- 1. Extrema (Wiederholung)
- 2. Hinreichende und notwendige Bedingungen
- 3. Eigenwerte der Hesse-Matrix
- 4. Lokale Auflösbarkeit
- 5. Satz über implizite Funktionen

Ausblick auf die heutige Vorlesung

- 1. Anwendungen des Satzes über implizite Funktionen
- 2. Stationäre Punkte implizit definierter Funktionen
- 3. Reguläre Punkte
- 4. Singuläre Punkte

Beispiel

1) Für die Kreisgleichung $g(x,y)=x^2+y^2-r^2=0, \quad r>0$ findet man im Punkt $(x^0,y^0)=(0,r)$

$$\frac{\partial g}{\partial x}(0,r) = 0, \quad \frac{\partial g}{\partial y}(0,r) = 2r \neq 0.$$

Man kann also in einer Umgebung von (0, r) die Kreisgleichung nach y auflösen:

$$f(x) = \sqrt{r^2 - x^2}$$

Die Ableitung f'(x) kann man durch **implizite Diffentiation** berechnen:

Anwendungen des Satzes über implizite Funktionen II

Beispiel (Fortsetzung)

1)
$$g(x,y) = 0 \Rightarrow g_x(x,y) + g_y(x,y)y'(x) = 0$$
 Also
$$2x + 2yy' = 0 \Rightarrow y' = f'(x) = -\frac{x}{y}$$

Beispiel (Fortsetzung)

2) Betrachte die Gleichung

$$g(x,y) = e^{y-x} + 3y + x^2 - 1 = 0$$

Es gilt:

$$\frac{\partial g}{\partial y}(x,y) = e^{y-x} + 3 > 0 \qquad \forall x \in \mathbb{R}$$

Die Gleichung ist also für jedes $x \in \mathbb{R}$ nach y =: f(x) auflösbar und f(x) ist eine stetig differenzierbare Funktion. Implizite Differentiation:

$$e^{y-x}(y'-1)+3y'+2x=0 \Rightarrow y'=\frac{e^{y-x}-2x}{e^{y-x}+3}$$

Eine **explizite** Auflösung nach y ist in diesem Fall nicht möglich!

Stationäre Punkte implizit definierter Funktionen

Bemerkung

Implizites Differenzieren einer durch

$$g(x,y)=0, \quad \frac{\partial g}{\partial y}\neq 0$$

implizit definierten Funktion y = f(x), $x, y \in \mathbb{R}$ ergibt:

$$f'(x) = -\frac{g_x}{g_y}$$

$$f''(x) = -\frac{g_{xx}g_y^2 - 2g_{xy}g_xg_y + g_{yy}g_x^2}{g_y^3}$$

Bemerkung (Fortsetzung)

Daher ist der Punkt x^0 ein stationärer Punkt von f(x), falls gilt:

$$g(x^0, y^0) = g_x(x^0, y^0) = 0$$
 und $g_y(x^0, y^0) \neq 0$

Weiter ist x^0 ein lokales Maximum (bzw. Minimum), falls

$$\frac{g_{xx}(x^0, y^0)}{g_y(x^0, y^0)} > 0$$
 $\left(bzw. \frac{g_{xx}(x^0, y^0)}{g_y(x^0, y^0)} < 0 \right)$

Implizite Darstellung ebener Kurven

Betrachte die Lösungsmenge einer skalaren Gleichungen

$$g(x, y) = 0$$

Gilt

$$\operatorname{grad} g = (g_x, g_y)^T \neq \mathbf{0}$$

So definiert g(x, y) lokal eine Funktion y = f(x) oder $x = \overline{f}(y)$.

Definition

- 1) Ein Lösungspunkt (x^0, y^0) der Gleichung g(x, y) = 0 mit grad $g(x^0, y^0) \neq \mathbf{0}$ heißt **regulärer** Punkt.
- 1) Ein Lösungspunkt (x^0, y^0) der Gleichung g(x, y) = 0 mit grad $g(x^0, y^0) = \mathbf{0}$ heißt **singulärer** Punkt.

Lemma

1) Gilt für einen regulären Punkt (x^0, y^0)

$$g_x(\mathbf{x}^0) = 0, \quad g_y(\mathbf{x}^0) \neq 0$$

so besitzt die Lösungskurve eine horizontale Tangente in x⁰.

2) Gilt für einen regulären Punkt (x^0, y^0)

$$g_x(\mathbf{x}^0) \neq 0, \quad g_y(\mathbf{x}^0) = 0$$

so besitzt die Lösungskurve eine vertikale Tangente in x^0 .

Singuläre Punkte

Lemma

3) Ist x⁰ ein **singulärer Punkt** so wird die Lösungsmenge bei x⁰ durch die Lösungsmenge der folgenden **quadratischen Gleichung** approximiert:

$$g_{xx}(\mathbf{x}^0)(x-x^0)^2+2g_{xy}(\mathbf{x}^0)(x-x^0)(y-y^0)+g_{yy}(\mathbf{x}^0)(y-y^0)^2=0.$$

Bemerkung

Wegen 3) erhält man für $(g_{xx}, g_{xy}, g_{yy}) \neq \mathbf{0}^T$:

 $det Hg(x^0) > 0$: x^0 ist ein isolierter Punkt der Lösungsmenge

 $det Hg(x^0) < 0$: x^0 ist ein Doppelpunkt

 $det \mathbf{H}g(\mathbf{x}^0) = 0$: \mathbf{x}^0 ist ein Rückkehrpunkt oder auch Spitze

Interpretation:

1) Gilt det $\mathbf{H}g(\mathbf{x}^0) > 0$, so sind beide Eigenwerte von $\mathbf{H}g(\mathbf{x}^0)$ entweder strikt positiv oder strikt negativ, d.h. \mathbf{x}^0 ist ein strenges lokales **Minimum** oder **Maximum** von $g(\mathbf{x})$.

Singuläre Punkte III

- 2) Gilt det $\mathbf{H}g(\mathbf{x}^0) < 0$, so haben die beiden Eigenwerte von $\mathbf{H}g(\mathbf{x}^0)$ ein unterschiedliches Vorzeichen, d.h. \mathbf{x}^0 ist ein **Sattelpunkt** von $g(\mathbf{x})$.
- 3) Gilt det $\mathbf{H}g(\mathbf{x}^0) = 0$, so ist der stationäre Punkt \mathbf{x}^0 von $g(\mathbf{x})$ ausgeartet.

Beispiel

Wir betrachten jeweils den singulären Punkt $\mathbf{x}^0 = 0$:

1) Gegeben sei die implizite Gleichung

$$g(x,y) = y^{2}(x-1) + x^{2}(x-2) = 0.$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2 - 4x$$
 $g_{xy} = 2y$ $g_{yy} = 2(x-1)$ $g_{xx} = 6x - 4$ $\mathbf{H}g(\mathbf{0}) = \begin{pmatrix} -4 & 0 \ 0 & -2 \end{pmatrix}$

Stationäre Punkte implizit definierter Funktionen II

Beispiel (Fortsetzung)

$$\mathbf{H}g(\mathbf{0}) = \begin{pmatrix} -4 & 0 \\ 0 & -2 \end{pmatrix}$$

Also ist $\mathbf{x}^0 = \mathbf{0}$ ein isolierter Punkt.

Beispiel (Fortsetzung)

2) Gegeben sei die implizite Gleichung

$$g(x,y) = y^{2}(x-1) + x^{2}(x+q^{2}) = 0$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2 + 2xq^2$$
 $g_{xy} = 2y$
 $g_y = 2y(x-1)$ $g_{yy} = 2(x-1)$
 $g_{xx} = 6x + 2q^2$ $Hg(\mathbf{0}) = \begin{pmatrix} 2q^2 & 0 \\ 0 & -2 \end{pmatrix}$

Stationäre Punkte implizit definierter Funktionen IV

Beispiel (Fortsetzung)

$$\mathbf{H}g(\mathbf{0}) = \begin{pmatrix} 2q^2 & 0 \\ 0 & -2 \end{pmatrix}$$

Also ist $\mathbf{x}^0 = \mathbf{0}$ für $q \neq 0$ ein Doppelpunkt.

Beispiel (Fortsetzung)

3) Gegeben sei die implizite Gleichung

$$g(x,y) = y^2(x-1) + x^3 = 0$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2$$
 $g_{xy} = 2y$ $g_y = 2(x-1)$ $g_{yy} = 2(x-1)$ $g_{xx} = 6x$ $g_y = 6x$ $g_y = 6x$

Stationäre Punkte implizit definierter Funktionen VI

Beispiel (Fortsetzung)

$$\mathbf{H}g(\mathbf{0}) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

Also ist $\mathbf{x}^0 = \mathbf{0}$ ein Rückkehrpunkt.

Lösungsmenge einer skalaren Gleichung g(x, y, z) = 0 ist für grad $g \neq \mathbf{0}$ lokal eine Fläche im \mathbb{R}^3 .

Tangentialebene in \mathbf{x}^0 mit $g(\mathbf{x}^0) = 0$ und grad $g(\mathbf{x}^0) \neq \mathbf{0}$:

$$g_x(\mathbf{x}^0)(x-x^0)+g_y(\mathbf{x}^0)(y-y^0)+g_z(\mathbf{x}^0)(z-z_0)=0$$

d.h. der Gradient steht senkrecht auf der Fläche g(x, y, z) = 0. Ist zum Beispiel $g_z(\mathbf{x}^0) \neq$, so gibt es lokal bei \mathbf{x}^0 eine Darstellung der Form

$$z = f(x, y)$$

Partielle Ableitungen von f(x, y):

$$\operatorname{grad} f(x,y) = (f_x, f_y)^T = -\frac{1}{g_z} (g_x, g_y)^T = \left(-\frac{g_x}{g_z}, \frac{g_y}{g_z}\right)^T$$

Das Umkehrproblem

Frage: Lässt sich ein vorgegebenes Gleichungssystem

$$y = f(x)$$

mit $\mathbf{f}: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ offen, nach \mathbf{x} auflösen, also **invertieren**?

Satz

Sei $\mathbf{f}:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$ offen, eine \mathcal{C}^1 -Funktion.

Ist für ein $\mathbf{x}^0 \in D$ die Jacobi-Matrix $\mathbf{J} \mathbf{f}(\mathbf{x}^0)$ regulär, so gibt es Umgebungen U und V von \mathbf{x}^0 und $\mathbf{y}^0 = \mathbf{f}(\mathbf{x}^0)$, so dass \mathbf{f} den Bereich U **bijektiv** auf V abbildet.

Die Umkehrfunktion $\mathbf{f}^{-1}:V\to U$ ist ebenfalls eine \mathcal{C}^1 –Funktion und es gilt für alle $\mathbf{x}\in U$:

$$J f^{-1}(y) = (J f(x))^{-1}, \quad y = f(x)$$

Bemerkung

Man nennt dann **f** lokal einen C^1 -Diffeomorphismus.

Nebenbedingungen

Frage:

Welche Abmessungen sollte eine Metalldose haben, damit bei vorgegebenem Volumen der Materialverbrauch am geringsten ist? Sei r der Radius und h die Höhe. Dann gilt

$$V = \pi r^2 h$$

$$O = 2\pi r^2 + 2\pi r h$$

Setze bei vorgebenem $c \in \mathbb{R}_+$

$$f(x,y) = 2\pi x^2 + 2\pi xy$$
$$g(x,y) = \pi x^2 y - c = 0$$

Bestimme das Minimum der Funktion f(x, y) auf der Menge

$$G := \{(x, y) \in \mathbb{R}^2_+ : g(x, y) = 0\}$$