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Abstract. We review recent results in the theory of holonomy groups of pseudo-Riemannian
manifolds, i.e. manifolds with indefinite metrics. First we present the classification of Lorentzian
holonomy groups, that is a list of possible groups and metrics which realise these as holonomy
groups. This is followed by applications and some remarks about holonomy related structures
on Lorentzian manifolds. Then we review partial results in signature (2, n + 2), in particular
the classification of unitary holonomy groups, again presenting the groups and the realising
metrics. Then we turn to results in neutral signature (n, n), focussing on the situation of a
para-Kähler structure. Finally, the classification in signature (2, 2) obtained by Bérard-Bergery
and Ikemakhen is presented. As a new result we prove the existence of metrics in cases for which
the realisation as holonomy group was left open in their article.
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1. Introduction

In the study of geometric structures of manifolds equipped with a non-degenerate metric
the notion of a holonomy group turned out to be very useful. It links geometric and
algebraic properties and allows to apply the tools of algebra to geometric questions. In
particular, it enables us describe parallel sections in geometric vector bundles associated
to the manifold, such as the tangent bundle, tensor bundles, or the spin bundle, as
holonomy-invariant objects and by algebraic means. Hence, a classification of holonomy
groups gives a framework in which geometric structures on semi-Riemannian manifolds
can be studied.

Many interesting developments in differential geometry were initiated or driven by
the study and the knowledge of holonomy groups, such as the study of so-called special
geometries in Riemannian geometry. These developments were based on the classification
result of Riemannian holonomy groups, which was achieved by the de Rham decomposi-
tion theorem [36] and the Berger list of irreducible pseudo-Riemannian holonomy groups
[14] (see Section 2.2 of the present article).

For manifolds with indefinite metric this question was for a long time widely open
and untackled, apart from a classification regarding 4-dimensional Lorentzian metrics by
J. F. Schell [75] and R. Shaw [79] (presented in Section 3.7). The main difficulty in the
case of pseudo-Riemannian manifolds is the situation that the holonomy group preserves
a degenerate subspace of the tangent space. In this situation the de Rham theorem does
not apply, and one cannot reduce the algebraic aspect of the classification problem to
irreducible representations. However, the Wu theorem [86] and the results of Berger [14]
reduce the task of classifying holonomy groups of pseudo-Riemannian manifolds to the
case of indecomposably, non-irreducibly acting groups (any such group does not preserve
any proper non-degenerate subspace of the tangent space, but preserves a proper isotropic
subspace of the tangent space, see Section 2.2). In this article we want to present how this
problem can be dealt with and which classifications results have been obtained recently
by applying this method.

After explaining the basic properties of affine and semi-Riemannian holonomy groups
in Section 2, we discuss the classification of the holonomy algebras (equivalently, con-
nected holonomy groups) of Lorentzian manifolds in Section 3. The first step in this
classification was done in 1993 by L. Bérard-Bergery and A. Ikemakhen who divided
indecomposable, non-irreducible subalgebras of so(1, n + 1) into 4 types, see [11]. In [47]
a more geometric proof of this result is given, which is presented in Section 3.2. To each
indecomposable, non-irreducible subalgebra of h ⊂ so(1, n+1) one can associate a subal-
gebra of so(n), which is called the orthogonal part of h. In [66, 68, 69] (see also [70, 73])
it is proved that the orthogonal part of an indecomposable, non-irreducible holonomy
algebra of a Lorentzian manifold is the holonomy algebra of a Riemannian manifold (see
Section 3.3). In [48] metrics for all possible holonomy algebras of Lorentzian manifold
were constructed (Section 3.4). This completes the classification of holonomy algebras for
Lorentzian manifolds. There are many applications of holonomy theory for Lorentzian
manifold such as the study of equations motivated by physics in relation to the possible
holonomy groups. On the one hand these are the Einstein equations, on the other hand
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certain spinor field equations in supergravity theories (see e.g. [42]). In Section 3.5 we
present the classification of holonomy groups of indecomposable Lorentzian manifolds
which admit a parallel spinor. In Section 3.6 we describe holonomy related geometric
structures on Lorentzian manifolds.

Widely open is the classification problem of holonomy groups in signatures other than
Riemannian and Lorentzian apart from some results in certain signatures.

In Section 4 we discuss the holonomy of pseudo-Riemannian manifolds of index 2. For
indecomposable, non-irreducible subalgebras of so(2, n+2) that satisfy a certain condition
Ikemakhen gave in [56] a distinction into different types similar to the Lorentzian case. In
[44] the analog of the orthogonal part of an indecomposable, non-irreducible subalgebra
in so(2, n+2) is studied. The surprising result is that, unlike to the Lorentzian case, there
is no additional condition on the subalgebra g ⊂ so(n) induced by the Bianchi-identity
and replacing the property which turned out to be essential in Lorentzian signature.
Instead, any subalgebra of so(n) can be realised as this part of a holonomy algebra, see
Section 4.1. Furthermore, in [45] indecomposable, non-irreducible holonomy algebras of
pseudo-Kählerian manifolds of index 2, i.e. holonomy algebras contained in u(1, n+1) ⊂
so(2, 2n + 2), were classified. We present this classification with the idea of the proof
in Section 4.2. In Section 4.3 examples of 4-dimensional Lie groups with left-invariant
pseudo-Kählerian metrics are given.

In Section 5 we review the results known about holonomy for metrics of neutral
signature (n, n), again obtained by Bérard-Bergery and Ikemakhen in [12]. They also
gave a list of possible holonomy groups in signature (2, 2), and realised those in the list
which leave invariant two complementary totally isotropic planes as holonomy algebras.
Our results in [45] enables us to realise all subalgebras of u(1, 1) from this list. As a new
result we give metrics realising two algebras which were still in question to be realised.
We should remark, that some of these metrics disprove claims made in [49] that the
corresponding algebras cannot be realised as holonomy algebras. This result completes
the classification of holonomy groups in signature (2,2), apart from one exception, for
which we could not find a metric. Upon completion of this article we were informed that
L. Bérard-Bergery and T. Krantz have developed a construction on the cotangent bundle
of a surface which ensures that even this last group can be realised as a holonomy group
[13].

2. Holonomy groups

2.1. Holonomy groups of linear connections. If a smooth manifold M of
dimension m is equipped with a linear connection ∇ on the tangent bundle TM , we can
parallel translate a tangent vector X ∈ TpM at a point p ∈ M along any given curve
γ : [0, 1] → M starting at p, i.e. γ(0) = p. The parallel displacement, denoted by X(t),
is a vector field along γ satisfying the equation ∇γ̇(t)X(t) = 0 for all t in the domain of
the curve. This is a linear ordinary differential equation, and thus, for any curve γ the
map

Pγ(t) : Tγ(0)M → Tγ(t)M
X %→ Pγ(t)(X) := X(t)

is a vector space isomorphism which is called parallel displacement. Hence, ∇ enables
us to link the tangent spaces in different points, which is the reason why it bears the
name connection. Then the holonomy group of ∇ at p is the group defined by parallel
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displacements along loops about this point,

Holp(M,∇) := {Pγ(1) | γ(0) = γ(1) = p}.

This group is a Lie group which is connected if the manifold is simply connected. Its
connected component is called connected holonomy group, denoted by Hol0p(M,∇), and
its the group generated by parallel displacements along homotopically trivial loops. Its
Lie algebra holp(M,∇) its called holonomy algebra. Obviously, both are given together
with their representation on the tangent space TpM which is usually identified with the
Rm. In this sense we have that Holp(M,∇) ⊂ Gl(m, R), but only defined up to conjuga-
tion. Holonomy groups at different points in a connected component of the manifold are
conjugated by an element in Gl(m, R), which is obtained by the parallel displacement
along a curve joining these different points. It is worthwhile to note that the holonomy
group is closed if it acts irreducibly (for a proof of this fact see [82] or [38]). This is not
true in general, there are examples of non-closed holonomy groups.

The calculation of holonomy groups uses the Ambrose–Singer holonomy theorem,
which states that for a manifold M with linear connection ∇ the holonomy algebra
holp(M,∇) is equal to

span
{
P−1

γ(t) ◦R
(
Pγ(t)X,Pγ(t)Y

)
◦ Pγ(t)

∣∣∣ γ(0) = p, X, Y ∈ TpM
}

,

where R is the curvature of ∇, R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]. For connections that have
no torsion, i.e. ∇XY −∇Y X = [X, Y ], the curvature satisfies the first Bianchi-identity

R(X, Y )Z +R(Y,Z)X +R(Z,X)Y = 0,

which imposes very strong algebraic conditions on the holonomy algebra which can be
described in terms of curvature endomorphisms. Let K be the real or complex numbers.
The curvature endomorphisms of a subalgebra g ⊂ gl(n, K) are defined as

K(g) := {R ∈ Λ2(Kn)∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0}. (1)

K(g) is a g-module, and the space gK := span{R(x, y) | x, y ∈ Kn, R ∈ K(g)} is an ideal
in g. One defines:

Definition 2.1. g ⊂ gl(n, K) is called Berger algebra if gK = g.

Then, the Ambrose Singer holonomy theorem implies the following result.

Theorem 2.2. The Lie algebra of a holonomy group of a torsion free connection on a
smooth manifold is a Berger algebra.

Hence, there are two steps involved in the classification of holonomy groups of torsion
free connections. The first is to classify Berger algebras, and the second to find torsion free
connections with the algebras obtained as holonomy algebras. The first problem can be
solved in full generality when the Berger algebra acts irreducibly. This was done recently
by S. Merkulov and L. Schwachhöfer in [74, 77, 78], also providing examples of torsion
free connections realising all the algebras obtained. This classification extends the well-
known Berger list of irreducible holonomy groups of pseudo-Riemannian manifolds (c.f.
next section). However, the assumption of irreducibility is essential for these classification
results because their proof uses the theory of irreducible representations of Lie algebras.
An overview about results on irreducible holonomy groups is also given in [25] and [24].
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As we will see later, the approach we have to take for connections of indefinite metrics
has to deal with non-irreducible representations.

One should remark that a classification problem for holonomy groups only arises if
one poses further conditions on the linear connection, such as conditions on the torsion
because of the following result of J. Hano and H. Ozeki [54]: Any closed subgroup of
Gl(m, R) can be obtained as a holonomy group of a linear connection, but possibly a
connection with torsion. They also gave examples of holonomy groups which were not
closed. We will return to this question later.

Concluding this introductory section we want to point out a general principle in
holonomy theory which says that any subspace which is invariant under the holonomy
group corresponds to a distribution (i.e. a subbundle of the tangent bundle) which is
invariant under parallel transport. Obviously, this distribution is obtained by parallel
transporting the invariant subspace, and this procedure is independent of the chosen
path because of the holonomy invariance of the subspace. This distribution is called
parallel, which means that its sections are mapped onto its sections under ∇X for any
X ∈ TM .

2.2. Holonomy groups of semi-Riemannian manifolds. (M, g) is a
semi-Riemannian manifold of dimension m = r + s and signature (r, s) if g is a met-
ric of signature (r, s). If the metric is positive definite (r = 0 in our convention) it
is called Riemannian, otherwise pseudo-Riemannian. For a semi-Riemannian manifold,
there exists a uniquely defined linear torsion-free connection ∇ = ∇g which parallelises
the metric, called Levi-Civita connection. The holonomy group of a semi-Riemannian
manifold then is the holonomy group of this connection, Holp(M, g) := Holp(M,∇). As
the Levi-Civita connection is metric, the parallel displacement preserves the metric. This
implies on the one hand that the holonomy group is a subgroup of O(TpM, g), and can
be understood as a subgroup of O(r, s) which is only defined up to conjugation in O(r, s).
On the other hand it ensures that for a subspace V ⊂ TpM which is invariant under the
holonomy group the orthogonal complement V⊥ is invariant as well.

For a Riemannian metric the holonomy group acts completely reducibly, i.e. the
tangent space decomposes into subspaces on which it acts trivially or irreducibly, but
for indefinite metrics the situation is more subtle. We say that the holonomy group acts
indecomposably if the metric is degenerate on any invariant proper subspace. In this case
we also say that the manifold is indecomposable. Of course, for Riemannian manifolds,
this is the same as irreducibility.

A remarkable property is that the holonomy group of a product of Riemannian man-
ifolds (i.e. equipped with the product metric) is the product of the holonomy groups of
these manifolds (with the corresponding representation on the direct sum). Even more re-
markable is the fact that a converse of this statement is true in the following sense: Any
pseudo-Riemannian manifold whose tangent space at a point admits a decomposition
into non-degenerate, holonomy-invariant subspaces is locally isometric to a product of
pseudo-Riemannian manifolds corresponding to the invariant subspaces, and moreover,
the holonomy group is a product of the groups acting on the corresponding invariant
subspaces. These groups are the holonomy groups of the manifolds in the local product
decomposition if the original manifold is complete (see [16, Theorem 10.38 and Remark
10.42]). This was proven by A. Borel and A. Lichnerowicz [18], and the property that
a decomposition of the representation space entails a decomposition of the acting group
is sometimes called Borel–Lichnerowicz property. A global version of this statement
was proven under the assumption that the manifold is simply-connected and complete
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by G. de Rham [36, for Riemannian manifolds] and H. Wu [86, in arbitrary signature].
Summarizing we have the following result:

Theorem 2.3 (G. de Rham [36] and H. Wu [86]). Any simply-connected, complete
pseudo-Riemannian manifold (M, g) is isometric to a product of simply connected, com-
plete pseudo-Riemannian manifolds one of which can be flat and the others have an
indecomposably acting holonomy group and the holonomy group of (M, g) is the product
of these indecomposably acting holonomy groups.

The other groundbreaking result in the holonomy theory of semi-Riemannian mani-
folds is the list of irreducible holonomy groups of non locally-symmetric pseudo-Riemannian
manifolds, which was obtained by M. Berger [14]. This list as it appears here is a result
of the efforts of several other authors, simplifying the proof in Riemannian signature [80],
eliminating groups of locally symmetric metrics [1, 22], realising the exceptional groups
as holonomy groups [23], eliminating groups which were not Berger algebras and finding
missing entries (for an overview see [24]).

Theorem 2.4 (M. Berger [14]). Let (M, g) be a simply connected pseudo-Riemannian
manifold of dimension m = r + s and signature (r, s), which is not locally-symmetric. If
the holonomy group of (M, g) acts irreducibly, then it is either SO0(r, s) or one of the
following (modulo conjugation in O(r, s)):

U(p, q) or SU(p, q) ⊂ SO(2p, 2q), m ≥ 4
Sp(p, q) or Sp(p, q) · Sp(1) ⊂ SO(4p, 4q), m ≥ 8

SO(r, C) ⊂ SO(r, r), m ≥ 4
Sp(p, R) · Sl(2, R) ⊂ SO(2p, 2p), m ≥ 8
Sp(p, C) · Sl(2, C) ⊂ SO(4p, 4p), m ≥ 16

G2 ⊂ SO(7)
G∗

2(2) ⊂ SO(4, 3)
GC

2 ⊂ SO(7, 7)
Spin(7) ⊂ SO(8)

Spin(4, 3) ⊂ SO(4, 4)
Spin(7)C ⊂ SO(8, 8)

We should remark that a lot of progress has been made in constructing Riemannian
manifolds with given holonomy group and certain topological properties. We only mention
a few: compact manifolds with holonomy Sp(q) have been constructed in [8], see also [16].
[64] constructed complete manifolds with holonomy Sp(1) · Sp(q), for compact examples
with this holonomy group see [65]. Complete examples with exceptional holonomy G2

and Spin(7) were constructed in [27] and compact ones in [59, 58]. For an overview over
related results see [24]. For indefinite metrics these global questions are widely open, apart
from attempts in [7], where globally hyperbolic Lorentzian metrics with indecomposable,
non-irreducible holonomy group (see next section) were constructed.

Returning to the classification problem, for Riemannian manifolds one combines these
classification results with the de Rham decomposition in order to obtain a comprehensive
holonomy classification.

Theorem 2.5. Any simply-connected, complete Riemannian manifold (M, g) is isometric
to a product of simply-connected, complete Riemannian manifolds one of which may be
flat and the others are either locally symmetric or have one of the following groups as
holonomy, SO(n), U(n), SU(n), Sp(n), Sp(n) · Sp(1), G2, or Spin(7). The holonomy
group of (M, g) is a product of these groups.
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In case of symmetric spaces, the holonomy group is equal to the isotropy group of the
symmetric space and in many cases determines the space up to duality. Simply connected
pseudo-Riemannian symmetric spaces with irreducible holonomy groups were classified
by E. Cartan [33, for Riemannian signature] and M. Berger [15, for arbitrary signature].
In the case of indecomposable, non-irreducible holonomy group the classification exists

in the following cases: Lorentzian signature [30], signature (2, q) [28, 29, 60], hyper-
Kählerian manifolds of signature (4, 4q) [4, 61]. For more details see the overview [62].

For indefinite metrics there is the possibility that one of the factors in Theorem 2.3
is indecomposable, but non-irreducible. This means that the holonomy representation
admits an invariant subspace on which the metric is degenerate, but no proper non-
degenerate invariant subspace. An attempt to classify holonomy groups for indefinite
metric has to provide a classification of these indecomposable, non-irreducible holonomy
groups.

If a holonomy group Holp(M,h) =: H ⊂ SO0(p, q) acts indecomposably, but non-
irreducibly, with an degenerate invariant subspace V ⊂ TpM , it admits a totally isotropic
invariant subspace

I := V ∩ V⊥.

This implies that H is contained in the stabiliser of this totally isotropic subspace,

H ⊂ SO0(p, q)I := {A ∈ SO0(p, q) | AI ⊂ I},

or in terms of the corresponding Lie algebras

h ⊂ so(p, q)I := {X ∈ so(p, q) | XI ⊂ I}.

In the following sections we will present results about the classification of holonomy
groups contained in so(p, q)I for I a totally isotropic subspace.

Finally we should mention that by the general principle, I defines a totally isotropic
distribution on M , i.e. a subbundle of TM which is invariant under parallel transport.
This parallel distribution ensures the existence of so-called Walker co-ordinates (first in
[83, 84, 85], see also [37]).

Theorem 2.6 (Walker [83, 84, 85]). Let (M,h) be a pseudo-Riemannian manifold of
dimension n with a parallel r-dimensional totally isotropic distribution I. The exist co-
ordinates (x1, . . . , xn) such that

(
h

(
∂

∂xi
,

∂

∂xj

))n

i,j=1




0 0 Ir

0 G F
Ir F t H



 ,

where F, G, H are matrices of smooth functions, G is a symmetric (n− 2r)× (n− 2r)
matrix, H is a symmetric r× r matrix, and F is a r× (n− 2r) matrix, such that G and
F are independent of the co-ordinates (x1, . . . , xr).

These co-ordinates will be useful in order to obtain metrics which realise the possible
indecomposable, non-irreducible holonomy groups.

3. Lorentzian holonomy groups

3.1. The classification result. In this section we want to describe the classi-
fication of reduced holonomy groups of Lorentzian manifolds. First of all, the Berger
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list in Theorem 2.4 implies that the only irreducible holonomy group of Lorentzian man-
ifolds is the full SO0(1, n). This is due to the algebraic fact that the only connected
irreducible subgroup of O(1, n) is SO0(1, n) which was proven by A. J. Di Scala and C.
Olmos [39] (see also [20, 10, 38] for other proofs). Hence, if one is interested in Lorentzian
manifolds with special holonomy, i.e. with proper subgroups of SO0(1, n) as holonomy
but not being a product, one has to look at manifolds admitting a holonomy-invariant
subspace. Using this fact, the decomposition in Theorem 2.3 gives the following result
for Lorentzian manifolds.

Corollary 3.1. Any simply-connected, complete Lorentzian manifold (M,h) is isometric
to the following product of simply-connected complete pseudo-Riemannian manifolds,

(N,h)× (M1, g1)× . . .× (Mk, gk),

where the (Mi, gi) are either flat or irreducible Riemannian manifolds and (N,h) is either
(R,−dt2) or an indecomposable Lorentzian manifold, the holonomy of which is either
SO0(1, n) or contained in the stabiliser SO0(1, n)I of a light-like line I. The holonomy
group of (M,h) is the product of the holonomy groups of (N,h) and the (Mi, gi)’s.

Hence, we have to focus on the classification of Lorentzian holonomy groups which
act indecomposably, but non-irreducibly, i.e. which are contained in the stabiliser in
SO0(TpM) of a light-like line I in TpM . This stabiliser is the parabolic group SO0(1, n+
1)I in the conformal group SO0(1, n + 1) if (n + 2) is the dimension of M . To describe
this stabiliser further we identify TpM with the Minkowski space R1,n+1 of dimension
(n + 2) and fix a basis (X, E1, . . . , En, Z) in which the scalar product has the form




0 0t 1
0 In 0
1 0t 0



 , (2)

where In is the n-dimensional identity matrix. The Lie algebra of the connected stabiliser
of I = R ·X inside the conformal group SO0(1, n + 1) can be written as follows

so(1, n + 1)I









a vt 0
0 A −v
0 0t −a





∣∣∣∣∣∣
a ∈ R, v ∈ Rn, A ∈ so(n)




 . (3)

This Lie algebra is a semi-direct sum in an obvious way, so(1, n+1)I = (R⊕ so(n))!Rn,
the commutator relations are given as follows:

[(a,A, v) , (b, B, w)] =
(
0, [A,B]so(n) , (A + a Id) w − (B + b Id) v

)
. (4)

In this sense we will refer to R, Rn and so(n) as subalgebras of so(1, n + 1)I . R is an
Abelian subalgebra of so(1, n + 1)I , commuting with so(n), and Rn an Abelian ideal in
so(1, n + 1)I . so(n) is the semisimple part and co(n) = R ⊕ so(n) the reductive part of
so(1, n+1)I . The corresponding connected Lie groups in SO0(1, n+1)I are R+, SO(n),
and Rn, and SO0(1, n + 1)I is equal to the semidirect product (R+ × SO(n)) ! Rn.

Now one can assign to a subalgebra h ⊂ so(1, n + 1)I the projections prR(h), prRn(h)
and prso(n)(h). The subalgebra g := prso(n)(h) associated to a h is called the orthogonal
part of h. Note that if h ⊂ so(1, n + 1)I acts indecomposably , then prRn(h) = Rn,
and h is Abelian if and only if h = Rn. Moreover, h has a trivial subrepresentation
if and only if prRh = 0. In this case (M,h) admits a parallel light-like vector field.
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Finally g := prso(n)(h) ⊂ so(n) is compact, i.e. there exists a positive definite invariant
symmetric bilinear form on it. This implies that g is reductive, i.e. its Levi decomposition
is g = z ⊕ g′ where z is the center of g and g′ := [g, g] = z⊥ is the derived Lie algebra,
which is semisimple.

Now, the classification of indecomposable, non-irreducible Lorentzian holonomy alge-
bras consists of two main results. The first is the distinction of indecomposable subalge-
bras of so(1, n+1)I into four types due to the relation between their projections obtained
by L. Bérard-Bergery and A. Ikemakhen [11].

Theorem 3.2 (Bérard-Bergery, Ikemakhen [11]). Let h be a subalgebra of so(1, n+1)I =
(R ⊕ so(n)) ! Rn, acting indecomposably on Rn+2, and let g : prso(n)(h) = z ⊕ g′ be the
Levi-decomposition of its orthogonal part. Then h belongs to one of the following types.

1. If h contains Rn, then there are three types:

Type 1: h contains R. Then h = (R⊕ g) ! Rn.
Type 2: prR(h) = 0, i.e. h = g ! Rn.
Type 3: Neither type 1 nor type 2. In this case there exists an epimorphism

ϕ : z → R, such that
h = (l⊕ g′) ! Rn,

where l := graph ϕ = {(ϕ(T ), T )|T ∈ z} ⊂ R⊕ z. Or, written in matrix form:

h =









ϕ(A) vt 0

0 A + B −v
0 0 −ϕ(A)





∣∣∣∣∣∣
A ∈ z, B ∈ g′, v ∈ Rn




 .

2. In the case where h does not contain Rn we have Type 4: There exists a non-trivial
decomposition Rn = Rk⊕Rl, 0 < k, l < n and a epimorphism ψ : z → Rl, such that
g ⊂ so(k) and h = (l⊕ g′) ! Rk ⊂ so(1, n + 1)I where l := {(ϕ(T ), T ) |T ∈ z} =
graph ψ ⊂ Rl ⊕ z. Or, written in matrix form:

h =










0 ψ(A)t vt 0
0 0 0 −ψ(A)
0 0 A + B −v
0 0 0 0





∣∣∣∣∣∣∣∣
A ∈ z, B ∈ g′, v ∈ Rk





.

The distinction of Theorem 3.2 obviously gives four types for the corresponding con-
nected, indecomposable groups in the parabolic SO0(1, n + 1)I . We should remark that
these types are independent of conjugation within O(1, n + 1).

The second result gives a classification of the orthogonal part and was proved in
[66, 68, 69, 48].

Theorem 3.3. Let H be a connected subgroup of SO0(1, n+1) which acts indecomposably
and non-irreducibly. Then H is a Lorentzian holonomy group if and only if its orthogonal
part is a Riemannian holonomy group.

Naturally, the proof of this theorem consists of two main steps. The first is to show
that the orthogonal part of H has to be a Riemannian holonomy group. This involves
the notion of weak-Berger algebras and their classification, which is explained in Section
3.3. This step uses similar methods as the classification of irreducible holonomy groups of
torsion free connections and was done in [66, 68, 69]. The second step consists of showing
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that each of the arising groups can actually be realised as holonomy group. This is easy
for the Types 1 and 2 in Theorem 3.2 (see for example [67, 70]) but more involved for
the coupled Types 3 and 4 and was achieved recently in [48]. This method is explained
in Section 3.4.

3.2. Indecomposable subalgebras of so(1, n+1)I. The proof of Theorem
3.2 given by L. Bérard-Bergery and A. Ikemakhen was purely algebraic. We describe now
a more geometric proof of this theorem given in [47], which works directly for the groups
and provides a geometric interpretation for the different types. Therefore we equip Rn

with the Euclidean scalar product. Denote by Sim(n) the connected component of the
Lie group of similarity transformations of Rn. Then R+, SO(n), and Rn in Sim(n)
are the connected identity components of the Lie groups of homothetic transformations,
rotations and translations, respectively. We obtain for Sim(n) the same decomposition
as for SO0(1, n + 1)I , i.e. we have a Lie group isomorphism Γ : P → Sim(n). The
isomorphism Γ can be defined geometrically. For this consider the vector model of the
real hyperbolic space Hn+1 ⊂ R1,n+1 and its boundary ∂Hn+1 ⊂ PR1,n+1 that consists
of isotropic lines of R1,n+1 and is isomorphic to the n-dimensional sphere. Any element
f ∈ P induces a transformation Γ(f) of the Euclidean space ∂Hn+1\{R · X} - Rn. In
fact, Γ(f) is a similarity transformation of Rn. This defines the isomorphism Γ. Now, in
[47] we have proven that a connected Lie subgroup H ⊂ P is indecomposable if and only
if the subgroup Γ(H) ⊂ Sim(n) acts transitively on Rn. Then, using a description for
connected transitive subgroups of Sim(n) given in [2] and [3], one can show the following
theorem.

Theorem 3.4. A connected Lie subgroup H ⊂ Sim(n) is transitive if and only if H
belongs to one of the following types for which G ⊂ SO(n) is a connected Lie subgroup:

Type 1: H = (R+ ×G) ! Rn;

Type 2: H = G ! Rn;

Type 3. H = (RΦ
+ × G) ! Rn, where Φ : R+ → SO(n) is a non-trivial homomorphism

and
RΦ

+ = {a · Φ(a)|a ∈ R+} ⊂ R+ × SO(n)

is a group of screw dilations of Rn that commutes with G;

Type 4. H = (G×(Rn−m)Ψ)!Rm, where 0 < m < n, Rn = Rm⊕Rn−m is an orthogonal
decomposition, Ψ : Rn−m → SO(m) is a homomorphism with ker dΨ = {0}, and

(Rn−m)Ψ = {Ψ(u) · u|u ∈ Rn−m} ⊂ SO(m)× Rn−m

is a group of screw isometries of Rn that commutes with G.

The indecomposable Lie algebras of the corresponding Lie subgroups of SO0(1, n + 1)I
have the same type as in Theorem 3.2.

Now we want to describe the curvature endomorphisms K(h) for a subalgebra h ⊂
so(1, n + 1)I ⊂ so(1, n + 1) with respect to these four types. In addition to the space
K(h) defined in (1) we define another kind of curvature endomorphisms. Let K be the
real or complex numbers. For a subalgebra g ⊂ so(n, C) or g ⊂ so(r, s) we set

B(g) := {Q ∈ (Kn)∗ ⊗ g) | 〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0}, (5)
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where 〈., .〉 is the corresponding scalar product. B(g) is a g-modules of curvature endo-
morphisms. In order to distinguish it from K(g), one may call B(g) the space of weak
curvature endomorphisms. In [46] the following theorem was proved, for which we fix a
basis (X, E1, . . . , En, Z) of R1,n+1 as in the previous section.

Theorem 3.5. Let h be a subalgebra of the parabolic algebra so(1, n+1)I in so(1, n+1)
and g = z⊕ g′ its orthogonal part. Then it holds:

(1) Any R ∈ K(h) is uniquely given by

λ ∈ R, L ∈ (Rn)∗, Q ∈ B(g), R0 ∈ K(g), and T ∈ End(Rn) with T ∗ = T

in the following way,

R(X, Z) = (λ, 0, L∗(1)), R(U, V ) = (0, R0(U, V ),−1
2
Q∗(U ∧ V ))

R(U,Z) = (L(U), Q(U), T (U)), R(X, U) = 0,

where U, V ∈ span(E1, . . . , En).

(2) If h is indecomposable of Type 2, any R ∈ K(h) is given as in (1) with λ = 0 and
L = 0.

(3) If h is indecomposable of Type 3 defined by the epimorphism ϕ : z → R, any
R ∈ K(h) is given as in (1) with λ = 0, L = ϕ̃ ◦Q and R0 ∈ K(g′ ⊕ ker ϕ), where
ϕ̃ is the extension of ϕ to g set to zero on g′.

(4) If h is of Type 4 defined by the epimorphism ψ : z → Rn−k, any R ∈ K(h) is given
as in (1) with λ = 0, L = 0, prRn−k ◦T = ψ̃ ◦ Q and R0 ∈ K(g′ ⊕ ker ψ), where ψ̃
is the extension of ψ to g set to zero on g′.

Here U ∧ V denotes the identification of Λ2 with so(n) and the ∗ denotes the adjoint
with respect to the scalar product 〈., .〉 in Rn and the Killing form in so(n). In particular
T is a symmetric matrix and Q∗ : g → Rn is given by Q∗(U ∧ V ) = 2〈Q(Ei)U, V 〉Ei.

Now we can apply these results to the (connected) holonomy group H := Holp(M,h)
of an indecomposable, non-irreducible Lorentzian manifold (M,h). H belongs to one of
the four types corresponding to the characterization of the Lie algebra h in Theorem 3.2.
The Lie group corresponding to the orthogonal part g is denoted by G ⊂ SO(n). If h is
of uncoupled Type 1 or 2, then we have either

H = (R+ ×G) ! Rn, or H = G ! Rn, (6)

respectively. If h is of one of the coupled types 3 or 4 it is defined by a epimorphism
ϕ : z → R or ψ : z → Rl where z is the center of g due to Theorem 3.2. For Type 3 or 4
we have that

H = L ·G′ ! Rn, or H = L ·G′ ! Rn−l, (7)

where G′ is the Lie group corresponding to the derived Lie algebra g′ of g and L is the
Lie group corresponding to the graph of ϕ or ψ, respectively. We get some immediate
consequences.

Proposition 3.6. A Lorentzian manifold with indecomposable, non-irreducible holonomy
group H admits a parallel light-like vector field if and only if prR+(H) = 0, i.e. if and
only if its Lie algebra is of Type 2 or 4.
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Regarding Lorentzian Einstein manifolds, we get another consequence by (1) of The-
orem 3.5 which implies that the Ricci-trace Ric = tr(1,4) R is given by

Ric(X, Z) = −λ,
Ric(U, V ) = Ric0(U, V ), where Ric0 = tr(1,4) R0

Ric(U,Z) = −L(U)−
∑n

i=1〈Q(Ei)U,Ei〉
Ric(Z,Z) = tr(T )

(8)

for U, V ∈ span(E1, . . . , En). Evaluating these formulas we get in [43] the following
consequence.

Theorem 3.7. Let (M,h) be an indecomposable non-irreducible Lorentzian Einstein
manifold. Then the holonomy of (M,h) is of uncoupled type 1 or 2. If the Einstein
constant of (M,h) is non-zero, then the holonomy of (M,h) is of type 1.

3.3. Lorentzian holonomy, weak-Berger algebras, and their clas-
sification. In this section we want to present the classification of possible Lorentzian
holonomy groups. In particular, we want to describe how to prove the following Theorem.

Theorem 3.8. Let H be the connected holonomy group of an indecomposable, non-
irreducible Lorentzian manifold. Then its orthogonal part G := prSO(n)(H) is a Rieman-
nian holonomy group.

To this end we will explain the notion of weak-Berger algebras, which was introduced
and studied in [66]. As for the definition of K(g) in Section 2.1, let K be the real or
complex numbers. For g ⊂ so(n, C) or g ⊂ so(r, s) and B(g) the space of weak curvature
endomorphism we define:

gB := span{Q(x) | x ∈ Kn, Q ∈ B(g)}.

Just as gK in Definition 2.1, gB is an ideal in g.

Definition 3.9. g ⊂ so(n, C) or g ∈ so(r, s) is a weak-Berger algebra if gB = g.

Equivalent to the (weak-)Berger property is the fact that there is no proper ideal h
in g such that K(h) = K(g) (resp. B(h) = B(g)). One easily verifies that the vector space
R(g) spanned by {R(x, .) ∈ B(g) | R ∈ K(g), x ∈ Kn} is a g-submodule of B(g). This
implies gK ⊂ gB, and thus:

Proposition 3.10. Every orthogonal Berger algebra is a weak-Berger algebra.

For a weak-Berger algebra the Bianchi-identity which defines B(g) yields a decompo-
sition property similar to the Borel–Lichnerowicz property mentioned in Section 2.2.

Theorem 3.11. Let g ⊂ so(n) be a weak-Berger Algebra. To the decomposition of Rn

into invariant subspaces Rn = E0 ⊕ E1 ⊕ . . . ⊕ Ek, where E0 is a trivial submodule
and the Ei are irreducible for i = 1, . . . , k, corresponds a decomposition of g into ideals
g = g1⊕ . . .⊕gr such that gi acts irreducibly on Ei and trivially on Ej for an i 1= j. Each
of the gi ⊂ so(dimEi) is a weak Berger algebra and it holds that B(g) = B(g1)⊕. . .⊕B(gk).

We should point out that the same statement holds for orthogonal Berger algebras
for a decomposition of Rn into g-invariant orthogonal subspaces. This corresponds to
the algebraic aspect of Theorem 2.3. Using the description of the curvature endomor-
phisms in Theorem 3.5 and by Proposition 3.10 one obtains the following consequence,
the ‘only if’-direction of which was proved in [66] independently of the description of
the space of curvature endomorphisms by restricting the Bianchi-identity to the space
span(E1, . . . , En).
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Corollary 3.12. An indecomposable subalgebra h ⊂ p is a Berger algebra if and only if
its orthogonal part g ⊂ so(n) is a weak-Berger algebra.

Holonomy algebras of torsion free connections are Berger algebras but the so(n)-
projection of an indecomposable, non-irreducible Lorentzian manifold a priori is no holon-
omy algebra, and therefore not necessarily a Berger algebra. But from Corollary 3.12
and the Ambrose–Singer holonomy theorem it follows that it is a weak-Berger algebra.

Theorem 3.13. The orthogonal part g of an indecomposable, non-irreducible Lorentzian
holonomy algebra is a weak-Berger algebra. In particular, g decomposes into irreducibly
acting weak-Berger algebras as in Theorem 3.11.

This theorem has several important consequences. It not only gives an algebraic
criterion for the orthogonal part from which a classification attempt can start, it also
provides a proof of the Borel–Lichnerowicz decomposition property for the orthogonal
part proved by L. Bérard-Bergery and A. Ikemakhen [11, Theorem II], which is given
in our Theorem 3.11. This ensures that we are at a similar point as in the Riemannian
situation, that means left with the task of classifying irreducible weak-Berger algebras
instead of Berger algebras.

But Theorem 3.13 also has implication for algebras of coupled type 4. They were
defined by an epimorphism ψ : z → Rp for 0 < p < n where z is the center of the
orthogonal part g. If Rn decomposes as

Rn = Rn0 ⊕ Rn1 ⊕ . . .⊕ Rns ,

where g acts irreducibly on the Rni and trivial on Rn0 , inducing the decomposition of
g = g1 ⊕ · · ·⊕ gs as in Theorem 3.11, then, first of all, we have that 0 < p ≤ n0 < n− 1.
Moreover, as the gi’s act irreducibly, their center has to be at most one-dimensional.
Since ψ is surjective this implies that 0 < p ≤ s. In particular, Type 4 only occurs for
n ≥ 3, i.e. dim M ≥ 5.

Before we explain the classification of weak-Berger algebras we want to present im-
plications of Theorem 3.13 about the conditions under which indecomposable, non-
irreducible holonomy groups are closed. Let H be an indecomposable, non-irreducible
Lorentzian holonomy group and, as above, let G be its orthogonal part. For the uncou-
pled types 1 and 2 it depends only on G if H is closed. But due to Theorem 3.13 G is
a product of irreducibly and orthogonally acting Lie groups, which are closed. Therefore
G, and thus H is closed in this case. If H is of one of the coupled types 3 or 4 it is closed
if and only if L as in formulae (7) is closed. But L is closed if and only if its intersection
with the Torus Z, which is the center of G, is closed. This can be summarised in the
following result obtained in [11].

Corollary 3.14. If the Lie algebra of an indecomposable, non-irreducible Lorentzian
holonomy group H is of Type 1 and 2, then it is closed. If it is of Type 3 or 4, defined
by an epimorphism ϕ , then it is closed if and only if the Lie group generated by the
subalgebra ker(ϕ) is a compact subgroup of the torus.

This corollary implies that holonomy groups of Lorentzian manifolds of dimension
less or equal to 5 are closed.

Now we turn to the classification of irreducible weak-Berger algebras obtained in
[66, 68, 69]. As we use representation theory of complex semisimple Lie algebras, we
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have to describe the transition of a real weak-Berger algebra to its complexification. The
spaces K(g) and Bh(g) for g ⊂ so(r + s) are defined by the following exact sequences:

0 → K(g) ↪→ Λ2(Rn)∗ ⊗ g
λ→ Λ3(Rn)∗ ⊗ Rn

0 → B(g) ↪→ (Rn)∗ ⊗ g
λ∗→ Λ3(Rn)∗,

where the map λ is the skew-symmetrization and λ∗ the dualization by the scalar product
and the skew-symmetrization. If we consider a real Lie algebra g acting orthogonally
on Rn, then the scalar product extends by complexification to a complex-linear scalar
product which is invariant under gC, i.e. gC ⊂ so(r + s, C). The complexification of the
above exact sequences gives

K(g)C = K(gC) and B(g)C = B(gC) (9)

and leads to the following statement.

Proposition 3.15. g ⊂ so(r, s) is a (weak-) Berger algebra if and only if gC ⊂ so(r+s, C)
is a (weak-) Berger algebra.

Thus complexification preserves the weak-Berger as well as the Berger property. But
irreducibility is not preserved under complexification. In order to deal with this problem
we have to recall the following distinctions (for details of the following see [66] or [73]).
Let g ⊂ so(n) be a real orthogonal Lie algebra which acts irreducibly on Rn. Then one
can consider the complexification of this representation, i.e. the representation of the
real Lie algebra g on Cn given by g ⊂ so(n) ⊂ so(n, C). This representations can still be
irreducible, in which case we say that g is of real type, or it can be reducible, and we say
it is of unitary type. In the second case n = 2k has to be even and Cn decomposes into
two g-invariant subspaces, Cn = Ck ⊕ Ck for which we obtain that g ⊂ u(k) is unitary
and irreducible. Note that this implies that g 1⊂ so(k, C). This distinction was made by
E. Cartan in [32] (see also [57] and [51]) for arbitrary irreducible real representations,
where these are called “representations of first type” and of “second type”.

Now we complexify also the Lie algebra g because we want to use the tools of the
theory of irreducible representations of complex Lie algebras. Of course, it holds that
g ⊂ so(n) is irreducible if and only if gC ⊂ so(n, C) is irreducible. Hence, for an irreducible
g ⊂ so(n) we end up with two cases: If g is of real type, then gC ⊂ so(n, C) is irreducible,
or if g is of unitary type, i.e. n = 2k, then gC ⊂ gl(k, C) with gC 1⊂ so(k, C).

For a unitary weak-Berger algebra g0 ⊂ u(k) ⊂ so(2k) in [66] it is shown that there
is an isomorphism between the complexified weak curvature endomorphisms B(gC

0 ) and
the first prolongation

g(1) = {Q ∈ Hom(Ck, g) | Q(u)v = Q(v)u},

where g - gC
0 is the complexification of g0 restricted to the irreducible module Ck, as

explained above, i.e. g ⊂ gl(k, C) irreducibly. We should point out that an analogous
result can be obtained for Berger algebras leading to a classification of irreducible Berger
algebras of unitary type. In this situation one can use the classification of irreducible
complex linear Lie algebras with non-vanishing first prolongation, which is due to E.
Cartan [31], and S. Kobayashi and T. Nagano [63] (see also the list in [78]). Checking
the entries in this list one finds that all but one are complexifications of Riemannian
holonomy algebras, either of non-symmetric Kählerian ones or of hermitian symmetric
spaces. The only exception is C ⊕ sp(k/2, C), but it can be shown that this is not a
weak-Berger algebra. Hence, in this case we end up with:
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Proposition 3.16. If g ⊂ u(k) ⊂ so(2k) is an irreducible weak-Berger algebra of unitary
type, then it is a Riemannian holonomy algebra, in particular a Berger algebra.

Now we turn to the case of a weak-Berger algebra of real type, i.e. an irreducible real
Lie algebra g0 ⊂ so(n) such that g := gC ⊂ so(n, C) is irreducible as well. The first thing
to notice is that by the Schur lemma, g has no center, and thus g is not only reductive
but semisimple. Considering the four different types of indecomposable, non-irreducible
holonomy algebras from Theorem 3.2, this fact already yields the observation that the
so(n)-projection of an indecomposable, non-irreducible Lorentzian holonomy algebra can
only be of coupled type 3 or 4 if at least one of the irreducibly acting ideals of g ⊂ so(n)
is of non-real type.

As g is semisimple, the weak-Berger property can be transformed into conditions
on roots and weights of the corresponding representation as follows (for the proofs see
[68, 69, 73]). Let t be the Cartan subalgebra of g, ∆ ⊂ t∗ be the roots of g, and
set ∆0 := ∆ ∪ {0}. g decomposes into its root spaces gα := {A ∈ g|[T,A] = α(T ) ·
A for all T ∈ t} 1= {0}. If Ω ⊂ t∗ are the weights of g ⊂ so(n, C), then Cn decomposes
into weight spaces Vµ := {v ∈ V |T (v) = µ(T ) · v for all T ∈ t} 1= {0}, which satisfy that
Vµ⊥Vλ if and only if λ 1= −µ. In particular, if µ is a weight, then −µ too. If we denote
by Π the weights of the g–module B(g) we define a subset of t∗ by

Γ :=
{

µ + φ

∣∣∣∣
µ ∈ Ω, φ ∈ Π and there is an u ∈ Vµ

and a Q ∈ Bφ such that Q(u) 1= 0

}
⊂ t∗.

It is not difficult to see that Γ ⊂ ∆0. But for a weak-Berger algebra, the fact that
Qφ(uµ) ∈ gφ+µ, implies that

gB = span{Qφ(uµ) | φ + µ ∈ Γ} ⊂
⊕

β∈Γ

gβ .

Hence for a weak-Berger algebra of real type we have even that

Γ = ∆0.

This property then can be tested for the representations of all the simple [68], and based
on this, the semisimple Lie algebras [69], with the following result.

Proposition 3.17. Let g ⊂ so(n) be an irreducible weak-Berger algebra of real type.
Then g is a Riemannian holonomy algebra, and in particular a Berger algebra.

Propositions 3.16 and 3.17 yield Theorem 3.8 at the beginning of this section.

3.4. Metrics realizing all possible Lorentzian holonomy groups. In
this section we shall present Lorentzian metrics that realise all possible groups obtained
in the previous section. But first we want to specify the Walker co-ordinates of Theorem
2.6 to the Lorentzian situation.

For an indecomposable, non-irreducible Lorentzian manifold, the holonomy-invariant
light-like line I ⊂ TpM corresponds to a distribution Ξ of light-like lines which are
invariant under parallel transport. Locally, this distribution is spanned by a recurrent
light-like vector field. A vector field X is called recurrent if there is a one-form ξ such
that ∇X = ξ ⊗X. If dξ = 0, e.g. if the length of X is not zero, X can be re-scaled to a
parallel vector field. Now Theorem 2.6 reads as follows.

Proposition 3.18. Let (M,h) be a Lorentzian manifold of dimension (n + 2).
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1. (M,h) admits recurrent, light-like vector field if and only if there exists co-ordinates
(x, (yi)n

i=1, z) such that

h = 2 dxdz +
n∑

i=1

uidyidz + fdz2 +
n∑

i,j1

gijdyi dyj (10)

with ∂gij

∂x = ∂ui
∂x = 0, f ∈ C∞(M). The recurrent vector field is parallel if and only

if ∂f
∂x = 0. In this case the co-ordinates are called Brinkmann co-ordinates [21, 41].

2. (M,h) is a Lorentzian manifold with parallel light-like vector field if and only if
there exists co-ordinates (x, (yi)n

i=1, z) such that

h = 2 dxdz +
n∑

i,j=1

gijdyi dyj , with
∂gij

∂x
= 0. (11)

These co-ordinates are due to R. Schimming [76].

In these co-ordinates the vector field ∂
∂x corresponds to the recurrent/parallel light-

like vector field. We should remark that if f is sufficient general (e.g. ∂f
∂yi

1= 0 for all
i = 1, . . . , n), then (M,h) is indecomposable.

Walker co-ordinates define n-dimensional submanifolds W(x,z) through a point p with
co-ordinates (x, y1, . . . , yn, z) by varying only the yi and keeping x and z constant. One
can understand the gij as coefficients of a family of Riemannian metrics gz and the ui

as coefficients of a family of 1-forms φz on W(x,z) depending on a parameter z. A direct
calculation shown in [55] gives a relation between the holonomy of these Riemannian
metrics and the orthogonal component of the Lorentzian holonomy, namely

Hol(x,y,z)(W(x,z), gz) ⊂ prso(n)

(
Hol(x,y,z)(M,h)

)
.

Led by this description, for a given Riemannian holonomy group G, it is not diffi-
cult to construct an indecomposable, non-irreducible Lorentzian manifold having G as
orthogonal component of its holonomy. In fact, the following is true [67, 70].

Proposition 3.19. Let (N, g) be a n-dimensional Riemannian manifold with holonomy
group G and let f ∈ C∞(R×N) a smooth function on M also depending on the param-
eter x, and ϕ a smooth real function of the parameter z. Then the Lorentzian manifold(
M := R×N × R, h = 2dxdz + fdz2 + e2ϕg

)
has holonomy (R × G) ! Rn if f is suffi-

ciently generic, and G ! Rn if f does not depend on x.

This obviously gives a construction method for any Lorentzian holonomy group of un-
coupled type 1 or 2. This procedure was used in physics literature to construct examples
of Lorentzian manifolds in special cases [42].

Although in [11] some examples of metrics with holonomy of coupled types 3 and 4
were constructed in order to verify that there are metrics of this type, after the classifica-
tion of possible Lorentzian holonomies, the following question arose: Given a Riemannian
holonomy group G with Lie algebra g having a non-trivial center z, and given an epimor-
phism ϕ : z → Rl, for 0 < l < n, does there exist a Lorentzian manifold with holonomy
algebra of type 3 or 4 defined by ϕ? In [48] this question was set in the affirmative by
providing a unified construction of local polynomial metrics realizing all possible inde-
composable, non-irreducible holonomy algebras of Lorentzian manifolds. We will now
sketch this method.
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Let g ⊂ so(n) be the holonomy algebra of a Riemannian manifold. As seen above we
have an orthogonal decomposition Rn = Rn0 ⊕Rn−n0 , where g acts trivially on Rn0 and
Rn−n0 decomposes further into irreducible modules. We choose an orthonormal basis
e1, . . . , en of Rn compatible with this decomposition. Obviously, g ⊂ so(n − n0) does
not annihilate any proper subspace of Rn−n0 . If h is an indecomposable subalgebra of
so(1, n + 1)I with orthogonal part g having center z and of coupled type 3 defined by an
epimorphism ϕ : z → R, then we denote h by h(g,ϕ). If h is of coupled type 4 defined by
an epimorphisms ψ : z → Rp for 0 < p < n we denote h by h(g,ψ, p). Note that in the
latter case we have 0 < p ≤ n0 < n.

First, for a weak-Berger algebra g ⊂ so(n) one fixes weak curvature endomorphisms
QA ∈ B(g) for A = 1, . . . , N such that {QA}A=1...N span B(g). Now one defines the
following polynomials on Rn+1,

ui(y1, . . . , yn, z) :=
N∑

A=1

n∑

k,l=1

1
3(A− 1)!

〈
QA(ek)el + QA(el)ek, ei

〉

︸ ︷︷ ︸
=:Qi

Akl

ykylz
A. (12)

Then we define the following Lorentzian metric on Rn+2,

h = 2dxdz + fdz2 + 2
n∑

i=1

uidyidz +
n∑

k=1

dy2
k, (13)

where f is a function on Rn+2 to be specified. If h is of Type 3 defined by an epimorphism
ϕ : z → R, i.e. h = h(g,ϕ), first we extend ϕ to the whole of g by setting it to zero on
g′, i.e. we set ϕ̃(Z + U) = ϕ(Z) for Z ∈ z and U ∈ g′. Then, for A = 1, . . . , N and
i = n0 + 1, . . . , n we define the numbers

ϕAi =
1

(A− 1)!
ϕ̃(QA(ei)).

If h is of Type 4 defined by an epimorphism ψ : z → Rp, i.e. h = h(g,ψ, p), again
we extend ψ to an epimorphism ψ̃ to the whole of g as above, and define the following
numbers,

ψAib :
1

(A− 1)!

〈
ψ̃(QA(ei)), eb

〉
,

for A = 1, . . . , N , i = n0 +1, . . . , n, and b = 1, . . . , p. Then in [48] the following is proved.

Theorem 3.20. Let h ⊂ so(1, n + 1) be indecomposable and non-irreducible with a Rie-
mannian holonomy algebra g as orthogonal part. If h is given by the left-hand-side of
the following table, then the holonomy algebra in the origin 0 ∈ Rn+2 of the Lorentzian
metric h given in (12) is equal to h if the function f is defined as in the right-hand side
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of the table:

h f

Type 1: h = (R⊕ g) ! Rn x2 +
n0∑
i=1

y2
i

Type 2: h = g ! Rn
n0∑
i=1

y2
i

Type 3: h = h(g,ϕ) 2x
N∑

A=1

n∑
i=n0+1

ϕAiyizA−1 +
n0∑

k=1
y2

k

Type 4: h = h(g,ψ, p) 2
N∑

A=1

n∑
i=n0+1

p∑
b=1

ψAibyiybzA−1 +
n0∑

k=p+1
y2

k

Obviously, this theorem implies the ‘if’-direction of the main classification result of
Theorem 3.3. The idea of its proof is the following: The metric h given in (12) with
a function f given as in the theorem is analytic. Hence, its holonomy at 0 ∈ Rn+2 is
generated by the derivations of the curvature tensor at 0. But the metric is constructed
in a way such that the only non-vanishing so(n)-parts of the curvature and its derivatives
satisfy at 0 ∈ Rn+2:

prso(n)

[(
∇∂z . . .∇∂z︸ ︷︷ ︸
(A−1)−times

R
)
(∂i, ∂z)0

]
= QA(ei), (14)

for A = 1, . . . , N , i = n0 +1, . . . , n, and writing ∂z for ∂
∂z and ∂i for ∂

∂yi
. But Q1, . . . , QN

span B(g), hence, the derivatives of the curvature will span g, since this is a weak-Berger
algebra. Therefore the orthogonal part g of h we started with is the orthogonal part
of hol0(Rn+2, h). A more detailed analysis also shows that (14) implies that Rn−n0 is
contained in hol0(Rn+2, h). But, more importantly, one can show that for the different
choices of the function f the derivatives of the curvature generate holonomy algebras of
the corresponding types.

We want to conclude this section with some remarks and examples constructed by
the method of Theorem 3.20.

First of all one notices that the resulting Lorentzian manifolds are of a special type,
introduced in [72] as manifolds with light-like hypersurface curvature. They are defined
by the condition that their curvature tensor R vanishes on Ξ⊥ × Ξ⊥ × Ξ⊥ × Ξ⊥. It is
remarkable that this rather strong condition on the curvature does not prevent these
manifolds from having any possible indecomposable, non-irreducible Lorentzian holon-
omy. All the following examples, including the ones with non-closed holonomy, will be of
this type.

The method of Theorem 3.20 works for any Riemannian holonomy algebra, as soon
as one is able to calculate B(g). Sometimes it is not necessary to calculate the whole of
B(g) but a submodule which is sufficient to generate the Lie algebra g. This could be
the sub-module R(g). For instance, in [72] a Riemannian symmetric space G/K with
g = k ⊕ m is considered. The curvature endomorphisms of k satisfy K(k) = R · [., .],
where [., .] is the commutator of g. Since k is the holonomy algebra of this space we get
k = span{[X, Y ] | X, Y ∈ m}. Hence for a basis X1, . . . , Xn of m, the Qj := ad(Xj)
are spanning the submodule R(k) in B(k) and generate the whole Lie algebra k. In this
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situation, the polynomials ui defined in (12) can be written in terms of the basis Xi and
the Killing form of g,

u(G,K)
i (y1, . . . , yn, z) :=

n∑

j,k,l=1

1
3(j − 1)!

(
B

(
[Xj , Xk], [Xl, Xi]

)
+ B

(
[Xj , Xl], [Xk, Xi]

))
ykylz

j ,

where [., .] is the commutator in g and B the Killing form. In this way one obtains a
Lorentzian manifold with the isotropy group K of a symmetric space G/K as orthogonal
part of the holonomy. Examples where the orthogonal part is given by the Riemannian
symmetric pair so(3) ⊂ so(5) have been constructed in [55], [70], and [48].

For non-symmetric Riemannian holonomy algebras, K(g) can be very big and thus the
calculations complicated. As sketched in [72], another way is to use other, easier submod-
ules of B(g). This methods works if g is simple, since any sub-module of B(g) generates
a non-trivial ideal in g which has to be equal to g if g is g simple. For example, in the
case of the exceptional Lie algebra g2 ⊂ so(V ), with V = R7, the g2-module Hom(V, g2)
which contains B(g2) splits into the direct sum of V[1,1], 52

0V
∗ and V , where V[1,1] is

the 64-dimensional g2-module of highest weight (1, 1), and 52
0V

∗ is the 27-dimensional
module of highest weight (2, 0). Since B(g2) is the kernel of the skew-symmetrization

λ : Hom(V, g2) −→ Λ3V ∗

// \\

V[1,1] ⊕52
0V

∗ ⊕ V 52
0V

∗ ⊕ V ⊕ R

a dimension analysis shows that B(g) must contain V[1,1]. Thus, by choosing a basis of
V[1,1] a metric of the form (13) with coefficients as in (12) can be defined and one obtains
a Lorentzian manifold with orthogonal holonomy part G2.

Finally, we want to return to the question of closedness of holonomy groups. In [11]
Lorentzian manifolds with indecomposable, non-irreducible holonomy of coupled type 3
and 4 are constructed which have a non-closed holonomy group. These examples use a
dense immersion of the real line into the 2-torus. They are constructed similar to our
construction method. Consider the metric

h = 2dxdz −
4∑

i=1

dy2
i + 2x (y1y2 + α y3y4) dz2

+ 2
(
y2
2y1dy1 − y2

1y2dy2 + y2
4y3dy3 − y2

3y4dy4

)
dz

on R6 depending on the parameter α. For this metric one can show that it is of coupled
type 3 defined by an epimorphism ϕ : z → R, its orthogonal part is the torus T 2, and
that the kernel of ϕ defines a closed subgroup in T 2 if and only if α is rational. Hence,
for α irrational, the holonomy group of h is not closed in SO0(1, 5). Similarly, the metric

h = 2dxdz −
5∑

i=1

dy2
i + dz2

+ 2
(
y2
2y1dy1 − y2

1y2dy2 + y2
4y3dy3 − y2

3y4dy4 + z (y1y2 + α y3y4) dy5

)
dz

on R7 has a holonomy group of coupled type 4, with T 2 as orthogonal part, and which
is non-closed if α is irrational.
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3.5. Applications to parallel spinors. The existence of a parallel spinor field
on a Lorentzian spin manifold (M,h) implies the existence of a parallel vector field in
the following way: To a spinor field ϕ, one may associate a vector field Xϕ, defined by
the equation h(Vϕ, U) = 〈U · ϕ, ϕ〉 for any U ∈ TM , where 〈., .〉 is the inner product
on the spin bundle and · is the Clifford multiplication. Xϕ sometimes is referred to as
Dirac current. Now, the vector field associated to a spinor in this way is light-like
or time-like. If the spinor field is parallel, so is the vector field. In the case where it
is time-like, the manifold splits by the de-Rham decomposition theorem into a factor
(R,−dt2) and Riemannian factors which are flat or irreducible with a parallel spinor, i.e.
with holonomy {1}, G2, Spin(7), Sp(k) or SU(k).

In the case where the parallel vector field is light-like we have a Lorentzian factor
which is indecomposable, but with parallel light-like vector field (and parallel spinor)
and flat or irreducible Riemannian manifolds with parallel spinors. Hence, in this case
one has to know which indecomposable Lorentzian manifolds admit a parallel spinor.
The existence of the light-like parallel vector field forces the holonomy of such a manifold
with parallel spinor to be contained in SO(n) ! Rn i.e. to be of type 2 or 4.

Furthermore, the spin representation of the orthogonal part g ⊂ so(n) of h must admit
a trivial subrepresentation. In fact, the dimension of the space of parallel spinor fields is
equal to the dimension of the space of spinors which are annihilated by g [67]. But for
the coupled type 4, the orthogonal part g has to have a non-trivial center. Due to the
decomposition of g into irreducible acting ideals at least one irreducible acting ideal is
equal to u(p). But a direct calculation shows that u(p) cannot annihilate a spinor. Hence
we obtain the following consequence.

Corollary 3.21. Let (M,h) be an indecomposable Lorentzian spin manifold of dimension
n+2 > 2 with holonomy group H admitting a parallel spinor field. Then it is H = G!Rn

where G is the holonomy group of an n-dimensional Riemannian manifold with parallel
spinor, i.e. G is a product of SU(p), Sp(q), G2 or Spin(7).

This generalises a result of R. L. Bryant in [26] (see also [42]) where it is shown
up to n ≤ 9 that the maximal subalgebras of the parabolic algebra admitting a trivial
subrepresentation of the spin representation are of type (Riemannian holonomy)!Rn.
Combining Corollary 3.21 with the de Rham–Wu decomposition theorem we obtain the
following conclusion.

Theorem 3.22. Let (M,h) be a simply connected, complete Lorentzian spin manifold
which admits a parallel spinor. Then (M,h) is isometric to a product (M ′, h′)×(N1, g1)×
. . .× (Nk, gg), where the (Ni, gi) are flat or irreducible Riemannian manifolds with a par-
allel spinor and (M ′, h′) is either (R,−dt) or it is an indecomposable, non-irreducible
Lorentzian manifold of dimension n+2 > 2 with holonomy G!Rn where G is the holon-
omy group of a Riemannian manifold with parallel spinor. In particular, the holonomy
group of (M,h) is the following product

(G ! Rn)× Ĝ,

for some n ≥ 0, and G and Ĝ being holonomy groups of Riemannian manifolds admitting
a parallel spinor, i.e. both being a product of the possible factors {1}, SU(p), Sp(q), G2,
or Spin(7) (with G trivial if n < 2).

3.6. Holonomy related geometric structures. In this section we want to
present some remarks about the geometric structures corresponding to the possible holon-
omy groups. The parallel distribution Ξ of light-like lines equips a Lorentzian manifold
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(M, g) with further, holonomy related structure. As Ξ is light-like, it is contained in its
orthogonal complement Ξ⊥. Hence, the tangent bundle admits a filtration

Ξ ⊂ Ξ⊥ ⊂ TM, (15)

which enables us to define a vector bundle S whose fibers are the quotients Ξ⊥p /Ξp, and
equip it with a metric gS induced by the Lorentzian metric g. Since both distributions
are parallel, the Levi-Civita connection of g equips S also with a metric connection ∇S .

Definition 3.23. If (M, g,Ξ) is a Lorentzian manifold with a parallel distribution Ξ of
light-like lines, the vector bundle (S, gS ,∇S) is called screen bundle of (M, g,Ξ). The
holonomy group of the vector bundle connection ∇S is called screen holonomy group.

The screen holonomy was introduced in [70] and studied further in [72], where it is
shown that the orthogonal part of an indecomposable, non-irreducible Lorentzian holon-
omy group is equal to the screen holonomy. By the above results we know that the
screen holonomy has to be a Riemannian holonomy group. More importantly, algebraic
properties of the orthogonal part of the holonomy now can be described by invariant
structures of the screen bundle. E.g. if the orthogonal part is contained in the unitary
group, then there is a parallel complex structure on the screen bundle, if the orthogonal
part is contained in G2 the screen bundle admits a parallel 3-form, etc. Moreover, we
have seen that its fiber Sp = Ξ⊥p /Ξp decomposes into subspaces which are invariant under
the orthogonal component g of the holonomy algebra h, Sp = E0 ⊕ E1 ⊕ . . . ⊕ Es, such
that g acts trivial on E0 and irreducibly on Ei for 1 ≤ i ≤ s. Now, let the spaces Υi

p be
the pre-image under the canonical projection Ξ⊥p → Sp of those Ei. They have common
intersection Ξp. and are holonomy invariant. Therefore they are the fibers of parallel
distributions Υ0, . . . ,Υk on M with

Ξ = Υ0 ∩ . . . ∩Υs. (16)

All the foliations Ξ ⊂ Υi ⊂ Ξ⊥ are parallel, hence, they are involutive and therefore
integrable. I.e. for every point p ∈ M , there are integral manifolds Xp, Yi

p and X⊥
p

of Ξ and Ξ⊥ passing through it. Each leaf of Yi and X⊥ again is foliated in leaves of
X , the latter being light-like geodesic lines. One can prove the existence of co-ordinates
which respect this foliation. This is done by C. Boubel in [19], where also an additional
condition was found under which these co-ordinates are unique. We should also point out
that the definition of a screen bundle does not require a choice as it does the notion of a
screen distribution introduced in [9]. The relation of the screen bundle to the preferred
choices in [6] and [40] is not yet studied. Finally, in [17] the relation between the light-like
hypersurfaces and the four types of holonomy groups is studied.

In the reminder of this section we want to characterise Lorentzian manifolds for which
the screen holonomy is trivial and some of their generalizations. These results were
obtained in [71] and [72]. A Lorentzian manifold with parallel light-like vector field is
called Brinkmann wave. A Brinkmann wave admits co-ordinates as in Proposition 3.18.
A Brinkmann-wave is called pp-wave if its curvature tensor R satisfies the trace condition
tr(3,5)(4,6)(R⊗R) = 0. R. Schimming [76] proved that an (n+2)-dimensional pp-waves
admits co-ordinates (x, (yi)n

i=1, z) such that

h = 2 dxdz + fdz2 +
n∑

i1

dy2
i , with ∂f

∂x = 0. (17)

In [71] we gave another equivalence for the definition which seems to be simpler than any
of the trace conditions and which allows for generalizations.
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Proposition 3.24. A Brinkmann-wave (M,h) with parallel light-like vector field X and
induced parallel distributions Ξ and Ξ⊥ is a pp-wave if and only if its curvature tensor
satisfies

R(U, V ) : Ξ⊥ −→ Ξ for all U, V ∈ TM, (18)

or equivalently R(Y1, Y2) = 0 for all Y1, Y2 ∈ Ξ⊥.

From this description one obtains easily that a pp-wave is Ricci-isotropic, which means
that the image of the Ricci-endomorphism is totally light-like, and has vanishing scalar
curvature. But it also enables us to introduce a generalization of pp-waves by supposing
(18) but only the existence of a recurrent light-like vector field. Assuming that the
abbreviation ‘pp’ stands for ‘plane fronted with parallel rays’ we call them pr-waves,
‘plane fronted with recurrent rays’.

Definition 3.25. A Lorentzian manifold with recurrent light-like vector field X its
called pr-wave if R(U, V ) : Ξ⊥ −→ Ξ for all U, V ∈ TM, or equivalently R(Y1, Y2) =
0 for all Y1, Y2 ∈ X⊥.

Since X is not parallel the trace condition which was true for a pp-wave, fails to hold
for a pr-wave. But similar to a pp-wave, a Lorentzian manifold (M,h) is a pr-wave if and
only if there are co-ordinates (x, (yi)n

i=1, z) such that

h = 2 dxdz + fdz2 +
n∑

i1

dy2
i , with f ∈ C∞(M). (19)

Regarding the vanishing of the screen holonomy the following result can be obtained
by the description of Proposition 3.24 and the definition of a pr-wave.

Proposition 3.26. A Lorentzian manifold (M,h) with recurrent light-like vector field is
a pr-wave if and only if the following equivalent conditions are satisfied:

(1) The screen holonomy of (M,h) is trivial.

(2) (M,h) has solvable holonomy contained in R ! Rn.

In addition, (M,h) is a pp-wave if and only if its holonomy is Abelian, i.e. contained in
Rn.

Finally, in [71] it is proved that a pr-wave is a pp-wave if and only if it is Ricci-isotropic.
There are very important subclasses of pp-waves. The first are the plane waves which
are pp-waves with quasi-recurrent curvature, i.e. ∇R = ξ ⊗ R̃ where ξ = h(X, .) and R̃
a (4, 0)-tensor. For plane waves the function f in the local form of the metric is of the
form f =

∑n
i,j=1 aijyiyj where the aij are functions of z. A subclass of plane waves are

the Lorentzian symmetric spaces with solvable transvection group, the so-called Cahen-
Wallach spaces (see [30], also [11]). For these the function f satisfies f =

∑n
i,j=1 aijyiyj

where the aij are constants. Manifolds with light-like hypersurfaces curvature mentioned
above are further generalizations of pp-waves [72].

3.7. Holonomy of space-times. To conclude this section about Lorentzian
holonomy we want to recall results about the holonomy of space-times, i.e. 4-dimensional
Lorentzian manifolds of signature (−+ ++). J. F. Schell [75] and R. Shaw [79] (see also
[52] and [53]) found that there are 14 types of possible space-times holonomy groups.
These 14 types can be derived by the following case study, in which we will also give
examples of metrics realizing these groups. Let H be the connected holonomy group of
a 4-dimensional Lorentzian manifold.



Recent developments in pseudo-Riemannian holonomy theory 23

1. H acts irreducibly, i.e. H = SO0(1, 3), which can be realised by the 4-dimensional
de Sitter space S1,3.

2. H acts indecomposably, but non-irreducibly. Then H is either:

(a) H = (R+ × SO(2)) ! R2,

(b) H = SO(2) ! R2,

(c) H is of Type 3, i.e. H = L!R2 with L given by the graph of an epimorphism
ϕ : so(2) → R,

(d) H = R2, i.e. the holonomy of a 4-dimensional pp-wave,

(e) H = R ! R2, i.e. the holonomy of an 4-dimensional pr-wave.

In all these cases the previous section gives examples of metrics realizing H.

3. H acts decomposably. Then H is either:

(a) H = SO(2), i.e. the holonomy of the product of the 2-sphere S2 with the
2-dimensional Minkowski space R1,1,

(b) H = SO(1, 1), i.e. the holonomy of the product of the 2-dimensional de Sitter
space S1,1 with the flat R2,

(c) H = SO(3), i.e. the holonomy of the product of (R,−dt2) with the 3-sphere
S3,

(d) H = SO(1, 2), i.e. the holonomy of the product of the line R with the 3-
dimensional de Sitter space S1,2,

(e) H = SO(1, 1)× SO(2), i.e. the holonomy of the product of the 2-dimensional
de Sitter space S1,1 with the 2-sphere S2 ,

(f) H = R ! R. This is the holonomy of the product of R with a 3-dimensional
Lorentzian manifold with a recurrent but not parallel light-like vector field,
i.e. with a 3-dimensional pr-wave metric. The latter is of the form h =
2dxdz + g(y)dy2 + f(x, y, z)dz2.

(g) H = R. This is the holonomy of the product of R with a 3-dimensional
Lorentzian manifold with a parallel light-like vector field, i.e. with a 3-
dimensional pp-wave metric. The latter is of the form h = 2dxdz + g(y)dy2 +
f(y, z)dz2.

(h) H is trivial, i.e. the holonomy of the flat Minkowski space R1,3.

We should point out that there is another type of subgroup in SO(1, 3), which is a one-
parameter subgroup of SO(1, 1) × SO(2), not equal to either of the factors. But this
cannot be a holonomy of a Lorentzian manifold because it does not satisfy the de Rham–
Wu decomposition of Theorem 2.3. This is explained in [16, Section 10.J], where also the
question is asked whether there is a space-time with holonomy of coupled type 3, in [16]
denoted by B3

θ . This question is answered affirmatively by A. Ikemakhen in [56, Section
4.2.3] by the metric

h = 2dxdz − dy2
1 + dy2

2 + 4αy1y2dy1dz + 2xy1dz2,

and by the general method given in [48] described in Theorem 3.20 in Section 3.4. Further
results can be found in [50].
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4. Holonomy in signature (2, n + 2)

In this section we discuss the holonomy algebras of pseudo-Riemannian manifolds of
signature (2, n + 2). From the Berger list one reads off that in this signature the only
non-symmetric irreducible holonomy groups are U(1, n

2 + 1) and SU(1, n
2 + 1).

Again we consider indecomposable, non-irreducible holonomy algebras of manifolds of
signature (2, n+2). As explained in Section 2.2, if h ⊂ so(2, n+2) is an indecomposable,
non-irreducible subalgebra, then it preserves a proper degenerate subspace V ⊂ R2,n+2

and the non-trivial isotropic subspace I := V ∩ V⊥ ⊂ R2,n+2. Obviously, dim(I) = 1 or
2. Thus for an indecomposable, non-irreducible subalgebra h ⊂ so(2, n + 2) we have two
possibilities:

(1) h preserves an isotropic plane;

(2) h preserves an isotropic line and does not preserve any isotropic plane;

Until now only the first case has been considered. To explain the results in this case,
let R2,n+2 be an n + 4-dimensional real vector space endowed with a symmetric bilinear
form 〈 , 〉 of signature (2, n + 2). We fix a basis X1, X2, E1, ..., En, Z1, Z2 of R2,n+2 such
that the Gram matrix of 〈 , 〉 has the form





0 0 0 1 0
0 0 0 0 1
0 0 In 0 0
1 0 0 0 0
0 1 0 0 0



 .

Let so(2, n + 2)I ⊂ so(2, n + 2) be the subalgebra that preserves the isotropic plane
I = span{X1, X2}. so(2, n + 2)I can be identified with the following matrix algebra:

so(2, n + 2)I =









B

Xt

Y t
0 −c
c 0

0 0 A −X −Y
0 0
0 0

0
0

−Bt





∣∣∣∣∣∣∣

B ∈ gl(2, R),
A ∈ so(n),
X, Y ∈ Rn,

c ∈ R





.

In [56] A. Ikemakhen classified indecomposable, non-irreducible subalgebras of so(2, n+
2)I that contain the ideal

A := R




0

0
0

0 −1
1 0

0 0 0 0 0
0 0
0 0

0
0

0



 ⊂ so(2, n + 2)I .

As in the Lorentzian case, to each subalgebra h ⊂ so(2, n + 2)I one can associate its
projection onto so(n) ⊂ so(2, n + 2)I . In [56] it was noted that such projection g of the
holonomy algebra may not be a holonomy algebra of a Riemannian manifold. Moreover,
in the next section we will see that there is no additional condition on the subalgebra
g ⊂ so(n) induced by the Bianchi-identity and replacing the weak-Berger property.

4.1. The orthogonal part of indecomposable, non-irreducible sub-
algebras of so(2, n + 2). Let us consider one type of indecomposable, non-
irreducible subalgebras of so(2, n + 2). For any subalgebra g ⊂ so(n) define the Lie
algebra

hg =










0 0 Xt 0 −c
0 0 Y t c 0
0 0 A −X −Y
0 0 0 0 0
0 0 0 0 0





∣∣∣∣∣∣∣
A ∈ g, X, Y ∈ Rn, c ∈ R





⊂ so(2, n + 2)I .
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We identify an element of the Lie algebra hg with the 4-tuple (A,X, Y, Z). It is easy to
see that the subalgebra hg ⊂ so(2, n+2)I is indecomposable. The following theorem was
proved in [44].

Theorem 4.1. For any subalgebra g ⊂ so(n), the Lie algebra hg can be realised as the
holonomy algebra of a pseudo-Riemannian manifold of signature (2, n + 2).

Let g ⊂ so(n) be a subalgebra. To prove Theorem 4.1, in [44] a polynomial metric on
Rn+4 is constructed, the holonomy algebra of which at the point 0 is exactly hg. This
was done in the following way. First we will explain why for any subalgebra g ⊂ so(n),
the Lie algebra hg is a Berger algebra. For u, v ∈ E := span{E1, ..., En}, any symmetric
linear maps T1, T2 : E → E and any linear map S : E → E such that S − S∗ ∈ g let

RT1(Z1, u) = (0, T1(u), 0, 0), RT2(Z2, u) = (0, 0, T2(u), 0),

RS(Z1, Z2) = (S − S∗, 0, 0, 0), RS(Z1, u) = (0, 0, S(u), 0),

RS(Z2, u) = (0, S∗(u), 0, 0), RS(u, v) = (0, 0, 0, 〈S(u), v〉 − 〈u, S(v)〉)

and extend these linear maps to R2,n+2⊗R2,n+2 in the trivial way. It easy to check that
RP1 , RP2 , RS ∈ K(hg). Obviously, curvature endomorphisms of these forms generate hg.

Now let dim g = N and let A1, . . . , AN be a basis of the vector space g. Denote
by Ai

jα the elements of the matrices Aα. Let (x1, x2, y1..., yn, z1, z2) be the canonical
co-ordinates on Rn+4. Consider the following metric on Rn+4:

g = 2dx1dz1 + 2dx2dz2 +
n∑

i=1

(dyi)2 + 2
n∑

i=1

uidyidz2 + f(dz1)2,

where

ui =
N∑

α=1

n∑

j=1

1
α!

Ai
jαyjz

α
1 and f =

n∑

i=1

(yi)2.

This metric is constructed in such a way that

prso(n)

[(
∇∂z1

. . .∇∂z1︸ ︷︷ ︸
(r−1)−times

R
)
(∂z1 , ∂z2)0

]
= Sr − S∗r = Ar, (20)

for r = 1, . . . , N , where Sr = 1
2Ar, and the images of other covariant derivatives of R are

contained in hg.

4.2. Holonomy groups of pseudo-Kählerian manifolds of index 2.
A pseudo-Riemannian manifold (M, g) is called pseudo-Kählerian if there exists a parallel
smooth field of endomorphisms J of the tangent bundle of M that satisfies J2 = − id
and g(JX, JY ) = g(X, Y ) for all vector fields X and Y on M . The holonomy algebra of
a pseudo-Kählerian manifold of signature (2, 2n + 2) is contained in u(1, n + 1).

From Theorem 2.3 it follows that the holonomy algebra of a pseudo-Kählerian mani-
fold of (2, 2n+2) is a direct sum of irreducible holonomy algebras of Kählerian manifolds
and of the indecomposable holonomy algebra of a pseudo-Kählerian manifold of signature
(2, 2k + 2). If the last algebra is irreducible, The Berger list in Theorem 2.4 implies that
it is either u(1, k + 1) or su(1, k + 1), or that it is the holonomy algebra of an irreducible
hermitian symmetric space and listed in [15]. If the last algebra is not irreducible, again
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we are left with the problem of classifying indecomposable, non-irreducible holonomy
algebras in u(1, k + 1).

In order to describe this classification we denote by R2,2n+2 the vector space R2n+4

endowed with a complex structure J and with a J-invariant metric 〈 , 〉 of signature
(2, 2n + 2), i.e. 〈Jx, Jy〉 = 〈x, y〉 for all x, y ∈ R2,2n+2. We fix a basis X1, X2, E1,...,En,
F1,...,Fn, Z1, Z2 of R2,2n+2 such that the Gram matrix of the metric 〈 , 〉 and the complex
structure J have the form





0 0 0 1 0
0 0 0 0 1
0 0 I2n 0 0
1 0 0 0 0
0 1 0 0 0



 and





0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −In 0 0
0 0 In 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0



 , respectively.

We denote by u(1, n+1)I the subalgebra of u(1, n+1) that preserves the J-invariant
2-dimensional isotropic subspace I = RX1⊕RX2 ⊂ R2,2n+2. The Lie algebra u(1, n+1)I
can be identified with the following matrix algebra

u(1, n + 1)I =










a1 −a2 −zt
1 −zt

2 0 −c
a2 a1 zt

2 −zt
1 c 0

0 0 B −C z1 −z2
0 0 C B z2 z1
0 0 0 0 −a1 −a2
0 0 0 0 a2 −a1





∣∣∣∣∣∣∣∣

a1, a2, c ∈ R,
z1, z2 ∈ Rn,`
B −C
C B

´
∈ u(n)





.

Recall that
u(n) =

{(
B −C
C B

)∣∣ B ∈ so(n), C ∈ gl(n, R), Ct = C
}

and
su(n) =

{(
B −C
C B

)
∈ u(n)

∣∣ trC = 0
}

.

We identify an element of u(1, n + 1)I with the 4-tuple

(a1 + ia2, B + iC, z1 + iz2, c).

The non-vanishing components of the Lie brackets in u(1, n + 1)I are the following:

[(0, B + iC, 0, 0), (0, B1 + iC1, 0, 0)] = (0, [B + iC, B1 + iC1]u(n), 0, 0),
[(a1, 0, 0, 0), (0, 0, z1 + iz2, c)] = (0, 0, a1(z1 + iz2), 2a1c),

[(ia2, 0, 0, 0), (0, 0, z1 + iz2, 0)] = (0, 0, a2(z2 − iz1), 0),
[(0, B + iC, 0, 0), (0, 0, z1 + iz2, 0)] = (0, 0, Bz1 − Cz2 + i(Cz1 + Bz2), 0),

[(0, 0, z1 + iz2, 0), (0, 0, w1 + iw2, 0)] = (0, 0, 0, 2(−z1w
t
2 + z2w

t
1)).

Hence we obtain the decomposition

u(1, n + 1)I = (C⊕ u(n)) ! (Cn ! R).

Denote by su(1, n + 1)I the subalgebra of su(1, n + 1) that preserves the subspace
RX1 ⊕ RX2 ⊂ R2,2n+2. Then

su(1, n + 1)I = {(a1 + ia2, B + iC, z1 + iz2, c) ∈ u(1, n + 1)I |2a2 + trR C = 0}

and
u(1, n + 1)I = su(1, n + 1)I ⊕ RJ.
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Note that

u(1, 1)I =

8
><

>:

0

B@

a1 −a2 0 −c
a2 a1 c 0
0 0 −a1 −a2
0 0 a2 −a1

1

CA

˛̨
˛̨
˛̨
˛

a1, a2, c ∈ R

9
>=

>;

If an indecomposable subalgebra h ⊂ u(1, n + 1) preserves a degenerate proper
subspace W ⊂ R2,2n+2, then h preserves the J-invariant 2-dimensional isotropic sub-
space W1 ⊂ R2,2n+2, where W1 = (W ∩ JW ) ∩ (W ∩ JW )⊥ if W ∩ JW 1= {0} and
W1 = (W ⊕ JW ) ∩ (W ⊕ JW )⊥ if W ∩ JW = {0}. Therefore h is conjugated to an
indecomposable subalgebra of u(1, n + 1)I .

The classification of indecomposable, non-irreducible holonomy algebras in u(2, n+2)
is given by the following theorem, for the second part of which we fix some notation:
0 ≤ m ≤ n is an integer, u ⊂ u(m) is a subalgebra (as above, u = z ⊕ u′), we fix the
decomposition Cn = Cm⊕Cn−m, Rn−m ⊂ Cn−m is a real form and Jn−m ⊂ u(n−m) ⊂
u(n) ⊂ u(1, n + 1)I is the complex structure on Cn−m. Let ϕ, φ : u → R be linear maps
with ϕ|u′ = φ|u′ = 0.

Theorem 4.2. 1) A subalgebra h ⊂ u(1, 1) is the indecomposable, non-irreducible holon-
omy algebra of a pseudo-Kählerian manifold of signature (2, 2) if and only if h is conju-
gated to u(1, 1)I or one of the following subalgebras of it:

h2
n=0 =

8
><

>:

0

B@

a1 −a2 0 0
a2 a1 0 0
0 0 −a1 −a2
0 0 a2 −a1

1

CA

˛̨
˛̨
˛̨
˛

a1, a2 ∈ R

9
>=

>;
;

hγ1,γ2
n=0 =

8
><

>:

0

B@

aγ1 −aγ2 0 −c
aγ2 aγ1 c 0
0 0 −aγ1 −aγ2
0 0 aγ2 −aγ1

1

CA

˛̨
˛̨
˛̨
˛

a, c ∈ R

9
>=

>;
, where γ1, γ2 ∈ R;

2) Let n ≥ 1. Then a subalgebra h ⊂ u(1, n+1) is the indecomposable, non-irreducible
holonomy algebra of a pseudo-Kählerian manifold of signature (2, 2n + 2) if and only if
h is conjugated to one of the following subalgebras of u(1, n + 1)I :

hm,u= (R⊕ R(i + Jn−m)⊕ u) ! ((Cm ⊕ Rn−m) ! R),

hm,u,φ= (R⊕ {φ(A)(i + Jn−m) + A|A ∈ u}) ! ((Cm ⊕ Rn−m) ! R),

hm,u,ϕ,φ= {ϕ(A) + φ(A)(i + Jn−m) + A|A ∈ u}! ((Cm ⊕ Rn−m) ! R),

hm,u,ϕ= (R(i + Jn−m)⊕ {ϕ(A) + A|A ∈ u}) ! ((Cm ⊕ Rn−m) ! R),

hm,u,λ= (R(1 + λ(i + Jn−m))⊕ u) ! ((Cm ⊕ Rn−m) ! R), where λ ∈ R,

hn,u,ψ,k,l= {A + ψ(A)|A ∈ u}! ((Ck ⊕ Rn−l) ! R),
where k and l are integers such that 0 < k ≤ l ≤ n, we have the decomposition
Cn = Ck ⊕ Cl−k ⊕ Cn−l, u ⊂ u(k) is a subalgebra with dim z(u) ≥ n + l − 2k and
ψ : u → Cl−k ⊕ iRn−l is a surjective linear map with ψ|u′ = 0,

hm,u,ψ,k,l,r= {A + ψ(A)|A ∈ u}! ((Ck ⊕ Rm−l ⊕ Rr−m) ! R),
where k, l, r and m are integers such that 0 < k ≤ l ≤ m ≤ r ≤ n and m < n,
we have the decomposition Cn = Ck ⊕Cl−k ⊕Cm−l ⊕Cr−m ⊕Cn−r, u ⊂ u(k) is a
subalgebra with dim z(u) ≥ n + m + l− 2k− r and ψ : u → Cl−k ⊕ iRm−l ⊕Rn−r is
a surjective linear map with ψ|u′ = 0.
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Note that hγ1=1,γ2=0
n=0 = su(1, 1)I . As an example for the Lie algebras in the theorem,

an element in the Lie algebra hm,u,ϕ,φ is given by




ϕ(A) −φ(A) −zt
1 −z′t1 −zt

2 0 0 −c
φ(A) ϕ(A) zt

2 0 −zt
1 −z′t1 c 0

0 0 B 0 −C 0 z1 −z2
0 0 0 0 0 −φ(A)In−m z′1 0
0 0 C 0 B 0 z2 z1
0 0 0 φ(A)In−m 0 0 0 z′1
0 0 0 0 0 0 −ϕ(A) −φ(A)
0 0 0 0 0 0 φ(A) −ϕ(A)





with c ∈ R, z1, z2 ∈ Rm, z′1 ∈ Rn−m, A =
(

B −C
C B

)
∈ u.

As a corollary, we get the classification of indecomposable, non-irreducible holon-
omy algebras contained in su(1, n + 1), i.e. of the holonomy algebras of special pseudo-
Kählerian manifolds (these manifolds are pseudo-Kählerian and Ricci-flat).

Corollary 4.3. Let (M,h, J) be a indecomposable, non-irreducible pseudo-Kählerian
manifold of signature (2, n + 2) which is Ricci-flat. Then its holonomy algebra is given
by hγ1=0,γ2=0

n=0 or su(1, 1)I = hγ1=1,γ2=0
n=0 in the case n = 0, and by

hm,u,φ, hm,u,ϕ,φ with u ⊂ su(n) and φ(A) = − 1
n−m+2 trC A, and

hn,u,ψ,k,l, hm,u,ψ,k,l,r with u ⊂ su(k).

for n > 0.

As in the first case, we consider all subalgebras of u(1, 1)I and show which of these
subalgebras are indecomposable Berger subalgebras. We realise the Lie algebras of Part
1) of Theorem 4.2 as the holonomy algebras of pseudo-Kählerian metrics on R2,2, see
Section 5.2.

By analogy to the case of Lorentzian manifolds, the proof of Part 2) of Theorem 4.2
consists of the following 3 steps:

Step 1) Classification of indecomposable, non-irreducible subalgebras of su(1, n + 1).

Step 2) Classification of indecomposable, non-irreducible Berger subalgebras of u(1, n+
1).

Step 3) Construction of a pseudo-Riemannian manifold with the holonomy algebra h
for each indecomposable, non-irreducible Berger subalgebra h ⊂ u(1, n + 1).

Step 1) First we classify all connected subgroups of SU(1, n + 1) that act inde-
composably and non-irreducibly on R2,2n+2, that is equivalent to the classification of
indecomposable, non-irreducible subalgebras of su(1, n + 1). Any such subgroup pre-
serves a 2-dimensional isotropic J-invariant subspace of R2,2n+2. We use a generalization
of the method from [47] (see Section 3.2).

We denote by C1,n+1 the (n+2)-dimensional complex vector space given by (R2,2n+2, J, η).
Let g be the pseudo-Hermitian metric on C1,n+1 of signature (1, n + 1) corresponding to
η. If a subgroup G ⊂ U(1, n + 1) acts indecomposably on R2,2n+2, then G acts indecom-
posably on C1,n+1, i.e. does not preserve any proper g-non-degenerate complex vector
subspace.

We consider the boundary ∂Hn+1
C of the complex hyperbolic space Hn+1

C . The
boundary ∂Hn+1

C consists of complex isotropic lines of C1,n+1. We identify ∂Hn+1
C with

the (2n + 1)-dimensional sphere S2n+1. Consider the complex isotropic line I = CX1 =
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RX1⊕RX2 ⊂ C1,n+1 and denote by U(1, n+1)I ⊂ U(1, n+1) the connected Lie subgroup
that preserves the line I. The Lie algebra of the Lie group U(1, n + 1)I is u(1, n + 1)I .
Any connected subgroup G ⊂ U(1, n + 1) that acts on C1,n+1 indecomposably and non-
irreducibly is conjugated to a subgroup of U(1, n + 1)I . From the above decomposition
of the Lie algebra u(1, n + 1)I we obtain the decomposition

U(1, n + 1)I = (C∗ × U(n)) ! (Cn ! R).

We identify the set ∂Hn+1
C \{I} = S2n+1\{point} with the Heisenberg space Hn =

Cn ⊕ R. Any element f ∈ U(1, n + 1)I induces a transformation Γ(f) of Hn, moreover,
Γ(f) ∈ SimHn, where SimHn is the group of the Heisenberg similarity transformations
of Hn. For the Lie group SimHn we have the decomposition

SimHn = (R+ × U(n)) ! (Cn ! R).

The elements λ ∈ R+, A ∈ U(n) and (z, u) ∈ Cn !R act on Hn = Cn⊕R in the following
way:

λ :(z, u) %→ (λz, λ2u) (real Heisenberg dilation about the origin),
A :(z, u) %→ (Az, u) (Heisenberg rotation about the vertical axis),

(w, v) :(z, u) %→ (w + z, v + u + 2 Im g(w, z)) (Heisenberg translations ).

We show that Γ : U(1, n+1)I → SimHn is a surjective Lie group homomorphism with
the kernel T, where T is the 1-dimensional subgroup generated by the complex structure
J ∈ U(1, n + 1)I . In particular, T is the center of U(1, n + 1)I . Let SU(1, n + 1)I =
U(1, n + 1)I ∩ SU(1, n + 1). Then U(1, n + 1)I = SU(1, n + 1)I · T and the restriction

Γ|SU(1,n+1)I : SU(1, n + 1)I → SimHn

is a Lie group isomorphism.
We consider the natural projection π : SimHn → Sim Cn, where

Sim Cn = (R+ × U(n)) ! Cn

is the group of similarity transformations of Cn . The homomorphism π is surjective
and its kernel is 1-dimensional.

We prove that if a subgroup G ⊂ U(1, n + 1)I acts indecomposably on C1,n+1, then

(1) the subgroup π(Γ(G)) ⊂ Sim Cn does not preserve any proper complex affine sub-
space of Cn;

(2) if π(Γ(G)) ⊂ Sim Cn preserves a proper non-complex affine subspace L ⊂ Cn, then
the minimal complex affine subspace of Cn containing L is Cn.

This is the key statement for our classification.
Since we are interested in connected Lie groups, it is enough to classify the corre-

sponding Lie algebras. The classification is done in the following way:
• First we describe non-complex vector subspaces L ⊂ Cn with spanC L = Cn (it is
enough to consider only vector subspaces, since we do the classification up to conjugacy).
Any such non-complex vector subspace has the form L = Cm⊕Rn−m, where 0 ≤ m ≤ n.
Here we have 3 types of subspaces: 1) m = 0 (L is a real form of Cn); 2) 0 < m < n; 3)
m = n (L = Cn).
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• We describe the Lie algebras f of the connected Lie subgroups F ⊂ Sim Cn preserving
L. Without loss of generality, we can assume that each Lie group F does not preserve
any proper affine subspace of L. This means that F acts irreducibly on L. By a theorem
of D.V. Alekseevsky [2, 3], F acts transitively on L. In Theorem 3.4 we divided tran-
sitive similarity transformation groups of Euclidean spaces into 4 types. Here we unify
type 2 and 3. The group F is contained in (R+ × SO(L) × SO(L⊥η )) ! L, where R+

is the group of real dilations of Cn about the origin and L is the group of all transla-
tions in Cn by vectors of L. In general situation we know only the projection of F on
Sim L = (R+ × SO(L)) ! L, but in our case the projection of F on SO(L) × SO(L⊥η )
is also contained in U(n) and we know the full information about F . On this step we
obtain 9 types of Lie algebras.
• Then we describe subalgebras a ⊂ LA(SimHn) with π(a) = f. For each f we have 2
possibilities: a = f + ker π or a = {x + ζ(x)|x ∈ f}, where ζ : f → ker π is a linear map.
Using the isomorphism (Γ|su(1,n+1)I )−1 we obtain a list of subalgebras h ⊂ su(1, n+1)I .
This gives us 12 types of Lie algebras.
• Finally we check which of the obtained subalgebras of su(1, n + 1)I ⊂ so(2, 2n + 2) are
indecomposable. It turns out that some of the types contain Lie algebras that are not
indecomposable. Giving new definitions to these types we obtain 12 types of indecom-
posable Lie algebras. Unifying some of the types we obtain 8 types of indecomposable
subalgebras of su(1, n + 1)I ⊂ so(2, 2n + 2).

Example 4.4. Let g ⊂ so(n) be a subalgebra with non-trivial center and ζ : g → R be
a non-zero linear map with ζ|g′ = 0. Then the subalgebra {(0, B, z1, ζ(B))|B ∈ g, z1 ∈
Rn} ⊂ su(1, n + 1)I ⊂ so(2, 2n + 2) is indecomposable.

Note that the Lie algebra of the above example was not considered in [56].

Step 2) In this step we classify indecomposable Berger subalgebras of u(1, n + 1)I .
First we get a list of candidates for the indecomposable subalgebras of u(1, n + 1)I ⊂

so(2, 2n + 2). For each f ⊂ LA(SimHn) as above and for each h ⊂ su(1, n + 1)I with
π(Γ(h)) = f we consider the Lie algebras hJ = h ⊕ RJ and hξ = {x + ξ(x)|x ∈ h},
where ξ : h → R is a non-zero linear map. As we claimed above, any indecomposable
subalgebra of u(1, n + 1)I ⊂ so(2, 2n + 2) is of the form h, hJ or hξ. These subalgebras
are candidates for the indecomposable subalgebras of u(1, n + 1)I ⊂ so(2, 2n + 2). We
associate with each of these subalgebras an integer 0 ≤ m ≤ n. If m > 0, then the
subalgebras of the form h, hJ and hξ ⊂ u(1, n + 1)I are indecomposable. We have
inclusions u(m) ⊂ u(n) ⊂ u(1, n + 1)I and projection maps pru(m) : u(1, n + 1)I → u(m),
pru(n) : u(1, n + 1)I → u(n).

For any integer 0 ≤ m ≤ n and subalgebra u ⊂ u(m)⊕((so(n−m)⊕so(n−m))∩u(n−
m)) we consider a subalgebra hm,u

0 ⊂ u(1, n + 1)I and describe the space K(hm,u
0 ). The

Lie algebras of the form hm,u
0 contain all candidates for the indecomposable subalgebras

of u(1, n + 1)I . For any subalgebra h ⊂ hm,u
0 the space K(h) can be found from the

following condition

R ∈ K(h) if and only if R ∈ K(hm,u
0 ) and R(R2,2n+2, R2,2n+2) ⊂ h.

Using this, we easily find all indecomposable, non-irreducible Berger subalgebras of
u(1, n + 1)I .

Step 3) As the last step of the classification, we construct metrics on R2n+4 that
realise all Berger algebras obtained above as holonomy algebras. Idea of constructions
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of the metrics is similar to the one in Section 4.1. The coefficients of the metrics are
polynomial functions, hence the corresponding Levi-Civita connections are analytic and
in each case the holonomy algebra at the point 0 ∈ R2n+4 is generated by the operators
images of the curvature tensor and of all its derivatives. We explicitly compute for
each metric the components of the curvature tensor and its derivatives. Then using the
induction, we find the holonomy algebra for each of the metrics.

4.3. Examples of 4-dimensional Lie groups with left-invariant pseudo-
Kählerian metrics. Let G be a Lie group endowed with a left-invariant metric g
and let g be the Lie algebra of G. We will consider g as the Lie algebra of left-invariant
vector fields on G and as the tangent space at the identity e ∈ G. Let X, Y, Z ∈ g. Since
X, Y, Z and g are left-invariant, from the Koszul formulae it follows that the Levi-Civita
connection on (G, g) is given by

2g(∇XY, Z) = g([X, Y ], Z) + g([Z,X], Y ) + g(X, [Z, Y ]), (21)

where X, Y, Z ∈ g. In particular, we see that the vector field ∇XY is also left-invariant.
Hence∇X can be considered as the linear operator∇X : g → g. Obviously,∇X ∈ so(g, g).
For the curvature tensor R of (G, g) at the point e ∈ G we have

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ], (22)

where X, Y ∈ g. The holonomy algebra he at the point e ∈ G is given by

he = m0 + [m1,m0] + [m1, [m1,m0]] + · · · , (23)

where
m0 = span{R(X, Y )|X, Y ∈ g} and m1 = span{∇X |X ∈ g}.

Now we consider 4-dimensional Lie algebras with the basis X1, X2, Z1, Z2 and with

the metric that has the Gram matrix

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
with respect to this basis. Define

the following Lie algebras by giving their non-zero brackets:

g1: [X1, Z1] = X1 + Z2, [X1, Z2] = −X2 − Z1, [X2, Z1] = X2 + Z1, [X2, Z2] =
X1 + Z2;

g2: [X1, Z2] = X1, [X2, Z1] = −X1, [Z1, Z2] = X1 + Z1;

Example 4.5. The holonomy algebras of the Levi-Civita connections on the simply
connected Lie groups corresponding to the Lie algebras g1 and g2 are h2

n=0 and hγ1=0,γ2=1
n=0 ,

respectively.

5. Holonomy in neutral signature

The Berger list in Theorem 2.4 shows that neutral signature (n, n) has the largest variety
of irreducible, non-symmetric holonomy groups of all signatures. Apart from SO(n, n)
we have the unitary groups U(p, p) and SU(p, p) and the symplectic groups Sp(q, q) and
Sp(1) · Sp(q, q), but also

SO(r, C), Sp(p, R) · Sl(2, R), and Sp(p, C) · Sl(2, C),
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and finally the exceptional groups

GC
2 ⊂ SO(7, 7), Spin(4, 3) ⊂ SO(4, 4), and Spin(7)C ⊂ SO(8, 8).

Nevertheless, for a complete classification of holonomy groups of neutral signature one
also has to consider indecomposable, non-irreducible ones. In [12] some partial results for
the holonomy algebras of pseudo-Riemannian manifolds of signature (n, n) were obtained.
In particular, a complete classification for n = 2 can be given.

For a point p in a pseudo-Riemannian manifold of signature (n, n) we always fix a
basis in TpM such that the metric h at p is of the form

(
0 In

In 0

)
, (24)

where In is the identity on Rn. If V is a degenerate subspace which is invariant under
the holonomy, again we can form the totally isotropic subspace V ∩ V ⊥, but in contrary
to the previous cases this subspace can have any dimension from 1 up to n. In the case
in which this dimension is n we have that V ⊥ = V , i.e. the orthogonal complement
gives no further information, but this case contains a very special situation which will be
described first.

5.1. Para-Kähler structures. Recall that we have defined a holonomy repre-
sentation to be indecomposable if any proper invariant subspace is degenerate. Neutral
signature (n, n) is the only case where this property does not prevent the holonomy
representation from decomposing, i.e. to split into two invariant subspaces which are
complementary. This is the case if we have two invariant totally isotropic and comple-
mentary subspaces V + and V − of dimension n, i.e.

TpM = V + ⊕ V −, (25)

with V + and V − totally isotropic and holonomy invariant. This property is equivalent
to the existence of a para Kähler structure on (M,h) (see [35] and [34]).

Definition 5.1. A para-Kähler manifold (M,J, h) is a pseudo-Riemannian manifold
(M,h) equipped with a non-trivial section J in the endomorphism bundle such that:

1. ∇J = 0 where ∇ is the Levi-Civita connection of h,

2. J∗h = −h, and

3. J2 = Id and the eigen distributions V ± := ker (Id∓ J) have the same rank.

The second condition forces the metric to be of neutral signature (n, n), the third
condition ensures that the eigen distributions are totally isotropic of dimension n. That
J is parallel is equivalent to the fact that V ± are holonomy invariant. It can be shown
that the local coefficients of the metric of a para-Kähler metric can be expressed as second
derivatives of a para-Kähler potential Ω (for a proof see [81], [12], or [35] in terms of
para-Kähler manifolds). Regarding the holonomy groups one gets the following result:

Theorem 5.2 (Bérard-Bergery, Ikemakhen, [12]). Let (M,h) be a pseudo-Riemannian
manifold of signature (n, n) and let H := Holp(M,h) be its holonomy group at a point
p ∈ M . If H leaves invariant two totally isotropic complementary subspaces of dimension
n, then

H ⊂ G :=
{(

U 0
0 (U t)−1

)
| U ∈ Gl(n, R)

}
. (26)
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Moreover, there exists co-ordinates (x1, . . . xn, y1, . . . , yn) around p sending p to 0 ∈ R2n,
and a smooth function Ω on a neighborhood of 0 ∈ R2n such that:

1. h =
n∑

i,j=1
Dijdxidyj with Dij = ∂2Ω

∂xi∂yj
.

2. The Taylor series of Ω in 0 starts with x1y1 + . . . + xnyn and continues with terms
which are at least quadratic in the xi’s and quadratic in the yj’s.

3. H is the smallest connected subgroup of G which contains the element

D :=
(

D 0
0 (Dt)−1

)
∈ G.

Here Ω is the para-Kähler potential. In [5] it is shown that cones over para-Sasakian
manifolds are examples of manifolds with the property (25).

5.2. Neutral metrics in dimension four. Now we consider the case where
the dimension of the manifold M is four, i.e. the signature is (2, 2). Let H be the
indecomposable, non-irreducible holonomy group of (M,h). In this case the invariant
totally isotropic subspace is a null-line or a totally isotropic plane. The first case is
contained in the second: If (e1, . . . , e4) is a basis of TpM such that the metric has the
form (24) with e1 spanning the invariant null-line, then the plane spanned by e1 and e2

is invariant as well because Ae2 is orthogonal to e1 for A in H. Hence, in both case H
leaves invariant a totally isotropic plane I, i.e. the Lie algebra h of H is contained in

so(2, 2)I =
{(

U aJ
0 −U t

)
| U ∈ gl(2, R), a ∈ R

}
, with J =

(
0 1
−1 0

)

so(2, 2)I is a semi-direct sum, so(2, 2)I = gl(2, R) ! A, where A is the ideal spanned by(
0 J
0 0

)
, with the commutator

[(U, a), (V, b)] = ([U, V ], b · trace(U)− a · trace(V )) .

The one can prove:

Theorem 5.3 (Bérard-Bergery, Ikemakhen, [12]). Let h be an indecomposable subalgebra
of so(2, 2)I ⊂ so(2, 2). Then either h contains an ideal which is conjugated in SO0(2, 2)
to A, or it is conjugated to one of the three exceptions

h1 = so(2)⊕ R =
{(

rI2 + sJ 0
0 −rI2 + sJ

)
| r, s ∈ R

}
,

h2 = R
(

L J
0 L

)
, or h3 = R

(
J J
0 J

)
, with J as above and L =

(
1 0
0 −1

)
.

Note that the other cases of subalgebras contained in the Lie algebra g of G defined
in Theorem 5.2 contain an ideal which is conjugated to A, namely the ideals spanned by
matrices U ∈ Gl(2, R) which are nonzero only at one entry. Note also that h1 = h2

n=0

defined in Theorem 4.2. One can show that the algebras h2 and h3 are not Berger algebras
and therefore cannot be holonomy algebras.
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Corollary 5.4. Let h be an indecomposable Berger algebra in so(2, 2)I ⊂ so(2, 2). Then
h is conjugated to a subalgebra which is either contained in g or contains the ideal A.

Based on this in [12] a complete classification of indecomposable, non-irreducible
holonomy groups of pseudo-Riemannian manifolds of signature (2, 2) is obtained.

Theorem 5.5. Let H ⊂ SO(2, 2) be the indecomposable, non-irreducible acting holonomy
group of a 4-dimensional pseudo-Riemannian manifold of signature (2, 2) and h its Lie
algebra. Then H leaves invariant a totally isotropic plane I and it holds one of the
following:

(A) H leaves invariant another totally isotropic plane complementary to I, in which
case h ⊂ g and h is conjugated in SO0(2, 2) to one of the following: gl(2, R),
sl(2, R), the strictly upper triangular, the upper triangular matrices,

kλ =
{(

a b
0 λa

)
| a, b ∈ R

}
for λ ∈ R, or

h1 =
{(

a b
−b a

)
| a, b ∈ R

}
,

under use of the identification g - gl(2, R).

(B) H does not leave invariant a complementary totally isotropic plane. In this case
the Lie algebra h of H is conjugated to a semi-direct sum

h′ !A,

where h′ is conjugated to one of the subalgebras of g listed in (A), to R ·
(

1 1
0 1

)
,

or to uµ := R ·
(

µ 1
−1 µ

)
.

Remark 5.6. From this Theorem we can also recover the classification of unitary holon-
omy algebras in signature (2, 2) given in Theorem 4.2. First we get the obvious subalge-
bras of u(1, 1):

A = hγ1=0,γ2=0
n=0 , h1 = h2

n=0, h1 !A = u(1, 1)I , and uµ !A = hµγ2,γ2 '=0
n=0 .

For the remaining subalgebra R ·
(

I2 0
0 −I2

)
⊕A = hγ1=1,γ2=0

n=0 = su(1, 1)I one has to

pay attention to the fact that in order to classify subalgebras of u(1, 1) one needs to classify

them up to conjugation in U(1, 1). In fact, hγ1=1
n=0 is conjugated to

{(
a b
0 a

)
| a, b ∈ R

}
=

k1 of (A), which is obviously not a subalgebra of u(1, 1) because the conjugation lies in
O(2, 2) but not in U(1, 1).

From Theorem 5.5 we get a conclusion about the closedness of holonomy groups.

Corollary 5.7. The holonomy group of a 4-dimensional pseudo-Riemannian manifold
of neutral signature (2, 2) is closed.

Finally we want to address the question, which of the algebras obtained can be realised
as holonomy algebras. First we recall results in [12], where it is shown that all the possible
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holonomy groups that leave invariant a pair of complementary totally isotropic planes
listed in (A) of Theorem 5.5 can be realised as holonomy groups of metrics which are not
locally symmetric. As seen in Theorem 5.2, for these manifolds the metric can be written
in terms of the para-Kähler potential Ω, which is given by

Ω = x1y1 + x2y2 + f(x1, x2, y1, y2),

where f is a smooth function. In the generic case h = gl(2, R), the Taylor series of f in
0 is at least quadratic in the xi’s and quadratic in the yi’s, f = x1x2y1y2 is an example.
In [12] the other algebras are realised by specifying f :

h f

{(
a b
0 c

)}

a,b,c∈R
f = y2

1f1(x1, x2, y1) + x2
2f2(x2, y1, y2),

where the Taylor series of f1 and f2 in 0 start with
polynomials of degree 2 in (x1, x2) and (y1, y2)
respectively, e.g. fx2y1(x1y1 + x2y2).

kλ'=0 f = x1

y1∫

0
x2y1f̂(x2, t)dt + y2

x2∫

0
((1 + x2y1f̂((t, y1))2 − 1)dt,

with f̂ non-zero

k0 f = x1x2y2
1 f̂(x1, x2, y1), with f̂ non-zero,

R ·
(

0 1
0 0

)
f = x2

2y
2
1 f̂(x2, y1), with f̂ non-zero.

A metric with holonomy h1 ⊂ u(1, 1)I is given in terms of complex co-ordinates. For the
existence of a metric with holonomy sl(2, R) as listed in (A) of Theorem 5.5, in [12] is
argued on general grounds referring to [23] and [24]. [12] leaves open all the cases in (B)
of Theorem 5.5.

We will solve this problem partially, first by giving metrics with holonomy sl(2, R)!A.
This metric has the form

g = 2dx1dy1 + 2dx2dy2 + f1dy2
1 + f2dy2

2 + 2f3dy1dy2 (27)

with the functions f1 = x2
1, f2 = x2

2, f3 = −2x1x2.
To all the subalgebras of u(1, 1)I obtained in Theorem 4.2 our method of constructing

metrics as sketched in Section 4.2 applies and ensures that all of them can be realised as
holonomy algebras. The metrics again have the form (27) with the following functions:

h f1, f2, f3

u(1, 1)I f1 = −2x2y1 − x1y2
1 , f2 = −f1 f3 = 2x1y1 − x2y2

1

h2
n=0 f1 = x2

1 − x2
2, f2 = −f1, f3 = 2x1x2

hγ1,γ2
n=0 f1 = −2γ1x2y1 − 2γ2x1y1, f2 = −f1, f3 = 2γ1x1y1 − 2γ2x2y1

(γ2
1 + γ2

2 1= 0)

hγ1=0,γ2=0
n=0 f1 = y2

2 , f2 = f3 = 0
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These metrics disprove a claim in [49], that the Lie algebras

sl(2, R), sl(2, R) !A, uµ !A for µ 1= 0, and h1 !A = u(1, 1)I

— in [49] denoted by A21, A29, A12, and A24 — cannot be realised as holonomy algebras
in so(2, 2). The only case we have to leave undecided, and which is left undecided in [49]
as A13, is the one of

h = R ·
(

1 1
0 1

)
!A. (28)

However, very recently L. Bérard-Bergery and T. Krantz developed a general construction
to build connections on vector bundles which give new holonomies [13]. In particular, by
a construction on the cotangent bundle of a surface they can show that all the algebras
listed in Theorem 5.5, even the last one in Equation (28), are holonomy algebras of a
metric of signature (2, 2).
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