Lorentzian holonomy groups with applications to parallel spinors

Thomas Leistner, University of Adelaide Projekt: Geometrische Analysis — Geometry of Lorentzian manifolds with special holonomy

Kolloquium des DFG-Schwerpunktes Globale Differentialgeometrie 23. – 25. Juli 2004, Universität Leipzig

- I. Holonomy groups and parallel spinors
- II. Indecomposable, non-irreducible Lorentzian manifolds and their holonomy
- III. On the classification of Lorentzian holonomy groups and consequences for parallel spinors

Holonomy groups

Let $(M^{r,s},h)$ be a semi-Riemannian manifold.

$$\nabla^h \rightsquigarrow \mathcal{P}_{\gamma} : T_{\gamma(0)}M \xrightarrow{\sim} T_{\gamma(1)}M$$

$$Hol_p(M,h) := \{\mathcal{P}_{\gamma} | \gamma \text{ loop in } p\} \subset O(T_pM,h_p)$$

 $Hol_p^0(M,h) := \{\mathcal{P}_{\gamma} | \gamma \sim p\} \subset SO_0(T_pM,h_p)$

Lie group with Lie algebra $\mathfrak{hol}_p(M,h)$, closed if it acts completely reducible.

Parallel spinors

 $(M^{r,s},h)$ spin \sim spin bundle S, ∇^S lift of ∇^h .

$$\left\{ \begin{array}{l} \varphi \in \Gamma(S) \mid \nabla^S \varphi = 0 \right\} \\ \updownarrow \\ \left\{ \text{ spinors fixed under } \widetilde{Hol}_p(M,h) \subset Spin(r,s) \right. \\ \updownarrow \\ \left. \left\{ \begin{array}{l} \text{ annihilated spinors under} \\ \text{ the spin representation of } \mathfrak{hol}_p(M,h) \right. \end{array} \right\}$$

Question: What are the holonomy groups of manifolds with parallel spinors?

Decomposition

- **Holonomy** [de Rham'52, Wu'64]: (M,h) simply connected, complete \Rightarrow

$$Hol(M,h) = H_1 \times \ldots \times H_k \iff$$

 $(M,h) \stackrel{\mathsf{isom.}}{\simeq} (M_1,h_1) \times \ldots \times (M_k,h_k),$

 (M_i, h_i) simply connected, complete, $H_i = Hol(M_i, h_i)$ trivial or indecomposable (:= no non-degenerate invariant subspace)

– Parallel spinors:

Let $H_1 \subset SO(r_1, s_1)$, $H_2 \subset SO(r_2, s_2)$. Then: $\widetilde{H}_i \subset Spin(r_i, s_i)$ fix a spinor \iff $\widetilde{H_1 \times H_2} \subset Spin(r_1 + r_2, s_1 + s_2)$ fixes a spinor.

 $\rightsquigarrow (M_1, h_1) \times (M_2, h_2)$ has parallel spinor fields $\iff (M_1, h_1)$ and (M_2, h_2) have parallel spinor fields.

Question: What are indecomposable holonomy groups of manifolds with parallel spinors?

Berger algebras

Ambrose-Singer theorem + Bianchi-identity \rightarrow algebraic constraints on $\mathfrak{hol}_p(M,h)\subset\mathfrak{so}(T_pM,h)$:

Let $\mathfrak{g} \subset \mathfrak{gl}(E)$ be a Lie algebra.

•
$$\mathcal{K}(\mathfrak{g}) := \{ R \in \Lambda^2 E^* \otimes \mathfrak{g} \mid R(x,y)z + R(y,z)x + R(z,x)y = 0 \}$$

•
$$\mathfrak{g} := span\{R(x,y) \mid x,y \in E, R \in \mathcal{K}(\mathfrak{g})\}$$

 $\mathfrak{g} \subset \mathfrak{gl}(E)$ is called **Berger algebra** $\stackrel{def.}{\Longleftrightarrow}$ $\underline{\mathfrak{g}} = \mathfrak{g}$.

Ambrose-Singer $\Rightarrow \mathfrak{hol}_p(M,h)$ is a Berger algebra.

Classification of irreducible Berger algebras:

- $-\mathfrak{g}\subset\mathfrak{so}(r,s)$ [Berger '55] and
- $-\mathfrak{g}\subset\mathfrak{gl}(n)$ [Schwachhöfer/Merkulov '99]
- → list of holonomy groups of (simply connected)
 irreducible semi-Riemannian/affine manifolds.

Berger-list of irreducible holonomy groups

Riemannian: [Berger '55, Simons '62, ...] SO(m), U(p), SU(p), Sp(q), $Sp(1) \cdot Sp(q)$, Spin(7), G_2 and holonomy groups of symmetric spaces.

Lorentzian: only $SO_0(1, m-1)$! (Direct proof by Olmos/diScala '01)

→ Irreducible holonomy groups of semi-Riemannian manifolds with parallel spinors:

Riem.: [Wang '89] SU(p), Sp(q), Spin(7), G_2

pseudo-Riem.: [Baum/Kath '99]
$$SU(p,q), Sp(p,q), G_{2(2)}^* \subset SO(7,7), G_2^{\mathbb{C}} \subset SO(7,7), G_2^{\mathbb{C}} \subset SO(7,7), Spin(4,3) \subset SO(4,4), Spin(7)^{\mathbb{C}} \subset SO(8,8).$$

No irreducible Lorentzian manifolds with parallel spinors!

Riemannian: indecomposable = irreducible ⇒ de Rham-decomposition + Berger-list → Classification of all holonomy groups of simplyconnected, complete Riemannian manifolds (with parallel spinors).

Simply connected, complete Lorentzian mfds.

Indecomposable \neq irreducible. Wu-decomposition:

$$(M,h)\simeq (\widehat{M},\widehat{h}) imes (N_1,g_1) imes \ldots imes (N_k,g_k)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\downarrow \text{ orentzian: Piemannian irred or flate.}$$

Lorentzian: Riemannian, irred. or flat

- flat (√)
- irred., i.e. $Hol = SO_0(1, m-1)$ (\checkmark)
- indecomposable, non-irreducible, i.e. with degenerate, holonomy -invariant subspace

Parallel spinors on Lorentzian manifolds

• Spinorfield $\varphi \sim$ causal vector field V_{φ} via:

$$h(V_{\varphi}, X) = -\langle X \cdot \varphi, \varphi \rangle_{S}.$$

• φ parallel $\Longrightarrow V_{\varphi}$ parallel.

$$\sim$$
 2 cases — V_{φ} timelike:

$$(M,h) \simeq (\mathbb{R},-dt^2) imes (N_1,g_1) imes \ldots imes (N_k,g_k)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Riemannian with
 $Hol = SU(k), Sp(k), G_2, Spin(7)$

$$\frac{V_{\varphi} \text{ lightlike}}{(M,h) \simeq} (\widehat{M},\widehat{h}) \qquad \times (N_1,g_1) \quad \times \ldots imes (N_k,g_k)$$

$$\uparrow$$

indecomposable Lorentzian with parallel lightlike vector field

II. Lorentzian manifolds (M^{n+2}, h) with indecomposable, non-irreducible holonomy

 $E\subset T_pM$ be degenerate, holonomy invariant $\implies L=E\cap E^\perp\subset T_pM$ is one-dimensional, lightlike and holonomy invariant.

$$\Longrightarrow Hol_p(M,h) \subset Iso(L) \subset SO(T_pM,h_p).$$

 $L \longleftrightarrow \text{recurrent, lightlike vector field } X$

$$\mathfrak{hol}\subset \underbrace{\mathfrak{iso}(L)=(\mathbb{R}\oplus\mathfrak{so}(n))\ltimes\mathbb{R}^n}_{\left\{egin{array}{c|c} a&v^t&0\\0&A&-v\\0&0^t&-a\end{array}
ight|}_{\left\{egin{array}{c|c} a\in\mathbb{R},\\v\in\mathbb{R}^n,\\A\in\mathfrak{so}(n)\end{array}
ight\}$$

 $\mathfrak{g} := pr_{\mathfrak{so}(n)}\mathfrak{hol}$ — "screen holonomy"

parallel spinor \iff

 $pr_{\mathbb{R}}(\mathfrak{hol}) = 0 \text{ and } \exists v \in \Delta_n : \mathfrak{g}v = 0.$

In fact:

 $\dim\{\text{par. spinors}\} = \dim\{v \in \Delta_n | \mathfrak{g}v = 0\} \le 2^{\left[\frac{n}{2}\right]}$

Properties:

 $\mathfrak{h} = \mathfrak{hol}_p(M,h) \subset \mathfrak{iso}(L)$ indecomposable. \Longrightarrow

- $pr_{\mathbb{R}^n}(\mathfrak{h}) = \mathbb{R}^n$.
- \mathfrak{h} is Abelian $\iff \mathfrak{h} = \mathbb{R}^n$.
- $pr_{\mathbb{R}}\mathfrak{h}=0 \iff \exists$ parallel lightlike vectorfield.
- $\mathfrak{g} = pr_{\mathfrak{so}(n)}(\mathfrak{h})$ is compact and therefore reductive, i.e. $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{d}$ where \mathfrak{z} is the center of \mathfrak{g} and $\mathfrak{d} = [\mathfrak{g}, \mathfrak{g}]$.

Indecomposable \Longrightarrow

parallel spinor \leadsto *lightlike* parallel vector field $\leadsto \mathfrak{hol}(M,h) \subset \mathfrak{so}(n) \ltimes \mathbb{R}^n$.

(M,h) indecomposable with $\mathfrak{hol} \subset \mathfrak{so}(n) \ltimes \mathbb{R}^n$ admits a parallel spinor \iff spin representation of $\mathfrak{g} := pr_{\mathfrak{so}(n)}\mathfrak{hol}$ has trivial subrepresentation.

In fact:

Dim {parallel spinors} = Dim $\{v \in \Delta_n | \mathfrak{g}v = 0\} \leq 2^{\left[\frac{n}{2}\right]}$

Question: Which Lie algebras occur as

$$\mathfrak{g} = pr_{\mathfrak{so}(n)}(M,h)$$

and which of these has trivial spin subrepresentations?

Four algebraic types [Berard-Bergery/Ikemakhen'93]

 $\mathfrak{h} \subset \mathfrak{iso}(L) \subset \mathfrak{so}(1, n+1)$ indecomposable,

$$\mathfrak{g} := pr_{\mathfrak{so}(n)}(\mathfrak{h}) = \mathfrak{z} \oplus \mathfrak{d}.$$

Then \mathfrak{h} belongs to one of the following types:

1st case — \mathfrak{h} contains \mathbb{R}^n :

Type 1: \mathfrak{h} contains \mathbb{R} , i.e. $\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \ltimes \mathbb{R}^n$.

Type 2:
$$pr_{\mathbb{R}}(\mathfrak{h})=0$$
 i.e. $\mathfrak{h}=\mathfrak{g}\ltimes\mathbb{R}^n$

Type 3: Neither Type 1 nor Type 2.

 $\exists \varphi : \mathfrak{z} \to \mathbb{R}$ surjective:

2nd case — \mathfrak{h} does not contain \mathbb{R}^n — **Type 4:**

 \exists a decomposition $\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^l$, 0 < k, l < n,

 $\exists \ \varphi : \mathfrak{z} \to \mathbb{R}^{\hat{l}} \ \text{surjective:}$

$$\mathfrak{h} = \left\{ \left(\begin{array}{cccc} 0 & \varphi(A)^t & v^t & 0 \\ 0 & 0 & A+B & -v \\ 0 & 0 & 0 & -\varphi(A) \\ 0 & 0 & 0 & 0 \end{array} \right) \middle| A \in \mathfrak{z}, B \in \mathfrak{d}, v \in \mathbb{R}^k \right\}.$$

Indecomposable, non-irreducible Lorentzian manifolds with Abelian holonomy

Example: Symmetric spaces with solvable transvection group (Cahen-Wallach spaces).

Proposition. ['00] (M,h) has Abelian holonomy $\mathbb{R}^n \iff$ it is an indecomposable pp-wave.

Def. A Lorentzian mfd. is called pp-wave : $\iff \exists$ parallel lightlike vector field and:

$$tr_{(3,5)(4,6)}(\mathcal{R}\otimes\mathcal{R})=0.$$

In coordinates:

$$h = dxdz + fdz^2 + \sum_{i=1}^{n} dy_i^2$$
, with $\frac{\partial f}{\partial x} = 0$.

 $(\exists \text{ a similar result for } \mathfrak{hol}(M,h) = \mathbb{R} \ltimes \mathbb{R}^n.)$

n+2-dim. pp-wave admits $2^{\left[\frac{n}{2}\right]}$ parallel spinors which are pure, i.e.

$$dim\{Z \in TM^{\mathbb{C}}|Z \cdot \varphi = 0\} = \frac{dim\ M}{2}$$

Construction of indecomposable, non-irreducible Lorentzian manifolds with

$$pr_{SO(n)}Hol(M,h) =$$
Riemannian holonomy

Proposition. ['00] Let

- \bullet (N,g) be a Riemannian manifold,
- ullet γ be a function of $z\in\mathbb{R}$,
- $f \in C^{\infty}(N \times \mathbb{R}^2)$, sufficiently generic,
- ullet ϕ_z be a family of 1-forms on N, such that

$$d\phi_z \in \mathcal{H}(N,g) \times_{Hol_p(N,g)} \mathfrak{hol}_p(N,g).$$

⇒ The Lorentzian manifold

$$(M = N \times \mathbb{R}^2, h = 2dxdz + fdz^2 + \phi_z dz + e^{2\gamma} \cdot g)$$

is indecomposable, non-irreducible and

$$pr_{SO(n)}Hol_{(x,p,z)}(M,h) = Hol_p(N,g).$$

(N,g) parallel spinors \Rightarrow (M,h) parallel spinors. $Hol(N,g) = \{1\}, \ SU(p), \ Sp(q) \Rightarrow \text{pure}.$

Coordinates for indecomposable, non-irreducible Lorentzian manifolds: [Walker'49, Brinkmann'25]

On $(M^{n+2}, h) \exists$ **recurrent**, lightlike vector field $\iff \exists$ coordinates $(U, \varphi = (x, (y_i)_{i=1}^n, z))$:

$$h = 2 dxdz + \underbrace{\sum_{i=1}^{n} u_i dy_i dz + f dz^2}_{:=\phi_z} + \underbrace{\sum_{i,j=1}^{n} g_{ij} dy_i dy_j}_{g_z}$$

with
$$\frac{\partial g_{ij}}{\partial x} = \frac{\partial u_i}{\partial x} = 0$$
, $f \in C^{\infty}(M)$.

 \exists **parallel** lightlike vector field $\iff \frac{\partial f}{\partial x} = 0$.

 $(U,\varphi) \rightsquigarrow$ family of n-dimensional Riemannian submanifolds with metric g_z and 1-form ϕ_z :

$$W_{(x,z)} := \{ \varphi^{-1}(x, y_1, \dots, y_n, z) | (y_1, \dots, y_n) \in \mathbb{R}^n \}$$

Proposition. [Ikemakhen '96]

$$Hol_p(W_{x(p),z(p)},g_{z(p)}) \subset pr_{SO(n)}Hol_p(M,h).$$

Question: Under which conditions "="?

III. On the classification of Lorentzian holonomy groups

Result: ['02, '03] $\mathfrak{g} = pr_{\mathfrak{so}(n)}\mathfrak{hol}(M,h)$ for (M,h) indecomposable, non-irred. Lorentzian $\iff \mathfrak{g}$ is a Riemannian holonomy algebra.

Consequence: $\mathfrak{h} = \mathfrak{hol}_p(M,h) \Longrightarrow$

Type 1 or 2: $\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \ltimes \mathbb{R}^n$ or $\mathfrak{g} \ltimes \mathbb{R}^n$ with $\mathfrak{g} = \text{Riemannian holonomy algebra}$.

Type 3 or 4: $\mathfrak{g} = pr_{\mathfrak{so}(n)}\mathfrak{h}$ is a Riemannian holonomy algebra with center, i.e. with $\mathfrak{so}(2)$ summand.

Corollary. ['03] H = holonomy group of an indecomposable Lor. mf. with **parallel spinors**. $\Longrightarrow H$ is of uncoupled type 2, i.e.

$$H = G \ltimes \mathbb{R}^n$$
,

 $G = \text{product of } \{1\}, SU(p), Sp(q), G_2 \text{ or } Spin(7).$

This generalizes a result of R. Bryant ['99] for $n \leq 9$.

Proof is by algebraic means, direct geametric proof is desirable.

Up to dim 9 proved also by Galaev '03, also algebraically.

Remark on coupled types 3 and 4: $\mathfrak{g}=\mathsf{Riemannian}$ holonomy with center

 \implies it is a sum of the following:

- $\mathfrak{so}(2)$ acting on \mathbb{R}^2 or on itself,
- $\mathfrak{so}(2) \oplus \mathfrak{so}(n)$ acting on \mathbb{R}^{2n} ,
- $\mathfrak{so}(2) \oplus \mathfrak{so}(10)$ acting on \mathbb{R}^{32} = reellification of the cx. spinor module of dimension 16,
- $\mathfrak{so}(2) \oplus \mathfrak{e}_6$ acting on \mathbb{R}^{54} ,
- $\mathfrak{u}(n)$ acting on \mathbb{R}^{2n} or on $\mathbb{R}^{n(n-1)}$.

Then apply method of Ch. Boubel ['00]:

(M,h) with holonomy of uncoupled type 1 or 2, \mathfrak{g} with center (+further algebraic constraints) \rightarrow construct locally a metric on M with holonomy of coupled type 3 or 4.

To do this: Start with entries of the above list!

Proof. (of the corollary) Type $4 \Rightarrow G =$ Riemannian holonomy with center has SO(2)-factor, spin representations of SO(2) has no fixed vectors. $(*) \Rightarrow$ Proposition.

Proof: 1. Weak-Berger algebras

Let (E,h) be a Euclidean vector space $\mathfrak{g} \subset \mathfrak{so}(E,h)$:

$$\mathcal{B}_{h}(\mathfrak{g}) := \{ Q \in Hom(E, \mathfrak{g}) \mid h(Q(x)y, z) + h(Q(y)z, x) + h(Q(z)x, y) = 0 \}$$

$$\mathfrak{g}_{h} := span\{Q(x) \mid x \in E, Q \in \mathcal{B}_{h}(\mathfrak{g}) \}.$$

 $\mathfrak{g} \subset \mathfrak{so}(E,h)$ weak-Berger algebra $\Leftrightarrow \mathfrak{g}_h = \mathfrak{g}$.

Lemma. Orthogonal Berger \Longrightarrow weak-Berger.

Because: $\mathcal{R} \in \mathcal{K}(\mathfrak{g}) \implies \mathcal{R}(x,.) \in \mathcal{B}_h(\mathfrak{g})$

Decomposition:

h positive definite $\Rightarrow E = E_0 \oplus \ldots \oplus E_r$:

 \mathfrak{g} trivial on E_0 , irred. on E_i , $i \geq 1$.

 \mathfrak{g} weak-Berger $\Rightarrow \mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_r$:

 \mathfrak{g}_i ideals, irred. on E_i and trivial on E_j for $i \neq j$, $\mathfrak{g}_i \in \mathfrak{so}(E_i, h|E_i)$ weak-Berger.

Problem:

hol is a Berger algebra but not completely reducible.

 $\mathfrak{g}=pr_{\mathfrak{so}(n)}\mathfrak{hol}$ is completely reducible, but not a holonomy algebra and hence not a Berger algebra, apriori.

 \sim weak-Berger algebras.

2. Weak-Berger algebras and Lorentzian holonomy

Prop. ['02] Let (M^{n+2},h) be indecomposable, non-irreducible Lorentzian, $\mathfrak{g}=pr_{\mathfrak{so}(n)}(\mathfrak{hol}_p(M,h))$. Then \mathfrak{g} is a weak-Berger algebra.

In particular: g decomposes into irreducibly acting ideals [Berard-Bergery, Ikemakhen '93] which are weak Berger.

Corollary. [Berard-Bergery, Ikemakhen '93] $G := pr_{SO(n)}Hol_p(M,h)$ is closed in SO(n) and therefore compact.

- This is not true for the whole holonomy group, there are non-closed examples!
- → Classify real, irreducible weak-Berger algebras!

Proof. (of the proposition) Bianchi-identity restricted to the non-degenerate subspace $\mathbb{R}^n\subset T_pM$ and AS \leadsto

$$\begin{split} \mathfrak{g} &= span \left(\begin{array}{l} \{R(u,v) | R \in \mathcal{K}(\mathfrak{g}), u,v \in E\} \\ \cup \{Q(w) | Q \in \mathcal{B}_h(\mathfrak{g}), w \in E\} \end{array} \right) \subset \mathfrak{g}_h. \\ Q \; \hat{=} \; pr_E \; \circ \mathcal{R}(.,Z)_{|E \times E} \; \text{with} \; Z \; \text{lightlike and} \\ \text{transversal to} \; L_p^\perp & \quad \Box \end{split}$$

3. Transition to the complex situation

$$E \text{ real, } \mathfrak{g} \subset \mathfrak{so}(E,h) \Longrightarrow (\mathcal{B}_h(\mathfrak{g}))^{\mathbb{C}} = \mathcal{B}_{h^{\mathbb{C}}}(\mathfrak{g}^{\mathbb{C}}).$$

Lemma. $\mathfrak{g} \subset \mathfrak{so}(E,h)$ weak-Berger \iff $\mathfrak{g}^{\mathbb{C}} \subset \mathfrak{so}(E^{\mathbb{C}},h^{\mathbb{C}})$ weak-Berger.

$$\mathfrak{g}\subset\mathfrak{so}(E,h)$$
 irreducible \Longrightarrow

- **1.** $E^{\mathbb{C}}$ irreducible:
- $\Rightarrow \mathfrak{g}$ semisimple
- \rightsquigarrow weak-Berger property in terms of roots and weights
- → result for simple and semisimple Lie algebras (uses ideas of Schwachhöfer '99).
- **2.** $E^{\mathbb{C}}$ not irreducible:

$$\Rightarrow \overline{E^{\mathbb{C}} = V \oplus \overline{V}}, \ V \text{ irreducible, } \mathfrak{g} \subset \mathfrak{u}(V) \Rightarrow$$
$$(\mathcal{B}_h(\mathfrak{g}))^{\mathbb{C}} \simeq \text{ first prolongation of } \mathfrak{g}^{\mathbb{C}} \subset \mathfrak{gl}(V).$$

Classification of irred. acting complex Lie algebras with non-vanishing first prolongation by Kobayashi/Nagano ['65]

→ result for unitary Lie algebras

4. Weak-Berger algebras of real type

Let $\mathfrak{g} \subset \mathfrak{so}(V,H)$ irreducible, semisimple complex LA.

- ullet $\Delta_0:=$ roots and zero of $\mathfrak{g}=igoplus_{lpha\in\Delta_0}\mathfrak{g}_lpha$
- $\Omega :=$ weights of $V = \bigoplus_{\mu \in \Omega} V_{\mu}$.
- Π := weights of $\mathcal{B}_H(\mathfrak{g}) = \bigoplus_{\phi \in \Pi} \mathcal{B}_{\phi}$.
- $Q \in \mathcal{B}_{\phi}$ and $v \in V_{\mu} \Longrightarrow Q(u) \in \mathfrak{g}_{\phi+\mu}$

$$\bullet \ \Gamma := \left\{ \begin{array}{l} \mu + \phi \ \middle| \ \begin{array}{l} \mu \in \Omega, \ \phi \in \Pi \quad \exists u \in V_{\mu} \\ \text{and} \ Q \in \mathcal{B}_{\phi} \colon Q(u) \neq 0 \end{array} \right\} \subset \Delta_0 \subset \mathfrak{t}^*.$$

Prop. If $\mathfrak{g} \subset \mathfrak{so}(V,h)$ is weak-Berger, then $\Gamma = \Delta_0$.

Lemma: If $\mathcal{B}_H(\mathfrak{g}) \neq 0$, $\Lambda \in \Omega$ extremal \Rightarrow $\forall u \in V_{\Lambda} \exists Q \in \mathcal{B}_{\phi}$: $Q(u) \neq 0$.

Define for $\alpha \in \Delta$ the weights of $\mathfrak{g}_{\alpha}V$:

$$\Omega_{\alpha} := \{ \mu \in \Omega \mid \mu + \alpha \in \Omega \}.$$

Proposition. ['03] Let $\mathfrak{g} \subset \mathfrak{so}(V,H)$ as above. Then:

 \exists extremal weight Λ , hyperplane $U \subset \mathfrak{t}^*$, $\alpha \in \Delta$:

(1)
$$\Omega \subset \{ \Lambda + \beta \mid \beta \in \Delta_0 \} \cup U \cup \{ -\Lambda + \beta \mid \beta \in \Delta_0 \}$$
.

or

(2)
$$\Omega_{\alpha} \subset \{\Lambda - \alpha + \beta \mid \beta \in \Delta_0\} \cup \{-\Lambda + \beta \mid \beta \in \Delta_0\}$$
.

Checking the representations of simple Lie algebra whether they obey (1) or (2)

→ Simple weak-Berger algebras of real type are complexifications of Riemannian holonomy algebras.

For semisimple Lie algebras:

V irreducible $\mathfrak{g}_1 \oplus \mathfrak{g}_2$ -module $\Longrightarrow V = V_1 \otimes V_2$ where V_i are irreducible \mathfrak{g}_i -modules.

 \sim derive criteria to the summands $\mathfrak{g}_i \subset \mathfrak{gl}(V_i)$

→ semisimple weak-Berger algebras are complexifications of Riemannian holonomy algebras

5. Weak-Berger algebras of non-real type

Let $\mathfrak{g}_0 \subset \mathfrak{so}(E,h)$ be real, but of non-real type.

- $E^{\mathbb{C}}=V\oplus \overline{V}$ \mathfrak{g}_0 -invariant, $E=V_{\mathbb{R}}$,
- \bullet $(\mathfrak{g}_0)_{|V}$ is irreducible and unitary, but not orthogonal.

$$\mathfrak{g}:=(\mathfrak{g}_0^{\mathbb{C}})_{ig|V}$$
 — define the **first prolongation**
$$\mathfrak{g}^{(1)}:=\{Q\in Hom(V,\mathfrak{g})\mid Q(u)v=Q(v)u\}.$$

Proposition. ['02] There is an isomorphism

$$\phi : \mathcal{B}_H(\mathfrak{g}_0^{\mathbb{C}}) \simeq \mathfrak{g}^{(1)}$$

$$Q \mapsto Q_{|V \times V}.$$

Weak-Berger $\Longrightarrow \mathcal{B}_H(\mathfrak{g}) \neq 0$

Classification of Lie algebras with non-trivial 1. prolongation [Kobayashi/Nagano '65]

Table 1 Complex Lie algebras with $\mathfrak{g}^{(1)} \neq 0$, $\mathfrak{g}^{(1)} \neq V^*$:

$_{-}$	V		$\mathfrak{g}^{(1)}$	Riem. Hol.
$egin{aligned} &\mathfrak{sl}(n,\mathbb{C}) \ &\mathfrak{gl}(n,\mathbb{C}) \ &\mathfrak{sp}(n,\mathbb{C}) \ &\mathbb{C}\oplus\mathfrak{sp}(n,\mathbb{C}), \end{aligned}$	\mathbb{C}^n , \mathbb{C}^n , \mathbb{C}^{2n} , \mathbb{C}^{2n} ,	$n \ge 2$ $n \ge 1$ $n \ge 2$ $n \ge 2$	$(V \otimes \bigcirc^{2}V^{*})_{0}$ $V \otimes \bigcirc^{2}V^{*}$ $\bigcirc^{3}V^{*}$ $\bigcirc^{3}V^{*}$	$\mathfrak{su}(n)$ $\mathfrak{u}(n)$ $\mathfrak{sp}(n)$ not w-B!

Table 2 Complex Lie algebras with $\mathfrak{g}^{(1)} = V^*$:

${\mathfrak g}$	V	Riem. symm. space
		,
$\mathfrak{co}(n,\mathbb{C})$	\mathbb{C}^n ,	$SO(2+n)/SO(2) \cdot SO(n)$
$\mathfrak{gl}(n,\mathbb{C})$	$\odot^2\mathbb{C}^n$	Sp(n)/U(n)
$\mathfrak{gl}(n,\mathbb{C})$	$\wedge^2\mathbb{C}^n$	SO(2n)/U(n)
$\mathfrak{sl}(\mathfrak{gl}(n,\mathbb{C})\oplus\mathfrak{gl}(m,\mathbb{C}))$	$\mathbb{C}^n\otimes\mathbb{C}^m$	$SU(n+m)/U(n) \cdot U(m)$
$\mathbb{C}\oplus\mathfrak{spin}(10,\mathbb{C})$	$\Delta_{10}^+\simeq \mathbb{C}^{16}$	$E_6/SO(2) \cdot Spin(10)$
$\mathbb{C}\oplus \mathfrak{e}_6$	27	$E_{7}/SO(2) \cdot E_{6}$

 \sim every irreducible weak-Berger algebra which is unitary is a Riemannian holonomy algebra.

Decomposition property

→ every unitary weak-Berger algebra is a Riemannian holonomy algebra.