1 
supersymmetry (CY5 breaks supersymmetry to 1/16).

One finds two kinds of D=1 supermultiplets

(2a) real 

(2b) i.e. (2,0) chiral

Local D=1 supersymmety is described by the 
supervielbeins        ,                         ,  

subject to the torsion constraints

D=1 supersymmetry multiplets

φ = φ̄

δA
B), one finds the supervielbein of R1|2:

E0
0 = 1, E0

θ = 0, E0
θ̄ = 0,

Eθ
0 =

i

2
θ̄, Eθ

θ = 1, Eθ
θ̄ = 0,

Eθ̄
0 =

i

2
θ, Eθ̄

θ = 0, Eθ̄
θ̄ = 1.

(B.5)

To complete the list of geometrical objects, we note that E := sdetEA
B = 1.

The component expansion of N = 2a and N = 2b multiplets is given by:

N = 2a : φ = ϕ + iθψ + iθ̄ψ̄ − 1
2
θθ̄f, (B.6)

N = 2b : Z = z + θκ− i

2
θθ̄ż, (B.7)

where φ is real, i.e. φ† = φ, whereas Z is complex and satisfies D̄Z = 0. In the above expansions,
ϕ and f are real scalars, z is a complex scalar and ψ and κ are anti-commuting one dimensional
Dirac spinors5. The supersymmetry transformations of the components fields read as follows:

N = 2a : δεϕ = iεψ, δεψ = 0, δεψ̄ = −1
2
εϕ̇− i

2
εf, δεf = −εψ̇, (B.8)

N = 2a : δε̄ϕ = iε̄ψ̄, δε̄ψ = −1
2
ε̄ϕ̇ +

i

2
ε̄f, δε̄ψ̄ = 0, δε̄f = ε̄ ˙̄ψ, (B.9)

N = 2b : δεz = εκ, δεz̄ = 0, δεκ = 0, δεκ̄ = −iε ˙̄z, (B.10)

N = 2b : δε̄z = 0, δε̄z̄ = ε̄κ̄, δε̄κ = −iε̄ż, δε̄κ̄ = 0 (B.11)

Another type of superfield, one can have in one dimension, is the so-called fermionic superfield,
which features a fermion as its lowest component. The component expansion of a N = 2b fermionic
superfield (N = 2b− F for short) is given by:

N = 2b− F : R = ρ + θh− i

2
θθ̄ρ̇, (B.12)

where ρ is an anti-commuting one dimensional Dirac spinor and a h is a complex scalar. Its
component supersymmetry transformation reads as follows:

N = 2b− F : δερ = εh, δερ̄ = 0, δεh = 0, δεh̄ = −iε ˙̄ρ, (B.13)

N = 2b− F : δε̄ρ = 0, δε̄ρ̄ = ε̄h̄, δε̄h = −iε̄ρ̇, δε̄h̄ = 0 (B.14)

The most general 2a and 2b NLσM actions in flat supertime read as follows [?, ?, ?]:

I2a =
1
4

∫
dτd2θ

(
(G + B)ijDφiD̄φj + LijDφiDφj + MijD̄φiD̄φj − iG(φ)

)
, (B.15)

I2b =
1
4

∫
dτd2θ

(
iGab̄DZaD̄Z̄ b̄ +

[
1
2
BabDZaDZb + c.c.

])
+

∫
dτ (dθW (Z) + c.c.) , (B.16)

with d2θ := dθdθ̄ and B, L, M anti-symmetric in (ij) and W holomorphic. For the component
action, which can be worked out using the formulæ provided in this appendix, we refer to [?, ?, ?].
In the N = 2a-model, f enters as auxiliary field.

The N = 2b − F superfields can be used to build a NLσM action where only fermions are
propagating:

I2b−F =
1
4

∫
dτd2θGxȳRxR̄ȳ, (B.17)

where the h of eq. (B.12) enters as auxiliary field and only the ρ has kinetic terms.

5That is, in our conventions, one-component complex Grassmann fields.
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Another type of superfield, one can have in one dimension, is the so-called fermionic superfield,
which features a fermion as its lowest component. The component expansion of a N = 2b fermionic
superfield (N = 2b− F for short) is given by:

N = 2b− F : R = ρ + θh− i

2
θθ̄ρ̇, (B.12)

where ρ is an anti-commuting one dimensional Dirac spinor and a h is a complex scalar. Its
component supersymmetry transformation reads as follows:

N = 2b− F : δερ = εh, δερ̄ = 0, δεh = 0, δεh̄ = −iε ˙̄ρ, (B.13)

N = 2b− F : δε̄ρ = 0, δε̄ρ̄ = ε̄h̄, δε̄h = −iε̄ρ̇, δε̄h̄ = 0 (B.14)

The most general 2a and 2b NLσM actions in flat supertime read as follows [?, ?, ?]:

I2a =
1
4

∫
dτd2θ

(
(G + B)ijDφiD̄φj + LijDφiDφj + MijD̄φiD̄φj − iG(φ)

)
, (B.15)

I2b =
1
4

∫
dτd2θ

(
iGab̄DZaD̄Z̄ b̄ +

[
1
2
BabDZaDZb + c.c.

])
+

∫
dτ (dθW (Z) + c.c.) , (B.16)

with d2θ := dθdθ̄ and B, L, M anti-symmetric in (ij) and W holomorphic. For the component
action, which can be worked out using the formulæ provided in this appendix, we refer to [?, ?, ?].
In the N = 2a-model, f enters as auxiliary field.

The N = 2b − F superfields can be used to build a NLσM action where only fermions are
propagating:

I2b−F =
1
4

∫
dτd2θGxȳRxR̄ȳ, (B.17)

where the h of eq. (B.12) enters as auxiliary field and only the ρ has kinetic terms.

5That is, in our conventions, one-component complex Grassmann fields.
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EA
M

No  D=1 curvature!

B.2 Local N = 2 supersymmetry

In order to write local N = 2 supersymmetric actions in curved supertime, we need to find superfield
expressions for the supervielbein EA

B and super-spin-connection ΩCA
B , such that the Bianchi

identities (BIs) DTA = EB ∧ RB
A and DRA

B = 0 are satisfied. However, a generic solution
involves – even in one dimension – a vast number of independent fields and hence, additional
constraints are neccessary to reduce this number to a more feasible size.

Analogously to N = 1, d = 4 (see, e.g., [CITE]), we are going to choose the following superspace
constraints:

Tθθ̄
0 = i (0), Tθθ̄

θ = 0 ( 1
2 ), (conventional6), (B.18)

Tθ̄θ̄
0 = 0 (0), Tθ̄θ̄

θ = 0 ( 1
2 ), (representation preserving7), (B.19)

Tθθ
θ = 0 ( 1

2 ), (“type 3”8), (B.20)

and their complex conjugates, of course. The numbers in parentheses indicate the dimensionality9

of the object on the left hand side of the equation. The conventional constraints stem from imposing
(cf. eq. (B.2))

{∇, ∇̄} = −i∇0, (B.21)

which guarantees that the tangentized covariant super-derivates of curved superspace (∇A =
EA

B∂B) satisfy the flat algebra. Note that, similarly to D and D̄ in the flat case, the tangentized,
spinorial super-covariant derivatives are abbreviated to ∇ := ∇θ = Eθ

A∂A and ∇̄ := ∇θ̄ = Eθ̄
A∂A.

In stating these formulæ, one should mention that in higher dimension there is also a super-spin
connection term, ...[EXPLAIN WHY SUPER-SPIN CONNECTION ΩCA

B VANISHES IN 1-D]
Chiral superfields, by definition, satisfy ∇̄Z = 0. The representation preserving constraints are an
implication of the integrability condition of that definition, i.e.

{∇̄, ∇̄}Z = 0. (B.22)

The result of the Bianchi identities, dTA = 0, is to set all remaining components of the super-torsion
to zero.

The supervielbein EA
B is a set of 9 superfields each comprising 4 components when θ-expanded.

We use the freedom of super-general coordinate invariance, parametrized by 3 superfields ξA à 4
components, to gauge-fix 9 out of the 36 components of EA

B , namely

Eθ
0| = Eθ̄

0| = Eθ
θ̄| = Eθ̄

θ| = ∇Eθ̄
θ| = ∇Eθ̄

θ̄| = 0, (B.23)

∇̄Eθ
0| = 1

2
, Eθ

θ| = Eθ̄
θ̄| = 1. (B.24)

The 3 remaining parameters in ξA act on the physical fields N , ψ0 and ψ̄0, which we choose to
identify in the following way:

E0
0| = N, E0

θ| = ψ0, E0
θ̄| = ψ̄0. (B.25)

The solution of the torsion constraints in this gauge is given by (cf. eq. (B.5))

E0
0 = N − iθψ̄0 − iθ̄ψ0, (B.26)

E0
θ = ψ0, E0

θ̄ = ψ̄0, (B.27)

Eθ
0 =

i

2
θ̄, Eθ̄

0 =
i

2
θ, (B.28)

Eθ
θ = 1, Eθ

θ̄ = 0, Eθ̄
θ = 0, Eθ̄

θ̄ = 1. (B.29)

6i.e. algebraically solvable
7preserving chiral (2b) representations
8analogue of conformal constraint in higher dimensions
9In units in which [∂0] = 1 and [∂θ] = 1

2 .
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“conventional”

“representation preserving”
“type 3”

∇A = EM
A ∂M [∇A,∇B} =−TC

AB∇C
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D=1 supergravity plays an entirely destructive rôle: it’s 
effect is merely to impose constraints on the D=1 
supermatter that couples to it. Subject to the torsion 
constraints, the remaining supergravity fields are the 
einbein and D=1 gravitino, contained in

Consider for example a supergravity coupled (2b) 
action  for a single multiplet                                              . 
In component fields, this Lagrangian is 

and varying with respect to      and        one finds

In the full supergravity-coupled action, the constraints 
link the (2a) and (2b) sectors.

N.B.: The minimal set of fields of off-shell pure N = 2, d = 1 supergravity does not comprise any
auxiliary fields. Henceforth, we are working in the aforementioned gauge. The local supersymmetry
transformations read

δεN = −iεψ̄0, δε̄N = −iε̄ψ0, δεψ0 = ε̇, δεψ̄0 = 0, δε̄ψ0 = 0, δε̄ψ̄0 = ˙̄ε. (B.30)

For the super-determinant of the supervielbein, denoted simply by E , one finds

E := sdetEA
B = N − i

2
θψ̄0 −

i

2
θ̄ψ0, (B.31)

which, in addition, implies that the canonical action of pure supergravity vanishes as expected, i.e.

Spure sugra =
∫

dτd2θE = 0. (B.32)

With the inverse supervielbein derived from eqs. (B.26)-(B.29), the tangentized, spinorial super-
covariant derivatives ∇ and ∇̄ can be expanded out into components

∇ =
(

1 +
i

2
N−1θ̄ψ0 −

1
4
N−2θθ̄ψ0ψ̄0

)
∂θ −

(
i

2
N−1θ̄ +

1
4
N−2θθ̄ψ̄0

)
∂0

+
i

2
N−1θ̄ψ̄0∂θ̄ (B.33)

and similarly for ∇̄. As a consistency check, one finds that E is super-covariantly constant, i.e.
∫

dτd2θ∇E = (tot. deriv.) =
∫

dτd2θ∇̄E , (B.34)

which allows us to use the partial-integration rule for superspace.
In analogy to the flat superspace case (cf. eqs. (B.6)-(B.14)), we will now present the different

irreducible multiplets. We begin with the N = 2a and N = 2b multiplets:

N = 2a : φ = ϕ + iθψ + iθ̄ψ̄ − 1
2
θθ̄f, (B.35)

N = 2b : Z = Z + θκ− i

2
N−1θθ̄(Ż − ψ0κ), (B.36)

where the component fields are labeled as in eqs. (B.6)-(B.7) and N and ψ0 are the supergravity
fields. The supersymmetry transformations of the component fields read as follows:

N = 2a : δεϕ = iεψ, δεψ = 0, δεψ̄ = −1
2
N−1εϕ̇− i

2
εf +

i

2
N−1ε(ψ0ψ + ψ̄0ψ̄), (B.37)

δεf = −N−1εψ̇ − 1
2
N−2εψ̄0ϕ̇ +

i

2
N−1εψ̄0f −

i

2
N−2εψψ0ψ̄0, (B.38)

N = 2a : δε̄ϕ = iε̄ψ̄, δε̄ψ = −1
2
N−1ε̄ϕ̇ +

i

2
ε̄f +

i

2
N−1ε̄(ψ0ψ + ψ̄0ψ̄), δε̄ψ̄ = 0, (B.39)

δε̄f = N−1ε̄ ˙̄ψ +
1
2
N−2ε̄ψ0ϕ̇ +

i

2
N−1ε̄ψ0f −

i

2
N−2ε̄ψ̄ψ0ψ̄0, (B.40)

N = 2b : δεZ = εκ, δεZ̄ = 0, δεκ = 0, δεκ̄ = −iN−1ε( ˙̄Z − ψ̄0κ̄), (B.41)

N = 2b : δε̄Z = 0, δε̄Z̄ = ε̄κ̄, δε̄κ = −iN−1ε̄(Ż − ψ0κ), δε̄κ̄ = 0. (B.42)

The component expansion of a N = 2b fermionic superfield (N = 2b− F ) is given by:

N = 2b− F : R = ρ + θh− i

2
N−1θθ̄(ρ̇− ψ0h), (B.43)

and the respective component supersymmetry transformations read:

N = 2b− F : δερ = εh, δερ̄ = 0, δεh = 0, δεh̄ = −iN−1ε( ˙̄ρ− ψ̄0h̄), (B.44)

N = 2b− F : δε̄ρ = 0, δε̄ρ̄ = ε̄h̄, δε̄h = −iN−1ε̄(ρ̇− ψ0h), δε̄h̄ = 0. (B.45)
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We will now study actions with matter coupled to N = 2, d = 1 supergravity. First, we consider
a chiral (2b)-superfield Z. The standard kinetic term is

S =
∫

dτd2θE∇Z∇̄Z̄ =
∫

dτL,

L = N−1Ż ˙̄Z − i

2
(κ ˙̄κ− κ̇κ̄)−N−1(ψ0κ

˙̄Z + ψ̄0κ̄Ż)−N−1ψ0ψ̄0κκ̄.

(B.46)

The gravitino equation of motion is κ( ˙̄Z + ψ̄0κ̄) = 0 from which one concludes κ = 0. Inserting
this back into the action yields

L = N−1Ż ˙̄Z, (B.47)

and finally the equation of motion for N is Ż ˙̄Z = 0 which implies Z = (const.). To conclude,
N = 2, d = 1 supergravity has killed all dynamical (and a priori physical) degrees of freedom.

Next, we turn to a real (2a)-superfield φ with standard kinetic term

S =
∫

dτd2θE∇φ∇̄φ =
∫

dτL,

L =
1
4
N−1ϕ̇2 +

i

2
(ψ ˙̄ψ − ψ̇ψ̄) +

1
4
Nf2 +

i

2
N−1(ψψ0 + ψ̄ψ̄0)ϕ̇ +

1
2
N−1ψ0ψ̄0ψψ̄.

(B.48)

The f equation of motion is simply f = 0 and the gravitino equation of motion is ψ(ψ̄0ψ̄ + iϕ̇) = 0.
So inserting f = 0 and ψ = 0 back into the action yields

L =
1
4
N−1ϕ̇2, (B.49)

and finally the equation of motion for N is ϕ̇2 = 0 which implies ϕ = (const.). Again, N = 2,
d = 1 supergravity has killed all degrees of freedom.

A simple action for a N = 2b− F superfield is

S =
∫

dτd2θERR̄ =
∫

dτL,

L =
i

2
(ρ ˙̄ρ− ρ̇ρ̄) + Nhh̄,

(B.50)

from which one reads off that h acts as auxiliary field, whose equation of motion is h = 0, and one
is just left with one propagating complex spinor governed by the standard one dimensional Dirac
action.

At last, we consider the supersymmetric NLσM action, here for a set of (2a)-superfields:

S =
∫

dτd2θEGij(φ)∇φi∇̄φj =
∫

dτL,

L =
1
4
N−1Gij(ϕ)ϕ̇iϕ̇j +

i

2
Gij(ϕ)(ψi ˙̄ψj − ψ̇iψ̄j) +

1
4
NGij(ϕ)f if j

+
i

2
N−1Gij(ϕ)(ψiψ0 + ψ̄iψ̄0)ϕ̇j +

1
2
N−1Gij(ϕ)ψ0ψ̄0ψ

iψ̄j

− 1
2
NGij,k(ϕ)(ψiψ̄jfk + ψkψ̄jf i + ψiψ̄kf j)− i

2
Gij,k(ϕ)(ψkψ̄i + ψ̄kψi)ϕ̇j

+ Gij,k(ϕ)(ψ̄0ψ
iψ̄jψ̄k − ψ0ψ

iψ̄jψk) + NGij,kl(ϕ)ψiψ̄jψkψ̄l,

(B.51)

for a symmetric function Gij(φ) = Gji(φ) and for a set of (2b)-superfields:

S =
∫

dτd2θEGab̄(Z, Z̄)∇Za∇̄Z̄ b̄ =
∫

dτL,

L = N−1Gab̄(Z, Z̄)Ża ˙̄Z b̄ − i

2
Gab̄(Z, Z̄)(κa ˙̄κb̄ − κ̇aκ̄b̄)−N−1Gab̄(Z, Z̄)(ψ0κ

a ˙̄Z b̄ + ψ̄0κ̄
b̄Ża)

−N−1Gab̄(Z, Z̄)ψ0ψ̄0κ
aκ̄b̄ − i

2
Gab̄,c(Z, Z̄)(κaκ̄b̄(żc − 2ψ0κ

c)− 2κcκ̄b̄ża)

+
i

2
Gab̄,c̄(Z, Z̄)(κaκ̄b̄( ˙̄zc̄ − 2ψ̄0κ̄

c̄)− 2κaκ̄c̄ ˙̄zb̄)−NGab̄,cd̄(Z, Z̄)κaκ̄b̄κcκ̄d̄.

(B.52)
[GIVE FORMULAE FOR NLσM ACTIONS FOR ALL OTHER MULTIPLETS ((2b), (2b)-T,

(2b)-F, (2b)-TF) ALSO EXPANDED OUT FULLY INTO COMPONENTS WITH ALL TERMS
WRITTEN OUT]
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The gravitino equation of motion is κ( ˙̄Z + ψ̄0κ̄) = 0 from which one concludes κ = 0. Inserting
this back into the action yields

L = N−1Ż ˙̄Z, (B.47)

and finally the equation of motion for N is Ż ˙̄Z = 0 which implies Z = (const.). To conclude,
N = 2, d = 1 supergravity has killed all dynamical (and a priori physical) degrees of freedom.

Next, we turn to a real (2a)-superfield φ with standard kinetic term

S =
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4
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The f equation of motion is simply f = 0 and the gravitino equation of motion is ψ(ψ̄0ψ̄ + iϕ̇) = 0.
So inserting f = 0 and ψ = 0 back into the action yields

L =
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4
N−1ϕ̇2, (B.49)

and finally the equation of motion for N is ϕ̇2 = 0 which implies ϕ = (const.). Again, N = 2,
d = 1 supergravity has killed all degrees of freedom.

A simple action for a N = 2b− F superfield is

S =
∫

dτd2θERR̄ =
∫
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L =
i

2
(ρ ˙̄ρ− ρ̇ρ̄) + Nhh̄,

(B.50)

from which one reads off that h acts as auxiliary field, whose equation of motion is h = 0, and one
is just left with one propagating complex spinor governed by the standard one dimensional Dirac
action.

At last, we consider the supersymmetric NLσM action, here for a set of (2a)-superfields:

S =
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+
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2
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2
NGij,k(ϕ)(ψiψ̄jfk + ψkψ̄jf i + ψiψ̄kf j)− i

2
Gij,k(ϕ)(ψkψ̄i + ψ̄kψi)ϕ̇j
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iψ̄jψ̄k − ψ0ψ
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for a symmetric function Gij(φ) = Gji(φ) and for a set of (2b)-superfields:

S =
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a ˙̄Z b̄ + ψ̄0κ̄
b̄Ża)

−N−1Gab̄(Z, Z̄)ψ0ψ̄0κ
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2
Gab̄,c(Z, Z̄)(κaκ̄b̄(żc − 2ψ0κ

c)− 2κcκ̄b̄ża)

+
i

2
Gab̄,c̄(Z, Z̄)(κaκ̄b̄( ˙̄zc̄ − 2ψ̄0κ̄
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N ψ0

Z = (const.) κ = 0
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The full D=1 supergravity-coupled action is 

Agreement between this superspace action and the 
Kaluza-Klein dimensionally reduced action has been 
checked through (fermi)2 terms. The leading bosonic 
terms reproduce the component action given above.

 After varying the action to obtain the supergravity 
constraints, one can make the gauge choices

N = 1, ψ0 = 0

where the complex one-dimensional spinor ε corresponds to the two surviving supersymmetries of
the one-dimensional theory.

To find out how the one-dimensional fields transform under supersymmetry, we insert the re-
duction ansatz into eq. (??). One finds for the one-dimensional supergravity multiplet (N, ψ0)

δεN = −iεψ̄0, δεψ0 = ε̇, δεψ̄0 = 0

δε̄N = −iε̄ψ0, δε̄ψ0 = 0, δε̄ψ̄0 = ˙̄ε,
(5.2)

and for the matter fields:

(1, 1) : δεu
i = iεψi, δεψ

i = 0, δεψ̄
i = −1

2
N−1εu̇i + . . . , (5.3)

V : δεV = iεψ̃, δεψ̃ = 0, δε
¯̃ψ = −1

2
N−1εV̇ + . . . , (5.4)

(2, 1) : δεξ
p = ελp, δεξ̄

p̄ = 0, δελ
p = 0, δελ̄

p̄ = −iN−1ε ˙̄ξp̄ + . . . , (5.5)

(3, 1) : δερ
x = 0, δερ̄

x̄ = 0 + . . . , (5.6)

(4, 1) : δεZ̄
ā = εκ̄ā, δεZ

a = 0, δεκ̄
ā = 0, δεκ

a = −iN−1εκ̇a + . . . , (5.7)

and similarly for the ε̄-variation. Omitted and indicated by “. . .” are terms cubic in fermions and
terms necessary for the off-shell closure of the algebra4 (i.e. terms proportional to field equa-
tions). [DISCUSS (3,1)-SECTOR: FERMION ONLY MULTIPLET, SPECIAL IN 1-D, SINGLET
UNDER SUSY]

From the transformations above, one can read off the multiplet structure of resulting one-
dimensional theory. Using the superspace terminology as described in Appendix ??, we build the
following superfields:

SUGRA (2a) : E = N − i

2
θψ̄0 −

i

2
θ̄ψ0, (5.8)

(1, 1) (2a) : U i = ui + iθψi + iθ̄ψ̄i − 1
2
θθ̄f i, (5.9)

V (2a) : V = V + iθψ̃ + iθ̄ ¯̃ψ − 1
2
θθ̄g, (5.10)

(2, 1) (2b) : Ξp = ξp + θλp − i

2
N−1θθ̄(ξ̇p − ψ0λ

p), (5.11)

(3, 1) (2b)− TFO : R̂x = ρx + θ̄hx i

2
N−1θθ̄(ρ̇x − ψ̄0h

x), (5.12)

(4, 1) (2b)− T : Ẑa = Za + θ̄κa +
i

2
N−1θθ̄(Ża − ψ̄0κ

a), (5.13)

where f i, g and hx are auxiliary fields.[DISCUSS NATURE OF TWISTED (T) AND FERMIONIC
ONLY (FO) SUPERFIELDS] [PERHAPS: REVERSE θ ↔ θ̄ AGAIN, TO FLIP TWISTED
AND UNTWISTED (2b)’s.] These superfields have the correct multiplicity and their component
fields have the on-shell supersymmetry transformations (??)-(??). For the full off-shell super-
symmetry transformations, we refer to eqs. (??)-(??) [ADJUST EQREF]. [MENTION SUPER-
CONSTRAINT ON U i: K(U) = 5!].

5.2 The one-dimensional action in superspace

After having identified the superfields in the previous subsection, we will use them to write the
one-dimensional action obtained in section ?? in superspace:

I1 = I11

∣∣∣
R×X

= −m

2

∫
dτd2θE

{
G(1,1)

ij (T )∇T i∇̄T j + G(2,1)
pq̄ (T )∇Ξp∇̄Ξ̄q̄

+G(3,1)
xȳ (T )R̂x ¯̂Rȳ + 4V(T )G(4,1)

ab̄
(Z, Z̄)∇̄Za∇Z̄ b̄

}
(5.14)

4It should be borne in mind that the supersymmetry transformations (??) are realized on-shell in eleven dimensions.
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The                         term is a D=11 superpartner to other 
bosonic corrections including             terms.

Specialize to the topologically simplest case where
             - either noncompact           or an orbifold 
construction.

Correction terms of relevance:

plus terms that vanish for         

D=11 extension of type IIA string correction

Berezin integral             terms only

Quantum                 correctionsβ ↔ α′3 Lü, Pope,
Townsend, K.S.S

β
Z

C[3]∧X8

R4
ABCD

c4 = 0 CY 5

∆L =
β

1152
(Y +2Y2 + . . .)∗+(2π)4βC∧X8

RMN = 0

→ R4

Ystring light cone ∼
Z

d16ψexp
[
(ψ̄−Γi jψ−)(ψ̄+Γklψ+)Ri jkl

]
Indices 
extended
to 11 values

Gross & Witten;
Peeters, Vanhove & 
Westerberg
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Varying     , get for initially Ricci-flat spaces

The       correction term is of Lovelock form:

Varying        , get 

Y

Xrs = ∇t∇uXrstu

Z = Ri jklRklmnRmn
i j−2Rik jlRkmlnRm

i
n

j

cubic in curvaturesXrstu

Y2

Y2

δ
Z √

−gY2 =
Z √

−gEmnδgmn

Em
n =−9!

29δnn1···n8
mm1···m8

Rm1m2
n1n2 · · ·Rm7m8

n7n8

Lift to D=11 of
D=8 Euler integrand

Lovelock
Deruelle

δ
Z √

−gY d11x =
Z √

−g(Xrs +∇r∇sZ−grs!Z)δgrs

Y2 =
315
2

R[m1m2
m1m2 · · ·Rm7m8]

m7m8
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Consequently, the corrected field equations are

To solve these, we need to introduce a warp factor in 
the metric:

then for the Ricci tensor one has

so                          and hence

R̂00−
1
2

g00R̂=− β
1152

!Zg00 +
β

576
E00

R̂i j− 1
2

gi jR̂=
β

1152
(Xi j +∇i∇ jZ−gi jZ)+

β
576

Ei j

R̂mn: D=11 Ricci

R̂00 = !A R̂i j = Ri j +
1
8

gi j!A

R̂ = R+
1
4
!A

Ri j =
β

1152

(
Xi j +∇i∇ jZ +2Ei j−

1
4

Ek
kgi j

)

Ri j: D=10 Ricci
! = ∇2

ds2
11 =−e2A(xr)dτ2 + e−

1
4A(xr)ds2

10
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For an initially Kähler manifold, one finds

and
so

These corrections have the effect of making the 
Ricci tensor non-vanishing, and even remove the 
Kähler property of the metric. Nontheless, the 
manifold remains special, as we shall see.

Xi j = ∇î∇ ĵZ = Ji
kJj

l∇k∇lZ

Ek
k =−Y2

!A =
β

1728
Y2

Ri j =
β

1152

(
∇î∇ ĵZ +∇i∇ jZ +2Ei j +

1
4
Y2gi j

)

terms expected
from          caseCY 3

terms arising
from Y2

: complex structureJi
j
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The corrected 3-form field equation is

for initial purely gravitational backgrounds with 
           , this forces 4-form flux to turn on at order

Let                  

for              , assume

then 

in turn, write 

Then the Einstein equation becomes

Gravitational sourcing of 4-form flux

βc4 = 0

Ĝ[4] = G[3]∧dτ+G[4]

c4 = 0 G[4] = 0

d ∗G[3] = (2π)4βX8

G[3] =
3
4

J∧dA+ G̃[3] J jkG̃i jk = 0

Ri j =
3
8
(∇i∇ jA+∇î∇ ĵA)+

β
1152

(∇i∇ jZ +∇î∇ ĵZ)− 1
2

∇kG̃i ĵk

d ∗G+
1
2

G∧G+(2π)4βX8 = 0

D=10 Hodge dual here
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The gravitational sourcing of 4-form flux is 
accompanied by changes to the Killing spinor and to 
the complex structure.

Killing spinor equation:                  becomes deformed, 
requiring a brane-like warp factor                  and

The deformed Killing spinor leads to a deformed 
complex structure

so the deformed space is no longer Kähler

D̂mη = 0
η̂ = e

1
2Aη

Diη = ∇iη+ i(∇îh)η+
i
8

G̃i jkγ jkη = 0

h =
3
16

A+
β

2304
Z γ11η =−η G̃i jkγi jkη = 0

Ji j =−iη̄γi jη

∇ jJi
j =

1
2

G̃i j
k− 1

2
G̃î j

k̂ "= 0
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Despite the loss of Kähler structure, the Nijenhuis 
tensor                                                  still vanishes, so the 
deformed space is still a complex manifold.

It no longer has               holonomy, but one may still 
define a generalized holonomy for the Killing spinor 
operator       . The generalized transverse structure 
group is                  . The decomposition of the 
deformed Killing spinor under the generalized 
holonomy still contains singlets, showing that 
supersymmetry remains unbroken.

Ni j
k = ∂[iJi]

k− Ji
lJj

m∂[mJl]
k

SU(5)

Di

SL(16,C)
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The effect of the      corrections is to destroy the 
original special holonomy, giving a general complex 
D=10 manifold.

Nonetheless, the specific structure of the         
corrections is such as to permit the corrected 
Einstein equation to arise as the integrability 
condition for an       corrected Killing spinor equation.

This fits into a general pattern that obtains also for 7-
manifolds of initially G2 and 8-manifolds of initially 
Spin7 holonomies.

α′3

α′3

α′3

Deformed special holonomy
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In all cases (including the D"8 Kähler cases where the 
effect of the corrections is simply to include an extra  
U(1) factor in the holonomy), supersymmetry can be 
preserved providing the Killing spinor equation 
acquires its own        correction, e.g. for the D"8 cases

where

In the various cases of initially special holonomy, this 
can be rewritten in ways that more directly yield the 
corrected Einstein equation as integrability conditon, 
e.g. in the G2 case
while in the Spin7 case

α′3

Rij = ξ (α′)3 (Xij +∇i∇j Z)

φ = −1
2ξ (α′)3 Z

Z = Zmn
mn

C[3] ∧R4

Rijk$ ck$
mn = 2Rijmn ; cijk$ = 1

6ε
ijk$mnp cmnp

Diη = (∇i + ξ(α′)3Qi)η = 0
13

Qi = −3
4 (∇j Rikm1m2

) Rj!m3m4
Rk!

m5m6 Γm1···m6

Qi = −1
2icijk∇

jZk!Γ̃!

Qi = 1
4cijk!∇jZk!mnΓmn

ΓMN
ΓM1...M6

14

Qi = −3
4 (∇j Rikm1m2

) Rj!m3m4
Rk!

m5m6 Γm1···m6

Qi = −1
2icijk∇

jZk!Γ̃!

Qi = 1
4cijk!∇jZk!mnΓmn

ΓMN
ΓM1...M6

14

Qi = −3
4 (∇j Rikm1m2

) Rj!m3m4
Rk!

m5m6 Γm1···m6

Qi = −1
2icijk∇

jZk!Γ̃!

Qi = 1
4cijk!∇jZk!mnΓmn

ΓMN
ΓM1...M6

14

Candelas, Freeman, Pope, Sohnius & K.S.S
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Although the ordinary Riemannian holonomy becomes 
generic for the corrected internal spaces, the 
supersymmetry preservation can still be understood on 
group theoretical grounds, using the notion of generalized 
holonomy.

Consider the transverse groups generated by the generic 
Gamma matrix combinations present in the corrected 
Killing operator (        ,        and their closure), restricting 
attention to the D “transverse” dimensions only:

D=7
D=8
D=10

Generalized Structure groups and holonomy

ΓM

n

n = 6 transverse structure group SO(6)× U(1)

n = 7 transverse structure group SO(8)

n = 8 transverse structure group SO(8)+ × SO(8)−

15

ΓM

n

n = 6 transverse structure group SO(6)× U(1)

n = 7 transverse structure group SO(8)

n = 8 transverse structure group SO(8)+ × SO(8)−

15

Γ[2] Γ[6]

where dΩ2
i denotes the metric on the i’th of four unit 2-spheres, and dA =

∑
i Ωi, where Ωi

is the volume form on the i’th 2-sphere. The functions a, b and c depend only on r, and

the metric has SU(5) holonomy if they satisfy the first-order equations

a′ =
b

2a
, b′ = 1− 2b2

a2
. (5.2)

In what follows, we shall adopt a vielbein basis given by

e1 = a dθ1 , e2 = a sin θ1 dφ1 , e3 = a dθ2 , e4 = a sin θ2 dφ2 ,

e5 = a dθ3 , e6 = a sin θ3 dφ3 , e7 = a dθ4 , e8 = a sin θ4 dφ4 ,

e0 = b (dτ +A) , e9 = dr . (5.3)

It is straightforward (with the aid of a computer) to work out the corrected first-order

equations that arise from imposing the conditions derived in [7], and to determine the warp

factor A in (2.9) and the non-vanishing 4-form field strength for this deformed solution.

From this information, one can then construct the deformed supercovariant derivative op-

erator, and hence read off the generators of the generalised holonomy group.

We find that after including multiple commutators until closure is achieved, there are

in total 217 generators of the generalised transverse holonomy group in our example. They

are all, of course, contained within the set of 510 generators of the SL(16, C) generalised

transverse structure group listed in (2.13). Before presenting some details of our results, we

shall first summarise the conclusions. After manipulations that are again best performed

with the aid of a computer, we find that there is a Cartan subalgebra of dimension 17,

and there are a further 120 of the 217 generators that all commute with each other. The

remaining 80 generators, together with 16 of the Cartan generators, give rise to the algebra

SL(5, C)×SL(5, C). The 17’th Cartan generator is compact, and we find that the complete

group is of the general form

[U(1)× SL(5, C)× SL(5, C)] ! R120 , (5.4)

where the symbol ! denotes a semi-direct product. Specifically, we find that the 120

mutually-commuting factors in R120 assemble in the form

C(10,1)
1 ⊕ C(10,5)

3 , (5.5)

where the superscripts denote the representations under the left and right SL(5, C) factors,

and the subscripts denote the charges under the 17’th Cartan generator associated with the

U(1) factor in (5.4).

17
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Within these generalized transverse structure groups, the 
generalized holonomy is the group actually generated by 
the operators present in the corrected Killing spinor 
operator for a given space. Under decomposition into 
representations of these groups, the spinor 
representation contains a singlet, indicating continued 
supersymmetry preservation:

D=7                                                             (corrected G2)

D=8                                                                             (corrected
                                                                                          Spin7)
D=10 
16 rep once again decomposes including a singlet

SU(4)× U(1) → SU(3)× U(1)

(4, 1) → (3, 1)⊕ (1, 1)

SO(8) → SO(7)

8± → 7⊕ 1

SO(8)+ ⊗ (Spin7)−

SO(8)+ ⊗ SO(8)− → SO(8)+ ⊗ (Spin7)−
(8, 1)⊕ (1, 8) → (8, 1)⊕ (1, 7)⊕ (1, 1)

16

SU(4)× U(1) → SU(3)× U(1)

(4, 1) → (3, 1)⊕ (1, 1)

SO(8) → SO(7)

8± → 7⊕ 1

SO(8)+ ⊗ (Spin7)−

SO(8)+ ⊗ SO(8)− → SO(8)+ ⊗ (Spin7)−
(8, 1)⊕ (1, 8) → (8, 1)⊕ (1, 7)⊕ (1, 1)

16

For the right-hand SL(5, C), we have the simple-root generators

Ẽ1 = (Γ14 + i Γ13 − Γ23 + i Γ24)[−1 + i (Γ09 − Γ56 − Γ78)Γ11] ,

Ẽ2 = (Γ36 + i Γ35 − Γ45 + i Γ46)[−1 + i (Γ09 − Γ12 − Γ78)Γ11] ,

Ẽ3 = (Γ58 + i Γ57 − Γ67 + i Γ68)[−1 + i (Γ09 − Γ12 − Γ34)Γ11] ,

Ẽ4 = (Γ07 + i Γ08 + Γ89 − i Γ79)[1 + i (Γ12 + Γ34 + Γ56)Γ11] . (5.11)

The simple root vectors are given by α1 = α̃1 = {1,−1, 0, 0}, α2 = α̃2 = {0, 1,−1, 0},

α3 = α̃3 = {0, 0, 1,−1} and α4 = α̃4 = {1, 1, 1, 2} respectively. The Cartan Killing metric

for the left-hand SL(5, C) is given by

gij = 1
2tr(HiHj) = 3





2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2




, gij = 1
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4 −1 −1 −1

−1 4 −1 −1

−1 −1 4 −1

−1 −1 −1 4




. (5.12)

The Cartan Killing metric for the right-hand SL(5, C) is given by g̃ij = 1
3gij and g̃ij = 3gij .

Finally, we present the (10, 1) and (10, 5) of mutually-commuting C factors. The (10, 1)

representation can be generated from the highest-weight generator, whose weight-vector is

{1, 1, 1, 0}; it is given by

V = (1− Γ10)(x + i y) ,

x = Γ08 + Γ79 − (Γ07 − Γ89)(Γ12 + Γ34 + Γ56) ,

y = Γ07 − Γ89 + (Γ08 + Γ79)(Γ12 + Γ34 + Γ56) . (5.13)

It is straightforward to verify that the 10 generators commute with the right-hand SL(5, C).

These generators all have eigenvalue +1 under H17, whilst their conjugates (1+G10)(x− iy)

have eigenvalue −1.

The (10, 5) generators can be generated analogously from the highest-weight generator

U = (1− Γ10)
(
(Γ01 + Γ29)(Γ36 + Γ45) + (Γ02 − Γ19)(Γ35 − Γ46)

+i (Γ01 + Γ29)(−Γ35 + Γ46) + i (Γ02 − Γ19)(Γ36 + Γ45)
)

, (5.14)

which, has weight-vector {1, 1, 1, 0} under the left-hand SL(5, C) and {1, 1, 1, 1} under

the right-hand SL(5, C). The resulting (10, 5) generators all have weight 3 under the

Cartan generator H17. This completes the demonstration that for the supersymmetric

(Minkowski)×K10 background that we have considered here, the generalised transverse

holonomy group is

SL(16, C)→ [U(1)× SL(5, C)× SL(5, C)] ! [C(10,1)
1 ⊕ C(10,5)

3 ] . (5.15)
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