Homogeneous para-Kähler Einstein manifolds

Dmitri V. Alekseevsky

Hamburg,14-18 July 2008

The talk is based on a joint work with C.Medori and A.Tomassini (Parma)

See ArXiv 0806.2272, where also a survey of recent results on para-complex geometry is given. It includes

para-complex and generalized para-complex structures,

para-hypercomplex (complex product structure) and 3-webs,

almost para-Hermitian and para-Hermitian structures,

para-Kähler (bi-Lagrangian) structures,

para hyperKähler and para hyperKahler with torsion structures,

para-quaternionic Kahler and para-quaterniuonic Kähler with torsion structures,

para-CR and para-quaternionbic CR structures.

Para-complex structures on a real vector space

The algebra of para-complex numbers is defined by

$$C = \mathbb{R} + e\mathbb{R} \simeq \mathbb{R}^2, \ e^2 = 1.$$

Para-complex structure in a vector space V :

$$K: V \to V, \quad K^2 = 1$$

such that

 $V = V^+ + V^-$, dim $V^+ = \dim V^-$. Para-complexification of (V, K) is

$$V^C := V \otimes C.$$

3

Holomorphic and antiholomorphic subspaces are defined by

 $V^{1,0} = \{ v \in V^C \mid Kv = ev \} = \{ v + eKv \mid v \in V \},$ $V^{0,1} = \{ v \in V^C \mid Kv = -ev \} = \{ v - eKv \mid v \in V \},$ Then $V^C = V^{1,0} \oplus V^{0,1}.$ Exterior forms The dual space

$$(V^*)^C = V^* \otimes C = V_{1,0} \oplus V_{0,1},$$

where

$$\begin{split} V_{1,0} &= \{ \alpha \in V^{*C} \mid, K^* \alpha = e\alpha \} = \{ \alpha + eK^* \alpha \mid \alpha \in V^* \}, \\ V_{0,1} &= \{ \alpha \in V^{*C} \mid, K^* \alpha = -e\alpha \} = \{ \alpha - eK^* \alpha \mid \alpha \in V^* \}. \\ \text{Denote by } \wedge^{p,q} V^{*C} \text{ the subspace of } \wedge V^{*C} \text{ spanned} \\ \text{by } \alpha \wedge \beta, \text{ with } \alpha \in \wedge^p V_{1,0} \text{ and } \beta \in \wedge^q V_{0,1}. \text{ Then} \end{split}$$

$$\wedge^r V^{*C} = \bigoplus_{p+q=r} \wedge^{p,q} V^{*C}.$$

4

Para-Hermitian forms

Definition 1 A para-Hermitian form on V^C is a map $h: V^C \times V^C \to C$ such that:

i) h is *C*-linear in the first entry and *C*-antilinear in the second entry;

ii) $h(W,Z) = \overline{h(Z,W)}$.

Definition 2 A para-Hermitian symmetric form on V^C is a symmetric *C*-bilinear form $h: V^C \times V^C \to C$ such that

$$\begin{array}{rcl} h(V^{1,0},V^{1,0}) &=& h(V^{0,1},V^{0,1}) = 0 \,, \\ h(\overline{Z},\overline{W}) &=& \overline{h(Z,W)} \end{array}$$

for any $Z, W \in V^C$. It is called non-degenerate if it has trivial kernel.

If h(Z, W) is a para-Hermitian symmetric form, then $\hat{h}(Z, W) = h(Z, \overline{W})$ is a para-Hermitian form. **Lemma 3** There exists a natural 1 - 1 correspondence between pseudo-Euclidean metric g on a vector space V such that

 $g(KX, KY) = -g(X, Y), \quad X, Y \in V$

and non-degenerate para-Hermitian symmetric forms $h = g^C$ in V^C , where g^C is the natural extension of g to C-bilinear symmetric form. Moreover, the natural C-extension ω^C of the two form $\omega = g \circ K$ coincides with the (1,1)form $g^C \circ K$.

Para-complex manifolds

Definition 4 A para-complex structure on a 2n-dimensional manifold M is a field K of para-complex structures such that the ± 1 -eigen-distributions $T^{\pm}M$ are involutive.

A map $f : (M, K) \rightarrow (M', K')$ between two para-complex manifolds is said to be para-holomorphic if

$$df \circ K = K' \circ df \,. \tag{1}$$

By Frobenius theorem, there are local coordinates (called adapted coordinates) $(z_{+}^{\alpha}, z_{-}^{\alpha})$ $\alpha = 1, \ldots, n$ on M, such that

$$T^+M = \operatorname{span}\left\{\frac{\partial}{\partial z_+^{\alpha}}, \alpha = 1, \dots, n\right\}$$
$$T^-M = \operatorname{span}\left\{\frac{\partial}{\partial z_-^{\alpha}}, \alpha = 1, \dots, n\right\}$$

7

(p+,q-)-decomposition of real differential forms) The cotangent bundle T^*M splits as $T^*M = T^*_+M \oplus T^*_-M$, and , moreover,

$$\wedge^{r} T^{*} M = \bigoplus_{p+q=1}^{r} \wedge_{+-}^{p,q} T^{*} M,$$

where $\wedge_{+-}^{p,q} T^*M = \wedge^p (T^*_+M) \otimes \wedge^q (T^*_-M)$. We put

$$\partial_{+} = \operatorname{pr}_{\wedge_{+-}^{p+1,q}(M)} \circ d : \wedge_{+-}^{p,q}(M) \to \wedge_{+-}^{p+1,q}(M)$$
$$\partial_{-} = \operatorname{pr}_{\wedge_{+-}^{p,q+1}(M)} \circ d : \wedge_{+-}^{p,q}(M) \to \wedge_{+-}^{p,q+1}(M).$$

Then exterior differential d can be decomposed

Then exterior differential d can be decomposed as $d = \partial_+ + \partial_-$ and, since $d^2 = 0$, we have

$$\partial_+^2 = \partial_-^2 = 0$$
, $\partial_+\partial_- + \partial_-\partial_+ = 0$.

8

Para-holomorphic coordinates

Let $(z_{+}^{\alpha}, z_{-}^{\alpha})$ be adapted local coordinates on (M, K). Then

$$z^{\alpha} = \frac{z_{+}^{\alpha} + z_{-}^{\alpha}}{2} + e \frac{z_{+}^{\alpha} - z_{-}^{\alpha}}{2}, \quad \alpha = 1, \dots, n.$$
 (2)

 z^{α} are para-holomorphic functions in the sense of (1) and the transition functions between two para-holomorphic coordinate systems are para-holomorphic. The real part x^{α} and the imaginary part y^{α} of the functions z^{α} , given by

$$x^{\alpha} = \frac{1}{2}(z^{\alpha} + \overline{z}^{\alpha}) = \frac{1}{2}(z^{\alpha}_{+} + z^{\alpha}_{-}),$$
$$y^{\alpha} = \frac{1}{2e}(z^{\alpha}_{-} - \overline{z}^{\alpha}) = \frac{1}{2}(z^{\alpha}_{+} - z^{\alpha}_{-}),$$

are not necessarily real analytic.

Para-complex differential forms The para-complex tangent bundle $T^CM = TM \otimes C$ is decomposed into a direct sum

$$T_p^C M = T_p^{1,0} M \oplus T_p^{0,1} M$$
, (3)

of para-holomorphic and para-anti-holomorphic bundles, where

$$T_p^{1,0}M = \{Z \in T_p^C M \mid KZ = eZ\} =$$
$$\{X + eKX \mid X \in T_pM\}$$
$$T_p^{0,1}M = \{Z \in T_p^C M \mid KZ = -eZ\} =$$
$$\{X - eKX \mid X \in T_pM\}$$

are the "eigenspaces" of K with "eigenvalues" $\pm e$.

Similar

$$(T^C)^*M = \wedge^{1,0}(M) \oplus \wedge^{0,1}(M),$$

where 1-forms

 $dz^{\alpha} = dx^{\alpha} + edy^{\alpha}$ and $d\overline{z}^{\alpha} = dx^{\alpha} - edy^{\alpha}$

form a basis of $\wedge^{1,0}(M)$ and $\wedge^{0,1}(M)$ dual to the bases $\frac{\partial}{\partial z^{\alpha}}$ and $\frac{\partial}{\partial \overline{z}^{\alpha}}$ respectively.

The last decomposition induces a splitting of the bundle $\wedge^r (T^C)^* M$ of para-complex *r*-forms on (M, K) given by

$$\wedge^r (T^C)^* M = \bigoplus_{p+q=r} \wedge^{p,q} (M).$$

The sections of $\wedge^{p,q}(M)$ are called (p,q)-forms on the para-complex manifold (M,K). We have

$$\wedge_{+-}^{1,1}(M) = \{\omega \in \wedge^{1,1}(M) \mid \omega = \overline{\omega}\}.$$
 (4)

The exterior derivative $d : \wedge^r T^* M^C \to \wedge^{r+1} T^* M^C$ splits as $d = \partial + \overline{\partial}$, where

$$\partial = \operatorname{pr}_{\wedge^{p+1,q}(M)} \circ d : \wedge^{p,q}(M) \to \wedge^{p+1,q}(M),$$

$$\overline{\partial} = \operatorname{pr}_{\wedge^{p,q+1}(M)} \circ d : \wedge^{p,q}(M) \to \wedge^{p,q+1}(M),$$

and

$$\partial^2 = 0, \quad \overline{\partial}^2 = 0, \quad \partial\overline{\partial} + \overline{\partial}\partial = 0.$$

The operators $\partial,\overline{\partial}$ are related to ∂_+,∂_- by

$$\partial = \frac{1}{2}((\partial_+ + \partial_-) + e(\partial_+ - \partial_-))$$
$$\overline{\partial} = \frac{1}{2}((\partial_+ + \partial_-) - e(\partial_+ - \partial_-)).$$

In particular,

$$\partial \overline{\partial} = e \,\partial_+ \partial_- \,.$$

Dolbeault lemma

(V.Cortes, C. Mayer, Th. Mohaupt, F.Sauressig)

Lemma 5 Let (M, K) be a para-complex manifold and ω be a closed 2-form belonging to $\wedge^{1,1}_{+-}(M)$. Then locally there exists a realvalued function F (called potential) such that

 $\omega = \partial_+ \partial_- F = e \,\partial \overline{\partial} F \,.$

The potential F is defined up to addition of a function f satisfying the condition $\partial_+\partial_-f = 0$.

Para-Kähler manifolds

Definition 6 A para-Kähler manifold *is given* equivalently by:

- *i)* a pseudo-Riemannian manifold (M,g) together with a skew-symmetric para-complex structure K which is parallel with respect to the Levi-Civita connection;
- ii) a symplectic manifold (M, ω) together with two complementary involutive Lagrangian distributions L^{\pm} .
- iii) a para-complex manifold (M, K) together with a symplectic form ω which belongs to $\wedge^{1,1}_{+-}(M)$;

Curvature and Ricci curvature of a para-Kähler manifold

Proposition 7 The curvature R and the Ricci tensor S of a para-Kähler metric g satisfy the following

 $R(X,Y) \circ K = K \circ R(X,Y) \ R(KX,KY) = -R(X,Y)$

S(KX, KY) = -S(X, Y)

for any vector fields $X, Y \in \mathfrak{X}(M)$.

We define the *Ricci form* ρ of the para-Kähler metric g by

$$\rho := \mathsf{R}ic \,\circ K \,. \tag{5}$$

It is a 2-form. Its para-complex extension ρ has type (1,1) and in local para-holomorphic coordinates is given by

$$ho = 2e \operatorname{Ric}_{\alpha \overline{\beta}} dz^{\alpha} \wedge d\overline{z}^{\beta}$$
.

Proposition 8 The Ricci form of a para-Kähler manifold is a closed (1, 1)-form and can be represented by

$$\rho = e \,\partial \overline{\partial} \log(\det(g_{\alpha \overline{\beta}})) \,. \tag{6}$$

In particular,

$$\operatorname{Ric}_{\alpha\overline{\beta}} = -\frac{\partial^2 \log(\det(g_{\alpha\overline{\beta}}))}{\partial z^{\alpha} \partial \overline{z}^{\beta}}.$$
 (7)

The canonical form of a para-complex manifold with a volume form

Let (M, K, vol) be an oriented manifold with para-complex structure K and a (real) volume form vol.

Let $z = (z^1, ..., z^n)$ be local para-holomorphic coordinates and (x^{α}, y^{α}) corresponding real coordinates, where $z^{\alpha} = x^{\alpha} + ey^{\alpha}$. Then

$$\mathsf{vol} = V(z,\overline{z})dz^1 \wedge d\overline{z}^1 \wedge \ldots \wedge dz^n \wedge d\overline{z}^n \quad (8)$$
$$= U(x,y)dx^1 \wedge dy^1 \wedge \ldots \wedge dx^n \wedge dy^n \, .$$

We may assume that U(x, y) > 0, as M is oriented.

Then

$$V(z,\overline{z}) = (-2e)^n U(x,y).$$

In particular, the function $\tilde{V} = (-e)^n V$ is positive.

Definition of the canonical 2-form

Lemma 9 The formula

$$\rho = e \,\partial \overline{\partial} \log\left((-e)^n V\right) \tag{9}$$

defines a real global closed 2-form of type (1, 1)on the oriented para-complex manifold (M, K, vol).

The form ρ is called the canonical form of (M, K, vol).

Corollary 10 Let (M, K, ω, g) be an oriented para-Kähler manifold and denote by vol^g the volume form associated with the metric g. Then the Ricci form ρ of the para-Kähler manifold M coincides with the canonical form associated with the volume form vol^g . In particular ρ depends only on the para-complex structure and the volume form.

A formula for the canonical form ρ in term of divergence

Lemma 11 Let X, Y be real vector fields with div X = div Y = 0. Assume that the fields $X^c = X + eKX, Y^c = Y + eKY$ are paraholomorphic. Then

$$2\rho(X,Y) = \operatorname{div}(K[X,Y]).$$
 (10)

Koszul formula for the canonical form ρ of a homogeneous para-complex manifold (M = G/H, K) with an invariant volume form vol.

Given (M = G/H, K, vol). Let \mathfrak{m} be a complementary subspace to the Lie subalgebra $\mathfrak{h} = LieH$ in the Lie algebra $\mathfrak{g} = LieG$. We identify \mathfrak{m} with the tangent space $T_o(G/H)$, o = eH and extend $K_o \in End(\mathfrak{m})$ to an endomorphism \tilde{K} of \mathfrak{g} with kernel \mathfrak{h} .

Then the pull back ρ of the canonical 2-form associated with (vol, K) at the point $e \in G$ is given by

 $2\rho_e(X,Y) = \sum \omega^i \left([\tilde{K}[X,Y],X_i] - \tilde{K}[[X,Y],X_i] \right).$ In particular,

 $\rho_e = d\psi \,,$

where $\psi \in \mathfrak{g}^*$ is the $\mathrm{Ad}_{\mathfrak{h}}\text{-invariant}$ 1-form on \mathfrak{g} given by

$$\psi(X) = -\operatorname{tr}_{\mathfrak{g}/\mathfrak{h}}\left(\operatorname{ad}_{\widetilde{K}X} - \widetilde{K}\operatorname{ad}_X\right), \quad \forall X \in \mathfrak{g}.$$
(11)

The 1-form $\psi \in \mathfrak{g}^*$ is called the Koszul form .

A description of homogeneous para-Kähler manifolds ($M = G/H, \omega, L^{\pm}$) of a semisimple Lie group

We recall an important characterization of homogeneous manifolds M = G/H of a semisimple Lie group G which admit invariant para-Kähler structure (ω, L^{\pm}) .

Theorem 12 (Hou-Deng-Kaneyuki-Nishiyama,97) A homogeneous manifold M = G/H of a semisimple group G admits an invariant para-Kähler structure (ω, L^{\pm}) iff it is a covering of the adjoint orbit $\operatorname{Ad}_G h = G/Z_G(h)$ of a semisimple element $h \in \mathfrak{g}$. The proof follows from a result by Ozeki and Wakimoto (1972) that any polarization of a semisimple Lie algebra is a parabolic subalgebra and a classical result by Dixmier that the intersection of two parabolic subalgebras has maximal rank. Indeed, the subalgebras

$$\mathfrak{p}^{\pm} := \{ X \in \mathfrak{g} \, | X_o^* \in L^{\pm} |_o \}$$

are polarizations for 1-form $\xi \in \mathfrak{g}^*$ such that $\omega_o = d\xi$, that is maximal isotropic subspaces with respect to $\omega_o = d\xi \in \Lambda^2 \mathfrak{g}^*$.

Fundamental gradations of a semisimple Lie algebra

A \mathbb{Z} -gradation

$$\mathfrak{g} = \mathfrak{g}^{-k} + \dots + \mathfrak{g}^{-1} + \mathfrak{g}^{0} + \mathfrak{g}^{1} + \dots + \mathfrak{g}^{k} \quad [\mathfrak{g}^{i}, \mathfrak{g}^{j}] \subset \mathfrak{g}^{i+j}$$
(12)

of a (real or complex) semi-simple Lie algebra \mathfrak{g} is called

fundamental if the subalgebra

$$\mathfrak{g}^- = \mathfrak{g}^{-k} + \dots + \mathfrak{g}^{-1}$$

is generated by \mathfrak{g}^{-1} .

There exist unique element $d \in \mathfrak{g}$ (called the grading element) such that

$$\operatorname{Ad}_d|_{\mathfrak{g}^j} = j \operatorname{Id}.$$

We set

$$\mathfrak{g}^{\pm} = \sum_{\pm j > 0} \mathfrak{g}^j.$$

Then $\mathfrak{g} = \mathfrak{g}^- + \mathfrak{g}^0 + \mathfrak{g}^+$ (associated decomposition)

Examples. Fundamental gradations of $\mathfrak{sl}(V)$

Let V be a (complex or real) vector space and $V = V^1 + \cdots + V^k$ a decomposition of V into a direct sum of subspaces. It defines a fundamental gradation $\mathfrak{sl}(V) = \sum_{i=-k}^{k} \mathfrak{g}^i$ of the Lie algebra $\mathfrak{sl}(V)$, where

$$\mathfrak{g}^i = \{A \in \mathfrak{sl}(V), AV^j \subset V^{i+j}, j = 1, \dots, k\}$$
.

A generalized Gauss decomposition A direct space decomposition

$$\mathfrak{g}=\mathfrak{n}^-+\mathfrak{h}+\mathfrak{n}^+$$

is called a generalized Gauss decomposition if $\mathfrak{p}^{\pm} := \mathfrak{n}^{\pm} + \mathfrak{h}$ are parabolic subalgebras with nilradical \mathfrak{n}^{\pm} and reductive part \mathfrak{h} .

Proposition 13 Any generalized Gauss decomposition (gGd) is associated with a unique fundamental gradation i.e. $n^{\pm} = g^{\pm}, h = g^{0}$.

Invariant para-Kähler structures and generalized Gauss decompositions

Proposition 14 Let $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}^+$ be a generalized Gauss decomposition associated with a fundamental gradation, defined by a grading element $d \in \mathfrak{g}$. Let G be a Lie group with the Lie algebra \mathfrak{g} and H a closed subgroup of G with Lie $H = \mathfrak{h}$ which preserves $d \in \mathfrak{g}$. Then M = G/H has an invariant para-complex structure K defined by $K|_{\mathfrak{n}^{\pm}} = \pm \mathrm{Id}$. Moreover, any Ad_H -invariant element $h \in \mathfrak{h}$ with $Z_{\mathfrak{g}}(h) = \mathfrak{h}$ defines an invariant symplectic form ω^h on M = G/H (where $\omega_o^h = dB \circ h$ and B is the Killing form) which is consistent with K, *i*; e. (K, ω) is an invariant para-Kähler structure.

Moreover, any invariant para-Kähler structure cab be obtained by this construction.

Fundamental gradations of a complex semisimple Lie algebra \mathfrak{g}

Let $\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in R} \mathfrak{g}_{\alpha}$ be a root space decomposition of a complex semisimple Lie algebra \mathfrak{g} with respect to a Cartan subalgebra \mathfrak{h} . We fix a system of simple roots $\Pi = \{\alpha_1, \dots, \alpha_\ell\} \subset R$

Any disjoint decomposition $\Pi = \Pi^0 \cup \Pi^1$ of Π defines a fundamental gradation of \mathfrak{g} as follows.

We define the function $d: R \to \mathbb{Z}$ by

 $d|_{\Pi^0} = 0, d|_{\Pi^1} = 1, d(\alpha) = \sum k_i d(\alpha_i), \forall \alpha = \sum k_i \alpha_i.$

Then the fundamental gradation is given by

$$\mathfrak{g}^{0} = \mathfrak{h} + \sum_{\alpha \in R, \ d(\alpha) = 0} \mathfrak{g}_{\alpha} , \qquad \mathfrak{g}^{i} = \sum_{\alpha \in R, \ d(\alpha) = i} \mathfrak{g}_{\alpha} .$$

Any fundamental gradation of \mathfrak{g} is conjugated to a unique gradation of such form.

Fundamental gradations of a real semisimple Lie algebra

Any real semisimple Lie algebra $\hat{\mathfrak{g}}$ is a real form of a complex semisimple Lie algebra γ , that is it is the fixed point set $\hat{\mathfrak{g}} = \mathfrak{g}^{\sigma}$ of some antilinear involution σ of \mathfrak{g} , i.e. an antilinear involutive map $\sigma : \mathfrak{g} \to \mathfrak{g}$, which is an automorphism of \mathfrak{g} as a Lie algebra over \mathbb{R} .

We can always assume that σ preserves a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and induces an automorphism of the root system R. A root $\alpha \in R$ is called compact (or black) if $\sigma \alpha = -\alpha$. It is always possible to choose a system of simple roots $\Pi = \{\alpha_1, \dots, \alpha_\ell\}$ such that, for any non compact root $\alpha_i \in \Pi$, the corresponding root $\sigma \alpha_i$ is a sum of one non-compact root $\alpha_j \in \Pi$ and a linear combination of compact roots from Π . The roots α_i and α_j are called equivalent. **Theorem 15 (Djokovič)** Let \mathfrak{g} be a complex semisimple Lie algebra $\mathfrak{g}, \sigma : \mathfrak{g} \to \mathfrak{g}$ an antilinear involution and \mathfrak{g}^{σ} the corresponding real form. The gradation of \mathfrak{g} , associated with a decomposition $\Pi = \Pi^0 \cup \Pi^1$, defines a gradation $\mathfrak{g}^{\sigma} = \sum (\mathfrak{g}^i)^{\sigma}$ of \mathfrak{g}^{σ} if and only if Π^1 consists of non compact roots and any two equivalent roots are either both in Π^0 or both in Π^1 .

Example. Fundamental gradations of \mathfrak{g}_2

The root system of the complex exceptional Lie algebra \mathfrak{g}_2 has the form

$$R = \{\pm \varepsilon_i, \pm (\varepsilon_i - \varepsilon_j), i, j = 2, 3\}$$

where the vectors ε_i satisfy

 $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0, \ \varepsilon_i^2 = 2/3, \ (\varepsilon_i, \varepsilon_j) = -1/3, \ i \neq j$. Consider the system of simple roots $\Pi = \{\alpha_1 = -\varepsilon_2, \ \alpha_2 = \varepsilon_2 - \varepsilon_3\}$. The corresponding system of positive roots is

 $R^{+} = \{\alpha_{1}, \alpha_{2}, \alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}\}.$

There are three fundamental gradations for the complex Lie algebra g_2 .

Calculation of the fundamental form $\rho = d\psi$ of a homogeneous para-complex manifold (M = G/H, K) associated with a generalized Gauss decomposition

Now we compute the Koszul form for the homogeneous para-complex manifold

 $(M = G^{\sigma}/H^{\sigma}, K_M, \text{vol}),$

where M is a covering of an adjoint orbit of a real semisimple Lie group G^{σ} ,

 K_M is the invariant para-complex structure defined by a gradation of the Lie algebra \mathfrak{g}^{σ} and vol is an invariant volume form.

First of all, we describe the Koszul form ψ on the Lie algebra

 $\mathfrak{g}^{\sigma} = \mathfrak{g}_{-k}^{\sigma} + \dots + \mathfrak{g}_{-1}^{\sigma} + \mathfrak{g}_{0}^{\sigma} + \mathfrak{g}_{1}^{\sigma} + \dots + \mathfrak{g}_{k}^{\sigma}.$

or, equivalently, its complex extension ψ to the complex Lie algebra \mathfrak{g} (defined by the same formula).

We choose a Cartan subalgebra $\mathfrak{a} \subset \mathfrak{g}_0$ of the Lie algebra \mathfrak{g} and denote by R the root system of $(\mathfrak{g}, \mathfrak{a})$. Let

$$\Pi = \Pi^0 \cup \Pi^1, \ P = P^0 \cup P^1$$

be the decomposition of a simple root system Π of the root system R which corresponds to the gradation and the corresponding decomposition of the fundamental weights. Let R^+ be the set of positive roots defined by the basis Π . We put

$$R_0^+ = \{ \alpha \in R^+ \mid \mathfrak{g}_\alpha \subset \mathfrak{g}_0 \}.$$

The following lemma describes the Koszul form in terms of fundamental weights.

Lemma 16 The 1-form ψ is equal to

$$\psi = 2(\delta^{\mathfrak{g}} - \delta^{\mathfrak{h}})$$

where

$$\delta^{\mathfrak{g}} = \sum_{\alpha \in R^+} \alpha, \qquad \delta^{\mathfrak{h}} = \sum_{\alpha \in R_0^+} \alpha,$$

and the linear forms on the Cartan subalgebra \mathfrak{a} are considered as linear forms on \mathfrak{g} which vanish on root spaces \mathfrak{g}_{α} .

Proposition 17 Let $\Pi = \Pi^0 \cup \Pi^1 = \{\alpha_1, \ldots, \alpha_\ell\}$ be the simple root system (corresponding to the gradation) and denote by π_i the fundamental weight corresponding to the simple root α_i , namely

$$2\frac{(\pi_i,\alpha_j)}{(\alpha_j,\alpha_j)} = \delta_{ij} \,.$$

If $P^1 = \{\pi_{i_1}, \ldots, \pi_{i_r}\}$, then the Koszul form ψ is equal to

$$\psi = 2 \sum_{\pi \in P^1} n_\pi \pi = 2 \sum_{h=1}^r a_{i_h} \pi_{i_h}, \qquad (13)$$

where

$$a_{i_h} = 2 + b_{i_h}, \quad \text{with} \quad b_{i_h} = -2 \frac{(\delta^{\mathfrak{h}}, \alpha_{i_h})}{(\alpha_{i_h}, \alpha_{i_h})} \ge 0.$$
(14)

The main theorem

Theorem 18 Let R be a root system of a complex semisimple Lie algebra g with respect to a Cartan subalgebra \mathfrak{a} and $\mathfrak{g} = \mathfrak{g}_{-k} + \cdots + \mathfrak{g}_k$ the fundamental gradation associated with a decomposition $\Pi = \Pi^0 \cup \Pi^1$ of a simple root system $\Pi \subset R$. Let σ be an admissible antiinvolution of g which defines the graded real form \mathfrak{g}^{σ} of \mathfrak{g} and ψ be the corresponding Koszul form on g. Let $(M = G^{\sigma}/H^{\sigma}, K)$ be a homogeneous manifold of a real semisimple Lie group G^{σ} with Lie algebra \mathfrak{g}^{σ} such that the stability subalgebra $\mathfrak{h} = \mathfrak{g}_0^{\sigma}$ and H^{σ} preserves the generalized Gauss decomposition. Denote by K the invariant para-complex structure on M associated with the gGd and by $\rho = d\psi$ the invariant symplectic form on M defined by $d\psi$. Then for any $\lambda \neq 0$ the pair $(K, \lambda \rho)$ is an invariant para-Kähler Einstein structure on M and this construction exhausts all homogeneous para-Kähler Einstein manifolds of real semisimple Lie groups.