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1 Main results

Main results

[–, Di Scala]
• computed the holonomy group Φ⊥ of the normal connection of complex symmetric submanifolds of

CPn.

• as a by-product, given a new proof of the classification of complex symmetric submanifolds of CPn

by using a normal holonomy approach

Then, we prove Berger type theorems for Φ⊥, namely,

[–, Di Scala, Olmos]
M full, irreducible and complete

1. for Cn, Φ⊥ acts transitively on the unit sphere of the normal space;

2. for CPn, if Φ⊥ does not act transitively, then M is the complex orbit, in the complex projective space,
of the isotropy representation of an irreducible Hermitian symmetric space of rank greater or equal
to 3.

2 Submanifolds and Holonomy

2.1 Real submanifold geometry

Submanifolds of real space forms
M ↪→ Rn,Sn,RHn with induced metric 〈 , 〉 and Levi-Civita connection ∇

νM: normal bundle of M with the normal connection ∇⊥

ν0M = maximal parallel and flat subbundle of νM

Notation
α second fundamental form
A shape operator
R⊥ normal curvature tensor

recall 〈α(X ,Y ),ξ 〉= 〈Aξ X ,Y 〉, which is symmetric in X , Y

Fundamental equations
Gauss: 〈RX ,Y Z,W 〉= 〈α(X ,W ),α(Y,Z)〉−〈α(X ,Z),α(Y,W )〉
Codazzi: (∇̄X α)(Y,Z) are symmetric in X , Y, Z
Ricci: 〈R⊥X ,Y ξ ,η〉= 〈[Aξ ,Aη ]X ,Y 〉

Nullity: N = ∩ξ kerAξ

2.2 Normal holonomy for submanifolds of real space forms

Normal holonomy for submanifolds of real space forms

(Restricted) Normal Holonomy Φ⊥ (Φ⊥∗):
(restricted) holonomy of the normal connection
on the normal bundle of a submanifold

Normal Holonomy Theorem [Olmos]
M submanifold of a space form M.
=⇒ Φ⊥∗ (at some point p) is compact,

Φ⊥∗ acts (up to its fixed point set) as the isotropy representation of a Riemannian symmetric space
(s-representation)

Consequences:
The Normal Holonomy Theorem is a very important tool for the study of submanifold geometry,
especially in the context of submanifolds with “simple extrinsic geometric invariants”
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e.g., isoparametric and homogeneous submanifolds

Distinguished class:
orbits of s-representations = flag manifolds

similar rôle as symmetric spaces in Riemannian geometry

Special cases

Symmetric submanifolds: characterizations [Ferus, Strübing]
– parallel second fundamental form (∇α = 0)
– distinguished orbits of s-repr. (symmetric R-spaces)

K compact Lie group
M = Ad(K)X ∼= K/KX ↪→ (k,−B( , ))

standard immersion of a cx flag manifold = cx orbit of s-repr

2.3 Complex submanifolds

Complex submanifolds
M ↪→ Cn,CPn,CHn complex submanifold

J: complex structure (both on M and on the ambient space)

α(X ,JY ) = Jα(X ,Y )⇐⇒ Aξ J =−JAξ =−AJξ

=⇒ [Aξ ,AJη ] = J[Aξ ,Aη ]−2JAξ Aη

for η = ξ , by the Ricci equation

〈R⊥(X ,Y )ξ ,Jξ 〉= 〈−2JA2
ξ

X ,Y 〉

Consequence: [Di Scala]
M ↪→ Cn is full (not contained in any proper affine hyperplane)⇐⇒ ν0M is trivial

[Indeed if ξ is a section of ν0M, R⊥(X ,Y )ξ = 0 =⇒ Aξ = 0 =⇒ M not full]

2.4 Normal holonomy for submanifolds of complex space forms

Normal holonomy for complex (Kähler) submanifolds
• M ↪→ Cn

[Di Scala]: M is irreducible (up a totally geodesic factor)⇐⇒
Φ⊥ acts irreducibly.

(extrinsic analogue of the de Rham decomposition theorem)

• M ↪→ CPn,Cn,CHn

Theorem [Alekseevsky-Di Scala]
If Φ⊥ acts irreducibly on νpM =⇒
Φ⊥ is linear isomorphic to the holonomy group of an irreducible Hermitian symmetric space.

M full & N = {0} =⇒ Φ⊥ acts irreducibly
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Homogeneous Kähler submanifolds
Calabi rigidity theorem of complex submanifolds M ↪→ CPN =⇒ isometric and holomorphic immer-

sions are equivariant: any intrinsic isometry can be extended to CPN .

Borel-Weil construction
G simple Lie group, d positive integer

ρ : GC→ gl(CNd+1) irreducible representation of GC with highest weight dΛ j
(Λ j fundamental weight corresponding to the simple root α j)

Induces a unitary representation of G

=⇒ M := G · [p]⊂ CPNd

with p highest weight vector corresponding to dΛ j
 a full holomorphic embedding

fd : M = G/K ↪→CPNd

d-th canonical embedding of M

Homogeneous Kähler submanifolds
M is the unique complex orbit of the action of G on CPNd

(or equivalently, the unique compact orbit of the GC-action)

The induced metric on M ⊂ CPNd is Kähler-Einstein.

Calabi rigidity =⇒ any fd factors through the Veronese embeddings and the first canonical em-
bedding f1,

i.e., fd = Ver d ◦ f1

where Ver d : CPN1 → CPNd is the Veronese embedding

[z0 : · · · : zN1 ] 7→

[
zd

0 : · · · :

√
d!

d0! . . .dN1 !
zd0

0 . . .z
dN1
N1

: · · · : zd
N1

]
(d0, . . . ,dN1 range over all non-negative integers with d0 + · · ·+dN1 = d)

Symmetric complex submanifolds M ⊂ CPn

M ⊂ CPn symmetric⇐⇒ ∇α = 0

Symmetric complex submanifolds M ⊂ CPn were classified by Nakagawa-Takagi

Arise as unique complex orbits in CPn of the isotropy representation of an irreducible Hermitian symmetric
space

[–, Di Scala]

• computed the holonomy group of the normal connection of complex symmetric submanifolds of the
complex projective space.

• as a by-product, given a new proof of the classification of complex symmetric submanifolds by using
a normal holonomy approach

Symmetric complex submanifolds M ⊂ P(T[K]G/K)

[–, Di Scala]:

Idea of the proof
Use [Alekseevsky-Di Scala] to get

Lemma 1. M = G/K Hermitian symmetric space

M ↪→ CPN full embedding with ∇α = 0

=⇒ ∃ an irreducible Hermitian symmetric space H/S such that
Φ⊥p = S = K /I where I ⊂ K is a normal subgroup,
dimC(νp(M)) = dimC(H/S) and

Φ⊥p acts on νp(M) as the isotropy repr. of S on T[S](H/S).

 computation of the 3rd column in the Table
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Hermitian symmetric space G/K M as (unique) complex
K-orbit

Normal
holonomy Remarks

E7
T 1 ·E6

E6
T 1 ·Spin10

SO(12)

T 1 ·SO(10)

E6
T 1 ·Spin10

SO(10)
U(5)

U(6)
U(5)

Sp(n+1)
U(n+1)

CPn Sp(n)
U(n)

Veronese

Gr+2 (Rn+2) :=
SO(n+2)

T 1 ·SO(n)
Gr+2 (Rn)

U(2)
U(1)

Quadrics

SO(2n)
U(n)

Gr2(Cn)
SO(2(n−2))

U(n−2)
Plücker

Gra(Ca+b) :=
SU(a+b)

S(U(a)×U(b))
CPa−1 ×CPb−1 SU(a+b−2)

S(U(a−1)×U(b−1))
Segre

has ∇α = 0 and Hermitian symmetric space
all symmetric subm whose isotropy representation

arise in this way gives the normal hol. action

Alternate proof of classif. of cx symmetric subm of CPN

A tool is

Theorem 2. Let fd : G/K→ CPNd the d-th canonical embedding of G/K.
If ∇α = 0 & fd is not the Veronese embedding, fd is the first canonical embedding f1

=⇒ look at 1st canonical embeddings only.
The following theorem gives a sharp description.

Theorem 3. If the first canonical embedding f1 of an irreducible Hermitian symmetric space M of higher
rank (≥ 1) has ∇α = 0.

=⇒ rank (M) = 2.

Remark: list of images of the 1st can. embedding of an irred. Hermitian symm. space of rank two
=

list of the unique complex orbits of the isotropy action on the projective space CP(T[K]G/K)
(2nd column in the Table)

Higher canonical embedding and holonomy

Theorem [–, Di Scala]
Let fd : G/K ↪→ CPNd be the d−th canonical embedding of an irreducible Hermitian symmetric space.

If d ≥ 2 then the normal holonomy group is the full unitary group of the normal space (unless it is the
Veronese embedding Ver 2)

Motivated by the above theorem we have the following

Question
M ↪→CPN complete (connected) and full (i.e. not contained in a proper hyperplane) complex submanifold.

is it true in general that if the normal holonomy group is not the full unitary group, then M has parallel
second fundamental form?

The answer is YES

3 Geometry of parallel focal manifolds and holonomy tubes

A Berger type Theorem

[–, Di Scala, Olmos]
M ↪→ Cn,CPn full, irreducible and complete

1. for Cn, Φ⊥ acts transitively on the unit sphere of the normal space;
=⇒ Φ⊥p = U(νpM), since it acts as an s-representation

2. for CPn, if Φ⊥ does not act transitively, then M is the complex orbit, in the complex projective space,
of the isotropy representation of an irreducible Hermitian symmetric space of rank greater or equal
to 3.
( =⇒ it is extrinsic symmetric)
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False if M is non complete (counterexamples)

The methods in the proofs rely heavily on the singular data of appropriate holonomy tubes (after lifting
the submanifold to the complex Euclidean space, in the CPn case) and basic facts of complex submanifolds.

Some geometry needed in the proof
Endpoint map

tξ : M→ Rn

x 7→ x+ξ (x) = exp(ξ (x))

focal point in direction ξ =
critical value of tξ .

x+ξ (x) focal point in dir. of ξ ⇐⇒ ker(id−Aξ (x)) is non trivial

3.1 Parallel focal manifolds

Parallel focal manifolds
ξ parallel normal field, im(tξ ) = Mξ = {x+ξ (x) | x ∈M}

• if 1 is not an eigenvalue of Aξ , parallel manifold

• if 1 is a constant eigenvalue of Aξ , parallel focal manifold

TxM = Tx+ξ (x)Mξ ⊕ ker(id−Aξ (x))
integrable

→ one has a submersion
(non riemannian, in general)

π : M→Mξ : x 7→ x+ξ (x),

π−1(p) isoparametric in νpMξ

(by Olmos’ Normal Holonomy Theorem)

3.2 Holonomy tubes

Holonomy tube

Mηp = {c(1)+η(1)}= {c(1)+ τ
⊥
c (ηp)} ,

where c : [0,1]→M is an arbitrary curve starting at p and η(t) is the ∇⊥-parallel transport of ηp along
c(t).

Proposition
Mηp has flat normal bundle (=: full holonomy tube)
⇐⇒ Φ⊥

π(p).(p−π(p)) is maximal dimensional

H π horizontal subspace of π : N = Mηp → Nη = M

tube formulae
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AM
ξx

= AN
ξx

(id−AN
η(x))

−1
|H π

x
, ξx ∈ νxN

AN
ξx|H π

x
= AM

ξx
(id−AM

−η(x))
−1
|H π

x
, ξx ∈ νxN

3.3 The canonical foliation

The canonical foliation

N ↪→ Rn, take M = Nζq full holonomy tube

Assume:
• Φ⊥ acts irreducibly and

not transitively on νpN

• 0 is a constant eigenvalue of AM
ξ

,

i.e. Eξ

0 is non-trivial

canonical foliation
def. : x∼

ξ

y if ∃ curve γ in M from x to y: γ̇(t)⊥ Eξ

0 ,∀t

Hξ (x) = {y ∈M : x∼
ξ

y}

the orthogonal distribution ν̃ξ to the foliation Hξ (p) is integrable.
Σξ (x): leaf of ν̃ξ through x

Note: ν̃ξ ⊆N = ∩kerAξ (nullity) =⇒ the foliation is indep. on ξ | Eξ

0 6= {0}

locally M =
⋃

x′∈Σξ (x)
(Hξ (x))x′−x

The canonical foliation
H : the horizontal distribution in M (w. r. to π : M→ N) =⇒

Technical Lemma
Assume that ∃ parallel ξ ,ξ ′ such that H ⊂ (kerAM

ξ
+kerAM

ξ ′
)

=⇒ ∀x ∈M, Hξ (x) = Hξ ′(x) is an isoparametric submanifold.

(we are around a generic point s. t. (kerAM
ξ

+ kerAM
ξ ′ ) is a distribution of M)

Projecting down to N, N =
⋃

y∈π(Σξ (x))
(π(Hξ (x)))y−π(x)

Using Thorbergsson Theorem

Corollary of the Technical Lemma
∃ compact group K of isometries of Rn acting as an irred. s-representation s. t. (loc) K ·π(x) = π(Hξ (x)),
for all x ∈M.
=⇒ N is locally given, around a generic point q, as

N =
⋃

v∈(ν0(K·q))q

(K ·q)v.

Moreover the nullity space of N at p is N N
p = (ν0(K · p))p.

4 Complex submanifold geometry

4.1 Complex submanifolds of Cn

Complex submanifolds of Cn

N ↪→ Cn full, irreducible complex submanifold for which Φ⊥ does not act transitively on the unit sphere
of the normal space

Choose ξ 1
q ∈ νqN | Φ⊥q · [ξ 1

q ] ∈ CP(νqN) (unique) complex orbit
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=⇒ (ξ 1
q )⊥∩νξ 1

q
Φ⊥q ·ξ 1

q cx subsp. (non trivial by non-transitivity!)

Now choose 0 6= ξ 2
q ∈ (ξ 1

q )⊥∩νξ 1
q
Φ⊥q .ξ 1

q

Since R⊥X ,Y ∈ L(Φ⊥q ) , 0 = 〈R⊥X ,Y ξ 1
q ,ξ 2

q 〉 =
Ricci
〈[AN

ξ 1
q
,AN

ξ 2
q
]X ,Y 〉.

The same is true if we replace ξ 2
q by Jξ 2

q =⇒ [AN
ξ 1

q
,AN

Jξ 2
q
] = 0.

By complex geometry AN
ξ 1

q
AN

ξ 2
q

= AN
ξ 2

q
AN

ξ 1
q

= 0

Take the holonomy tube M := (Nξ 1
q
)ξ 2

q
= Nξ 1

q +ξ 2
q

ξ 1
q ,ξ 2

q  parallel v. f. ξ ,ξ ′ on M

Tube formula =⇒ AM
ξ

AM
ξ ′ |H = 0 =⇒H ⊂ (kerAM

ξ
+kerAM

ξ ′
)

=⇒ Technical Lemma and its corollary apply

Complex submanifolds of Cn

=⇒ ∃ compact group K of isometries of Cn, which acts as the isotropy representation of an irreducible
Hermitian symmetric space such that

N =
locally

⋃
v∈(ν0(K·q))q

(K ·q)v

Moreover N N
p = (ν0(K.p))p.

=⇒

Proof of the Berger-type Theorem for submanifolds of Cn

We assume that 0 is the fixed point of K.

N is complete =⇒ if p ∈ N, the line {t 7→ t p} ⊂ N

∀t, Tt pN = TpN, as subspaces of Cn =⇒
the isotropy Kt p must leave this subspace invariant.

A contradiction for t = 0, since K acts irreducibly.
Thus the normal holonomy group must be transitive.

4.2 Complex submanifolds of CPn

Complex submanifolds of CPn

Let M ↪→ CPn be a full complex submanifold.

Consider π : Cn+1\{0}→ CPn

M̃: lift M to Cn+1\{0}, i.e. M̃ := π−1(M)

V : vertical distribution of the submersion π : M̃→M.

It is standard to show that V ⊂N M̃ .

If X is a tang. vector to M we let X̃ be its horiz. lift to Cn+1\{0}.
π : Cn+1\{0}→ CPn is not a Riemannian submersion. Anyway,

O’Neill’s type formula
Let X̃ ,Ỹ ∈ Γ(Cn+1\{0}) be the horizontal lift of the vector fields X ,Y ∈ Γ(CPn). Then,

(DX̃Ỹ )p̃ = (∇̃FS
X Y )p̃ +O(X̃ ,Ỹ )

where O(X̃ ,Ỹ ) ∈ Vp̃ is vertical.

Complex submanifolds of CPn

Lemma 1
M ⊂ CPn, M̃ ⊂ Cn+1 be its lift to Cn+1.

Assume that the tangent vector ṽp̃ ∈ Tp̃M̃ is not a complex multiple of the position vector p̃.

If ṽp̃ ∈N M̃ =⇒ vp ∈N M .

Lemma 2
Assume that M ⊂ CPn is full and

Φ⊥M does not act transitively on νp(M).
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=⇒ Φ⊥M̃ does not act transitively on νp̃(M̃), where π(p̃) = p.

Important fact (special case of a Theorem in [Abe-Magid])
Let M ⊂ CPn complete full with Φ⊥ not transitive

=⇒N M = {0}

Proof of the Berger-type Theorem for submanifolds of CPn

N = M̃ ⊂ Cn+1 =⇒ M̃ =
⋃

v∈(ν0(K·q))q
(K ·q)v

(K is the isotropy group of a irreducible Hermitian symmetric space)

Observe also that ν0(K ·q)q is a complex subspace (=N N))

Then Lemma 1 and special case of Abe-Magid =⇒ dimC(ν0(K ·q)q) = 1, otherwise the nullity of the
second fundamental form of M would be not trivial.

Since M̃ is full =⇒ the unique fixed point of K is 0 ∈ Cn+1.
So the leaves of the nullity distribution N M̃ are just the complex lines given by the fibers of the sub-

mersion π : M̃→M.

Thus, K acts transitively on the complex submanifold M ⊂ CPn.

Therefore, M is a complex orbit of the projectivization of an irreducible Hermitian s-representation.
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