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The Folland-Stein inequality. p∗ = pQ
Q−p

Theorem (G.Folland & E.Stein)
Let Ω ⊂ G be an open set in a group of Heisenberg type (Carnot group) of homogeneous
dimension Q. For any 1 < p < Q there exists Sp = Sp(G) > 0 such that for u ∈ C∞o (Ω)(∫

Ω
|u|p
∗

dH(g)

)1/p∗

≤ Sp

(∫
Ω
|Xu|p dH(g)

)1/p
.

Theorem
The best constant is achieved.

The Euler-Lagrange equation characterizing the non-negative extremals) (after
scaling) is

∑m
i=1 Xi (|Xu|p−2Xi u) = −up∗−1. Here, |Xu|2 =

∑m
i=1|Xi u|2.

When p = 2, -the problem reduces to the solvability of the Yamabe
equation

m∑
i=1

X 2
i u = − u

Q+2
Q−2 .
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Zero dimensional center-The Riemannian Yamabe problem

Zero dimensional center - G = Rn.
The problem can be translated to the standard sphere Sn via the stereographic map - leads to
involve Riemannian geometry - the Riemannian Yamabe problem.

Let (M, g) - compact, Riemannian manifold, 2∗ = 2n
n−2 . If ḡ = u4/(n−2)g, then

4
n − 1
n − 2

4u − Scal · u = − Scal · u2∗−1.

The Yamabe equation characteriszes the non-negative extremals of the Yamabe functional:
Υ(u) =

∫
M (4 n−1

n−2 |∇u|2 + Scal u2) dvg .

Yamabe invariant: Υ([g]) = inf{Υ(u) :
∫

M u2∗ dvg = 1, u > 0}.

For the round sphere Υ(Sn, [gst ]) = n(n − 1)ω
2/n
n .

Note that extremals and the best constant can be found directly, not involving Riemannian
geometry and the Riemannian Yamabe.
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The classical Obata

The main idea is to replace the non-linear Yamabe on Sn with a geometrical system of equations
which can be solved-namely conformal deformations preserving the Einstein condition.

Theorem (Aubin,Talenti, Obata)

Let (Sn, gst ) be the unit sphere in Rn+1. If g is a Riem. metric, g = φ2gst , and Scalg = S = const,
then up to a homothety g is obtained from gst by a conformal diffeo of the sphere, i.e.,

∃Φ ∈ Diff (Sn) s.t. Sg = Φ∗gst

Furthermore, Φ = exp(tX), X = ∇f , f = aoxo + · · ·+ anxn|Sn .

”Proof” (Lee & Parker) ḡ is Einstein. i.e., 0 = Rico = Rico + n−2
φ

(∇2φ)o . Thus,

(∇2φ)o = − φ
n−2 Rico. Using 2∇∗(Rico) = ∇S = 0, from the contracted Bianchi and S=const, it

follows
div Rico(∇φ, .) = −

φ

n − 2
|Rico|2.

Theorem (N. Trudinger, Th. Aubin, R. Schoen; A. Bahri)
Let (Mn, ḡ), n ≥ 3, be a compact Riemannian manifold. There is a g ∈ [ḡ], s.t., Scalg = const.
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(Institute) 4 / 35



The classical Obata

The main idea is to replace the non-linear Yamabe on Sn with a geometrical system of equations
which can be solved-namely conformal deformations preserving the Einstein condition.

Theorem (Aubin,Talenti, Obata)

Let (Sn, gst ) be the unit sphere in Rn+1. If g is a Riem. metric, g = φ2gst , and Scalg = S = const,
then up to a homothety g is obtained from gst by a conformal diffeo of the sphere, i.e.,

∃Φ ∈ Diff (Sn) s.t. Sg = Φ∗gst

Furthermore, Φ = exp(tX), X = ∇f , f = aoxo + · · ·+ anxn|Sn .
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One-dimensional center-The CR Obata

One-dimensional center - (complex) Heisenberg group G = Cn × R.
-It is not known a direct solution to the L2-Folland-Stein inequality.
- it is solved by D.Jerison and J.Lee using CR-geometry and the CR-Yamabe problem
involving Tanaka-Webster connection and its scalar curvature.

The Cayley transform (’complex stereographic map’) reduces the problem to the standard
Sasaki-Einstein sphere S2n+1.
The same main idea- replace the non-linear CR-Yamabe on S2n+1 with a geometrical system
of equations which can be solved-namely pseudoconformal deformations preserving the
pseudo Einstein condition.

(M2n+1, θ) ⊂ Cn+1 - strongly pseudo-convex CR manifold.

Theorem (D. Jerison & J. Lee ’88)

If θ is the contact form of a pseudo-Hermitian structure proportional to the standard contact form θ̄
on the unit sphere in Cn+1 and Scalθ =const, then up to a multiplicative constant θ = Φ∗ θ̄ with Φ
a CR automorphism of the sphere.

The proof relies on a highly non-trivial ’divergence-type’ formula because of the presence of
torsion of the Tanaka-Webster connection does not allowed a Lee-Parker conceptual proof.
CR automorphism of the sphere are relatively easy to described due to

Theorem (J. Lee ’88)

If (M, θ̄) is pseudo-Einstein, then θ = e2u θ̄ is pseudo-Einstein iff u is CR-pluriharmonic on M.
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The CR Yamabe problem II

The CR-Yamabe problem is: Given a compact strongly pseudo-convex CR manifold
(M2n+1, θ) ⊂ Cn+1 find a smooth function f such that θ̄ = ef θ has constant pseudohermitian
scalar curvature.
The steps of solving this follow that in solving the Riemannian Yamabe.

Theorem (D. Jerison & J. Lee ’87-’89)

a) Υ([θ]) ≤ Υ(S2n+1), where S2n+1 ⊂ Cn+1 is the sphere with its standard CR structure. If
Υ([θ]) < Υ(S2n+1), then the Yamabe equation has a solution. [D. Jerison & J. Lee ’87]

b) If n ≥ 2 and M is not locally CR equivalent to S2n+1, then Υ([θ]) < Υ(S2n+1). [D. Jerison & J.
Lee ’89]

Y (θε) =

{
Y (S2n+1)

(
1− cn|S(q)|2ε4

)
+ O(ε5), n ≥ 2;

Y (S5)
(
1− c2|S(q)|2ε4 ln ε

)
+ O(ε4), n = 2.

c) If n = 1 or M is locally CR equivalent to S2n+1, then the Yamabe equation has a solution. [R.
Yacoub ’01, N. Gamara & R. Yacoub, 01]

S is the Chern-Moser tensor and one of the key point is the use of the Chern-Moser theorem

Theorem (Chern-Moser ’74)
A (2n + 1), n > 1-dimensional CR manifold is locally CR-equivalent to the sphere exactly when
the Chern-Moser tensor vanishes, S = 0.
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Three-dimensional center-Quaternionic Heisenberg Group G (H)

H-quaternions, q = t + ix + jy + kz, where t , x , y , z ∈ R and i, j, k satisfy the multiplication
rules

i2 = j2 = k2 = −1 and ijk = −1.

Hn-quaternionic space, q = (q1, . . . , qn), qα ∈ H, qα = tα + ixα + jyα + kzα for
α = 1, . . . , n.

G (H) = Hn × ImH, (q, ω) ∈ G (H),

(qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

Left-invariant horizontal vector fields

Tα =
∂

∂tα
+ 2xα

∂

∂x
+ 2yα

∂

∂y
+ 2zα

∂

∂z
Xα =

∂

∂xα
− 2tα

∂

∂x
− 2zα

∂

∂y
+ 2yα

∂

∂z

Yα =
∂

∂yα
+ 2zα

∂

∂x
− 2tα

∂

∂y
− 2xα

∂

∂z
Zα =

∂

∂zα
− 2yα

∂

∂x
+ 2xα

∂

∂y
− 2tα

∂

∂z
.

The homogeneous dimension of G (H) is Q = 4n + 6, 2∗ = 2Q
Q−2 = 2n+3

n+1 .

The ’quaternionic contact Yamabe equation’ on G (H) is
n∑
α=1

(
T 2
α + X 2

α + Y 2
α + Z 2

α

)
u = −

n + 1
4(n + 2)

u2∗−1.Const .
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rules

i2 = j2 = k2 = −1 and ijk = −1.

Hn-quaternionic space, q = (q1, . . . , qn), qα ∈ H, qα = tα + ixα + jyα + kzα for
α = 1, . . . , n.
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Folland-Stein inequality in Dimension Seven-main result

Theorem (Folland and Stein)
Let G = H× Im H and Ω ⊂ G. There is S2 = S2(G) > 0, such that, for u ∈ C∞o (Ω)(∫

Ω
|u|2
∗

dH(g)

)1/2∗

≤ S2

(∫
Ω
|∇u|2 dH(g)

)1/2
, 2∗ = 5/4.

Theorem (I/, I. Minchev, D. Vassilev)

Let G = H× Im H. The best constant in the L2 Folland-Stein embedding theorem is

S2 =
2
√

3
π3/5

.

An extremal is given by the function

F (g) =
211
√

3
π3/5

[
(1 + |q|2)2 + ‖ω|2)

]−2
, (q, ω) ∈ G (H).

Any other non-negative extremal is obtained from F by translations τ(q0,ω0)F = F (q0 + q, ω0 + ω)

and dilations Fλ = λ4F (λq, λ2ω), λ > 0.
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Geometric settings-Quaternionic Contact Structures

We explore the same main idea- replace the non-linear quaternionic
Yamabe equation with a geometrical system of equations which can be
solved.

The geometrical structure behind this problem is the notion of quatrnionic contact structure and
the Biquard connection.
The quaternionic contact structure appears naturally as the conformal infinity of the quaternionic
hyperbolic space.

Definition
A quaternionic contact structure on M4n+3 is the data of codimension three distribution H on M
equiped with a Riemannian metric g and an Sp(n)Sp(1)-structure i.e. we have

i) a 2-sphere bundle Q over M of almost complex structures, such that, we have
Q = {aI1 + bI2 + cI3 : a2 + b2 + c2 = 1}, where the almost complex structures
Is : H → H, I2

s = −1, s = 1, 2, 3, satisfy the commutation relations of the imaginary
quaternions I1I2 = −I2I1 = I3;

ii) H is the kernel of a 1-form η = (η1, η2, η3) with values in R3 and the following compatibility
condition holds

2g(IsX ,Y ) = dηs(X ,Y ), s = 1, 2, 3, X ,Y ∈ H.

Example 3-Sasakian manifolds M: The cone C = M × R with the metric gcon = dt2 + t2g is a
hyperkähler metric.
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Given η (and H) there exists at most one triple of a.c.str. and metric g that are compatible.

Rotating η we obtain the same qc-structure.

Conformal transformations η = (η1, η2, η3), µ ∈ C∞(M), µ > 0, Ψ ∈ C∞ (M : SO(3)).

η̄ = µΨ η

The associated metric ḡ to η̄ on H is conformal to g,

ḡ = µg.

Theorem (O. Biquard)
Under the above conditions and n > 1, there exists a unique supplementary distribution V of H in
TM and a linear connection ∇ on M, s.t.,

1. V and H are parallel

2. g and Q are parallel

3. torsion T (A,B) = ∇AB −∇BA− [A,B] satisfies
∀X ,Y ∈ H, TX ,Y = −[X ,Y ]|V ∈ V
∀ξ ∈ V, Tξ := (X 7→ (Tξ,X )H ) ∈ (sp(n) + sp(1))⊥
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Note: V is generated by the Reeb vector fields {ξ1, ξ2, ξ3}

ηs(ξk ) = δsk , (ξsydηs)|H = 0, (ξsydηk )|H = −(ξk ydηs)|H .

If the dimension of M is seven, n = 1, the above conditions do not always hold. Duchemin
shows that if we assume, in addition, the existence of Reeb vector fields as above, then there
is a connection as before. Henceforth, by a qc structure in dimension 7 we shall mean a qc
structure satisfying the Reeb conditions
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Basic examples-Cayley transform

Contact 3-form on the Quaternionic Heizenberg group G (H).
Θ̃ = (Θ̃1, Θ̃2, Θ̃3) = 1

2 (dω − q · dq̄ + dq · q̄) or

Θ̃1 =
1
2

dx − xαdtα + tαdxα − zαdyα + yαdzα

Θ̃2 =
1
2

dy − yαdtα + zαdxα + tαdyα − xαdzα

Θ̃2 =
1
2

dz − zαdtα − yαdxα + xαdyα + tαdzα.

Left-invariant Reeb (vertical) vector fields ξ1, ξ2, ξ3 are

ξ1 = 2
∂

∂x
ξ2 = 2

∂

∂y
ξ3 = 2

∂

∂z
.

Ii endomorphism on Hn using the right multiplication correspondingly by i , j and k .

On G (H) let ∇ be the left-invariant connection - this is the Biquard connection. It is flat!

(G (H), θ̃)- the flat model.
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3-Sasakian sphere: Contact 3-form on the sphere S4n+3 = {|q|2 + |p|2 = 1} ⊂ Hn × H,

η̃ = dq · q̄ + dp · p̄ − q · dq̄ − p · dp̄.

Identify G (H) with the boundary Σ of a Siegel domain in Hn × H,

Σ = {(q′, p′) ∈ Hn × H : Re p′ = |q′|2},

by using the map (q′, ω′) 7→ (q′, |q′|2 − ω′).

Cayley transform, C : S4n+3 \ {pt.} → Σ,

(q′, p′) = C
(

(q, p)
)

= ((1 + p)−1 q, (1 + p)−1 (1− p)).

C∗ Θ̃ = 1
2 |1+p |2 λ η̃ λ̄, λ-unit quaternion (eg. of conformal quaternionic contact map).
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Curvature of a Quaternionic Contact Structure

curvature: R(A,B)C = [∇A,∇B ]C −∇[A,B]C, R(A,B,C,D) = g(R(A,B)C,D);

qc-Ricci tensor: Ric(X ,Y ) = trH{Z 7→ R(Z ,X)Y} = R(ea,X ,Y , ea) for ea,X ,Y ∈ H

qc-Ricci 2-forms ρs(X ,Y ) = R(X ,Y , ea, Isea)

qc-scalar curvature: Scal = trH Ric = Ric(ea, ea).

qc-Einstein condition:

Ric(X ,Y ) =
Scal
4n

g(X ,Y ), X ,Y ∈ H

(Institute) 14 / 35



Conformal transformations

η = (η1, η2, η3), µ ∈ C∞(M), µ > 0, Ψ ∈ C∞ (M : SO(3)).

η̄ = µΨ η

Lemma (O. Biquard ’99)

If η̄ = u4/(Q−2) η, then

4
Q + 2
Q − 2

4u − u Scal = −u2∗−1 Scal,

where4u = trH (∇du), Q = 4n + 6, 2∗ = 2Q/(Q − 2).

Set Scal = 0 and Scal = const this is precisely the Yamabe equation on G (H).
The qc-Yamabe problem: Find solutions to

4
Q + 2
Q − 2

4u − u Scal = −u2∗−1 Scal, Scal = const .

Yamabe functional is

Υ(u) =

∫
M

(4
Q + 2
Q − 2

|∇Hu|2 + Scal u2) dvg .

The Yamabe invariant is the infimum

Υ([η]) = inf
u
{Υ(u) :

∫
M

u2∗ dvg = 1, u > 0}.
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Main strategy: Replace the non-linear Yamabe equation on G (H) with
a geometrical system which can be solved. Use Cayley to transform the
problem to the 3-Sasakian sphere and use compactness.

The first observation is:

Theorem (I/, I. Minchev, D. Vassilev)
If M is qc-Einstein then Scal=const.

Hint: Try to replace the Yamabe equation with conformal deformations preserving the qc-Einstein
condition.
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Torsion Tensor and Einstein Structures.

Let Ψ ∈End(H).

Sp(n)-invariant parts as follows

Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+.

Explicitly, 4Ψ+++ = Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3, etc.

The two Sp(n)Sp(1)-invariant components are given by

Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+.

Using End(H)
g∼= Λ1,1 the Sp(n)Sp(1)-invariant components are the projections on the

eigenspaces of the operator

Υ = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3.

If n = 1 then the space of symmetric endomorphisms commuting with all Ii , i = 1, 2, 3 is
1-dimensional, i.e. the [3]-component of any symmetric endomorphism Ψ on H is
proportional to the identity, Ψ[3] = tr (Ψ)

4 Id|H .

(Institute) 17 / 35



The Torsion Tensor. Tξj = T 0
ξj

+ IjU, U ∈ Ψ[3].

T 0
ξj

-symmetric, Ij U-skew-symmetric.
Biquard shows Tξ is completely trace-free.

Theorem (I/ I. Minchev, D. Vassilev)

Define T 0 = T 0
ξ1

I1 + T 0
ξ2

I2 + T 0
ξ3

I3 ∈ Ψ[−1]. We have

Ric = (2n + 2)T 0 + (4n + 10)U + Scal
4n g.

3-Sasakian manifold: M4n+3 is 3-Sasaki if its cone is hyperkähler,
C = M4n+3 × R+, gcon = t2g + dt2, Hol(gcon) ∈ Sp(n + 1). If J1, J2, J3) are the three
comp-lex structures on C then ξs = Js

∂
∂t are the Reeb vector fields of the qc-structure.

The torsion of Biquard connection vanishes, Tξ = 0 and any 3-Sasakian manifold is qc-Einstein.

Theorem (w/ I. Minchev, D. Vassilev)
a) Suppose Scal 6= 0. The next conditions are equivalent:

i) (M4n+3, g,Q) is qc-Einstein manifold;
ii) M is locally 3-Sasakian: locally there exists a matrix Ψ ∈ C∞(M : SO(3)), s.t., ( 16n(n+2)

Scal Ψ · η,Q) is
3-Sasakian;

iii) The torsion of the Biquard connection is identically zero.
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Transformation Of Torsion Under Conformal Transformation

The components of the torsion tensor transform according to the following formulas: if η̄ = 1
2h η

T
0
(X ,Y ) = T 0(X ,Y ) + h−1 [∇dh][sym][−1], where the symmetric part is given by

[∇dh][sym](X ,Y ) = ∇dh(X ,Y ) +
3∑

s=1

dh(ξs)ωs(X ,Y ).

Ū(X ,Y ) = U(X ,Y ) + (2h)−1[ ∇dh − 2h−1dh ⊗ dh][3][0] or if f = 1
2h , η̄ = fη, then

Ū(X ,Y ) = U(X ,Y ) − (2f )−1[ ∇df ][3][0].
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Einstein deformations

Solution on G (H):

Theorem (I/ I. Minchev, D. Vassilev)

Let Θ = 1
2h Θ̃ be a conformal deformation of the standard qc-structure Θ̃ on the quaternionic

Heisenberg group G (H). If Θ is also qc-Einstein, then up to a left translation the function h is
given by

h = c
[(

1 + ν |q|2
)2

+ ν2 (x2 + y2 + z2)
]
,

where c and ν are positive constants. All functions h of this form have this property.

The problem is to show that these are all solutions to the Yamabe
equation on G (H) - we need Obata type theorem Using Cayley we translate
the problem to the sphere which is compact and can apply the horisontal divergence formula:

Proposition

Let (M4n+3, η, gH ) be a compact closed manifold with a contact quaternionic structure and σ a
horizontal 1-form, σ ∈ Λ1 (H). Then we have∫

M
(∇∗σ) η1 ∧ η2 ∧ η3 ∧ ω2n

1 = 0,

where ∇∗σ = −(∇σ)(eα; eα) and {eα}α is an ONB frame on H, α = 1, . . . , 4n.
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Seven Dimensional Case. Recall: U = 0

Theorem (I/ I. Minchev, D. Vassilev)

Suppose (M7, η) is a quaternionic contact structure conformal to a 3-Sasakian structure (M7, η̄),
η̃ = 1

2h η. If Scalη = Scalη̃ = 16n(n + 2), f = 1
2 + h + 1

4 h−2|∇h|2 we have

div
{

fD +
3∑

s=1

(
dh(ξs) Fs + 4dh(ξs)IsAs −

10
3

dh(ξs) IsA
)}

= f |T 0|2 + h 〈QV , V 〉.

Here, Q is a positive definite matrix, V = (D1,D2,D3,A1,A2,A3), Ai = Ii [ξj , ξk ],
A = A1 + A2 + A3.

D1(X) = −h−1T 0+−−
(X ,∇h), D2(X) = −h−1T 0−+−

(X ,∇h), D3(X) = −h−1T 0−−+
(X ,∇h),

Fs(X) = −h−1 T 0(X , Is∇h), s = 1, 2, 3.

In particular, η is again qc-Einstein.
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Theorem (I/ I. Minchev, D. Vassilev)

Let η̃ = 1
2h η, η̃ standard quaternionic contact structure on the quaternionic unit sphere S7. If η has

constant qc-scalar curvature, then up to a multiplicative constant η is obtained from η̃ by a
conformal quaternionic contact automorphism

φ ∈ Diff(M), φ∗η̃ = µΨη̃, Ψ ∈ C∞(M : SO(3)),

η = φ∗η̃.

Furthermore, λ(S7) = Υ(η̃) = 48 (4π)1/5 and this minimum value is achieved only by η̃ and its
images under conformal quaternionic contact automorphisms.
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Sketch of Proof

The Cayley transform is a conformal quaternionic contact diffeomorphism between the
quaternionic Heisenberg group with its standard quaternionic contact structure Θ̃ and
S \ {(−1, 0)} with its standard structure η̃. Hence, up to a constant multiplicative factor and a
quaternionic contact automorphism the forms C∗η̃ and Θ̃ are conformal to each other. It follows
that the same is true for C∗η and Θ̃. In addition, Θ̃ is qc-Einstein by definition, while η and hence
also C∗η are qc-Einstein as follows from the above theorem. According to our previous Theorem,
up to a multiplicative constant factor, the relation between the forms C∗η̃ and C∗η are known,
related by a translation or dilation on the Heisenberg group. Hence, we conclude that up to a
multiplicative constant, η is obtained from η̃ by a conformal quaternionic contact automorpism.
From the conformal properties of the Cayley transform it follows that the minimum λ(S4n+3) is
achieved by a smooth 3-contact form, which due to the Yamabe equation is of constant qc-scalar
curvature.
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Higher dimensional Obata type Theorem

Theorem (I/ I. Minchev, D. Vassilev)

Let η = f η̃ be a conformal deformation of the standard qc-structure η̃ on the quaternionic sphere
S4n+3, n > 1. Suppose η has constant qc-scalar curvature and

i) the vertical space of η is integrable; or

ii) the function f is the real part of an anti-CRF function;

then up to a multiplicative constant η is obtained from η̃ by a conformal quaternionic contact
automorphism.

Definition

A smooth H-valued function F : M −→ H, F = f + iw + ju + kv , is said to be an anti-CRF
function if the smooth real valued functions f ,w , u, v satisfy

df = I1dw + I2du + I3dv mod η,

Note: On a 3-Sasakian, df = I1dw + I2du + I3dv mod η̃ implies [∇̃df ][3][0] = 0.
Recall, U(X ,Y ) = Ũ(X ,Y ) − (2f )−1[ ∇̃df ][3][0].. Hence U = Ũ.
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i) the vertical space of η is integrable; or

ii) the function f is the real part of an anti-CRF function;

then up to a multiplicative constant η is obtained from η̃ by a conformal quaternionic contact
automorphism.

Definition

A smooth H-valued function F : M −→ H, F = f + iw + ju + kv , is said to be an anti-CRF
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(Institute) 24 / 35



Lemma (I/ I. Minchev, D. Vassilev)

Let (M, η̄) be a compact qc-Einstein manifold of dimension (4n + 3), n > 1. Let η = 1
2h η̄ be a

conformal deformation with Scalη =const. Then any one of the following conditions implies that η
is a qc-Einstein structure.

i) the vertical space of η is integrable;

ii) the QC structure η is qc-pseudo Einstein, U = 0; (∇∗U = 0 is enough)

ii) the QC structure η has ∇∗T 0 = 0.
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The Bianchi Identities

σX ,Y ,Z

{
R(X ,Y ,Z ,V )− g((∇X T )(Y ,Z ),V )− g(T (TX ,Y ,Z ),V )

}
= 0

σX ,Y ,Z

{
g((∇X R)(Y ,Z )V ,W ) + g(R(TX ,Y ,Z )V ,W )

}
= 0

Theorem (I/ I. Minchev, D. Vassilev)
The divergences of the curvature tensors satisfy the system B b = 0, where

B =

 −1 6 4n − 1 3
16n(n+2)

0
−1 0 n + 2 3

16n(n+2)
0

1 −3 4 0 −1

 ,

b =
(
∇∗T o, ∇∗U, A, dScal, Ric(ξj , Ij . )

)t
, A = I1[ξ2, ξ3] + I2[ξ3, ξ1] + I3[ξ1, ξ2].

[Ric0][−1](X ,Y ) = (2n + 2)T 0(X ,Y ) = −(2n + 2)h−1[∇dh][sym][−1](X ,Y )

[Ric0][3](X ,Y ) = 2(2n + 5)U(X ,Y ) = −(2n + 5)h−1[∇dh − 2h−1dh ⊗ dh][3][0](X ,Y ).

∫
M

h | [Rico][−1] |2 η ∧ ω2n = (2n + 2)

∫
〈[Rico][−1],∇dh]〉 η ∧ ω2n

= (2n + 2)

∫
M
〈∇∗ [Rico][−1],∇h]〉 η ∧ ω2n = 0.
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Back to the qc-Yamabe problem

Yamabe functional: Υ(u) =
∫

M (4 Q+2
Q−2 |∇Hu|2 + Scal u2) dvg .

The Yamabe invariant is the infimum Υ([η]) = infu{Υ(u) :
∫

M u2∗ dvg = 1, u > 0}.

Theorem (W. Wang ’06)
a) ΥM ([η]) ≤ ΥS4n+3 ([η̃]).

b) If ΥM ([η]) < ΥS4n+3 ([η̃]), then the Yamabe problem has a solution.

Following the Riemannian and CR cases it remains to investigate
when ΥM ([η]) = ΥS4n+3 ([η̃]) and show the existence of a solution to the qc-Yamabe problem
- the most difficult part (may lead to ’quaternionic positive mass’).

Find out when ΥM ([η]) < ΥS4n+3 ([η̃]) and when ΥM ([η]) = ΥS4n+3 ([η̃]).
We propose the validity of the following

Theorem (conjectured)

On a compact qc manifods ΥM ([η]) < ΥS4n+3 ([η̃]) unless it is locally qc-conformal to S4n+3.

The first step is to find out a tensorial obstruction, i.e. a tensor invariant which vanishes
exactly when the qc-mqnifold is locally qc-conformal to S4n+3 - Weyl theorem in Riemannian
case and Cartan-Chern-Moser result in CR-geometry-DONE - we discovered W qc and prove
the local flatness theorem.
Expand ΥM ([η] using this tensor to show the conjectured result- WORK IN PROGRESS.

Construct suitable coordinates to express ΥM ([η]) in terms of ΥS4n+3 ([η̃]) and the norm |W qc |2 - the
first part DONE by Christopher S. Kunkel, arXiv:0807.0465
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Conformal Flatness. Weyl, Cartan-Chern-Moser Type Theorem

We define a curvature type tensor W qc on H depending only on the torsion T 0,U and the scalar
curvature Scal and show

Theorem (I/ D. Vassilev)

a) The qc conformal curvature W qc is invariant under quaternionic contact conformal
transformations, i.e., if

η̄ = φΨη then W qc
η̄ = φW qc

η ,

for any smooth positive function φ and any SO(3)-matrix Ψ.
b) A qc structure on a (4n+3)-dimensional smooth manifold is locally quaternionic contact
conformal to the standard flat qc structure on the quaternionic Heisenberg group G (H) if and only
if the qc conformal curvature vanishes, W qc = 0.

Corrolary (I/ D. Vassilev)

A qc manifold is locally quaternionic contact conformal to the quaternionic sphere S4n+3 if and
only if the qc conformal curvature vanishes, W qc = 0.

Our proof is similar to the classical approach used by H.Weyl and it is different than that used by
Chern-Moser where the Cartan method of equivalence is applied.
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Conformal Curvature. L-Schouten tensor. WR - ”Weyl” tensor.

”Schouten” tensor L(X ,Y ) = 1
2 T 0(X ,Y ) + U(X ,Y ) + Scal

32n(n+2)
g(X ,Y ).

Conformal curvature

WR(X ,Y ,Z ,V ) = R(X ,Y ,Z ,V ) + (g ? L)(X ,Y ,Z ,V ) +
3∑

s=1

(ωs ? IsL)(X ,Y ,Z ,V )

−
1
2

∑
(i,j,k)

ωi (X ,Y )
[
L(Z , Ii V )− L(Ii Z ,V ) + L(Ij Z , Ik V )− L(Ik Z , Ij V )

]

−
3∑

s=1

ωs(Z ,V )
[
L(X , IsY )− L(IsX ,Y )

]
+

1
2n

(trL)
3∑

s=1

ωs(X ,Y )ωs(Z ,V ),

where ? is the Kulkarni-Nomizu product of symmetric tensors and
∑

(i,j,k) denotes the cyclic
sum.
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Properties of the Conformal Curvature, W qc - ”Chern-Moser” tensor.

Proposition
a) The [-1]-part w. r. t. the first two arguments of WR vanishes,

WR[−1](X ,Y ,Z ,V ) = 1
4

[
3WR(X ,Y ,Z ,V )−

∑3
s=1 WR(IsX , IsY ,Z ,V )

]
= 0.

b) The [3]-part w. r. t. the first two arguments of WR is determined by the torsion and the scalar
curvature

WR[3](X ,Y ,Z ,V ) =
1
4

[
R(X ,Y ,Z ,V ) +

3∑
s=1

R(IsX , IsY ,Z ,V )
]

−
1
2

3∑
s=1

ωs(Z ,V )
[
T 0(X , IsY )− T 0(IsX ,Y )

]

+
Scal

32n(n + 2)

[
(g ? g)(X ,Y ,Z ,V ) +

3∑
s=1

(ωs ? ωs)(X ,Y ,Z ,V )
]

+ (g ? U)(X ,Y ,Z ,V ) +
3∑

s=1

(ωs ? IsU)(X ,Y ,Z ,V ).

We define the qc-conformal curvature tensor W qc = WR[3].
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A consequence of the Bianchi identities:

Theorem (I/ Vasilev)
The following tensors

R(X ,Y ,Z ,V )− R(Z ,V ,X ,Y )

4R[−1](X ,Y ,Z ,V ) =
3R(X ,Y ,Z ,V )− R(I1X , I1Y ,Z ,V )− R(I2X , I2Y ,Z ,V )− R(I3X , I3Y ,Z ,V )

R(ξi ,X ,Y ,Z )

R(ξi , ξj ,X ,Y )

are determined by the (horizontal!) torsion tensor, i.e., T 0, U and Scal.

Corrolary

A QC manifold is locally isomorphic to the quaternionic Heisenberg group exactly when the
curvature of the Biquard connection restricted to H vanishes, R|H = 0.
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Sketch of the proof of the conformal flatness theorem

Conformal invariance-long direct standard calculations and careful analysis of the structure of
the qc-conformally related curvatures.

Suppose W qc = 0. Then WR = 0 We look for a smooth function such that after a conformal
transformation the new qc structure has flat Biquard connection restricted to the common
horizontal space H.
We consider the following overdetermined system of partial differential differential equations:

∇du(X ,Y ) = −du(X)du(Y ) + du(I1X)du(I1Y ) + du(I2X)du(I2Y ) + du(I3X)du(I3Y )

+
1
2

g(X ,Y )|du|2 − du(ξ1)ω1(X ,Y )− du(ξ2)ω2(X ,Y )− du(ξ3)ω3(X ,Y )− L(X ,Y ), (1)

∇du(X , ξi ) = B(X , ξi )

− L(X , Ii du) +
1
2

du(Ii X)|du|2 − du(X)du(ξi )− du(Ij X)du(ξk ) + du(Ik X)du(ξj ), (2)

∇du(ξ1, ξ1) = −B(ξ1, ξ1) + B(I1du, ξ1) +
1
4
|du|4 − (du(ξ1))2 + (du(ξ2))2 + (du(ξ3))2, (3)

∇du(ξ2, ξ1) = −B(ξ2, ξ1) + B(I1du, ξ2)− 2du(ξ1)du(ξ2)−
Scal

16n(n + 2)
du(ξ3), (4)

∇du(ξ3, ξ1) = −B(ξ3, ξ1) + B(I1du, ξ3)− 2du(ξ1)du(ξ3) +
Scal

16n(n + 2)
du(ξ2). (5)

where B(X , ξi ) and B(ξi , ξj ) do not depend on the unknown function u.
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∇du(ξ3, ξ1) = −B(ξ3, ξ1) + B(I1du, ξ3)− 2du(ξ1)du(ξ3) +
Scal

16n(n + 2)
du(ξ2). (5)

where B(X , ξi ) and B(ξi , ξj ) do not depend on the unknown function u.
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B(X , ξi ) =
1

2(2n + 1)

[
(∇ea L)(Ii ea,X) +

1
3

(
(∇ea L)(ea, Ii X)−∇Ii X tr L

)]
,

B(ξs, ξt ) =
1

4n

[
(∇ea B)(Isea, ξt ) + L(ea, eb)L(It ea, Iseb)

]
.

The integrability conditions for this over-determined system are the Ricci identities for the Biquard
connection.

∇du(A,B,C)−∇du(B,A,C) = −R(A,B,C, du)−∇du((T (A,B),C), A,B,C ∈ Γ(TM).

After very long calculations we show that these conditions are consequence of W qc = 0 applying
the Bianchi identities for the Biquard connection.
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Integrability conditions read:

(∇Z L)(X ,Y )−(∇X L)(Z ,Y ) =
3∑

s=1

[
ωs(Z ,Y )B(X , ξs)−ωs(X ,Y )B(Z , ξs)+2ωs(Z ,X)B(Y , ξs)

]
.

(∇ξt L)(X ,Y ) + (∇X B)(Y , ξt ) + L(Y , It L(X)) + L(T (ξt ,X),Y ) + g(T (ξt ,Y ), L(X))

=
3∑

s=1

B(ξs, ξt )ωs(X ,Y ), t = 1, 2, 3.

(∇ξ1 B)(X , ξ2)+(∇X B)(ξ1, ξ2)−2L(X , I2ea)B(ea, ξ1)+T (ξ1,X , ea)B(ea, ξ2)−
1

2n
trL B(X , ξ3) = 0.

(∇ξ2 B)(X , ξ2) + (∇X B)(ξ2, ξ2) − 2B(ea, ξ2)L(X , I2ea) + T (ξ2,X , ea)B(ea, ξ2) = 0.

∇ξ1 B(ξ3, ξ2)−∇ξ3 B(ξ1, ξ2) =
1

2n
(tr L ) [B(ξ1, ξ1)− 2B(ξ2, ξ2) + B(ξ3, ξ3)]

+ 2B(ea, ξ1)B(I2ea, ξ3) + B(ea, ξ1)B(I3ea, ξ2) + B(I1ea, ξ3)B(ea, ξ2).

∇ξ2 B(ξ3, ξ2)−∇ξ3 B(ξ2, ξ2) = −B(I3ea, ξ2)B(ea, ξ2)+3B(I2ea, ξ3)B(ea, ξ2)+
3
n

(tr L) B(ξ1, ξ2).
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Conformal Flatness and Ferrand-Obata Type Theorem

A ’standard’ application of our conformal flatness theorem is

Theorem (I/ D. Vassilev)
Let (M, η) be a compact quaternionic contact manifold and G a connected Lie group of conformal
quaternionic contact automorphisms of M. If G is non-compact then M is qc conformally
equivalent to the unit sphere S in quaternionic space.
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