- 1. Berechnung von Integralen
- 2. Schwerpunkt
- 3. Trägheitsmoment
- 4. Transformationssatz

Ausblick auf die heutige Vorlesung

- 1. Kurventintegrale
- 2. Potential
- 3. Rotation
- 4. Zusammenhang

Für eine stückweise \mathcal{C}^1 –Kurve $\mathbf{c}:[a,b]\to D,\ D\subset\mathbb{R}^n$, und eine stetige, skalare Funktion $f:D\to\mathbb{R}$ haben wir das **Kurvenintegral** 1. **Art** definiert durch

$$\int_{c} f(\mathbf{x}) ds := \int_{a}^{b} f(\mathbf{c}(t)) \|\dot{\mathbf{c}}(t)\| dt$$

wobei $\|\cdot\|$ die euklidische Norm bezeichnet.

Erweiterung auf Kurvenintegrale über vektorwertige Funktionen, d.h.

$$\int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} := ?$$

Kurvenintegrale

Anwendung und Interpretation:

Ein Massenpunkt bewegt sich entlang $\mathbf{c}(t)$ in einem Kraftfeld $\mathbf{f}(\mathbf{x})$. Welche **Arbeit** muss entlang der Kurve geleistet werden?

Für ein stetiges Vektorfeld $\mathbf{f}:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$ offen, und eine stückweise \mathcal{C}^1 -Kurve $\mathbf{c}:[a,b]\to D$ definieren wir das

Kurvenintegral 2. Art durch

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} := \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t), \dot{\mathbf{c}}(t)) \rangle dt$$

Herleitung Kurvenintegral

Herleitung:

Approximiere die Kurve durch einen Streckenzug mit Ecken $\mathbf{c}(t_i)$, wobei

$$Z = \{a = t_0 < t_1 < \cdots < t_m = b\}$$

eine Zerlegung des Intervalls [a, b] ist.

Dann gilt für die in einem Kraftfeld $\mathbf{f}(\mathbf{x})$ entlang der Kurve $\mathbf{c}(t)$ geleistete Arbeit die Näherungsformel:

$$Approx \sum_{i=0}^{m-1} \langle \mathbf{f}(\mathbf{c}(t_i)), \mathbf{c}(t_{i+1}) - \mathbf{c}(t_i)
angle$$

Daraus folgt:

$$A \approx \sum_{j=1}^{n} \sum_{i=0}^{m-1} f_j(\mathbf{c}(t_i))(c_j(t_{i+1}) - c_j(t_i))$$

$$= \sum_{j=1}^{n} \sum_{i=0}^{m-1} f_j(\mathbf{c}(t_i))\dot{c}_j(\tau_{ij})(t_{i+1} - t_i)$$

Für eine Folge von Zerlegungen Z mit $||Z|| \to 0$ konvergiert die linke Seite gegen das oben definierte **Kurvenintegral 2. Art**.

Geschlossene Kurven

Bemerkung

Für eine geschlossene Kurve $\mathbf{c}(t)$, d.h. $\mathbf{c}(a) = \mathbf{c}(b)$, schreibt man das Kurvenintegral auch als

$$\oint_{c} (\mathbf{x}) \, \mathbf{dx}$$

1) Linearität:

$$\int_{C} (\alpha \mathbf{f}(\mathbf{x}) + \beta \mathbf{g}(\mathbf{x})) d\mathbf{x} = \alpha \int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \beta \int_{C} \mathbf{g}(\mathbf{x}) d\mathbf{x}$$

2) Es gilt:

$$\int_{-c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = -\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$$

wobei $(-\mathbf{c})(t) := c(b+a-t)$, $a \le t \le b$

3) Es gilt:

$$\int_{c_1+c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c_1} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \int_{c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x} =$$

wobei der Endpunkt von \mathbf{c}_1 der Anfangspunkt von \mathbf{c}_2 ist.

- 4) Das Kurvenintegral 2. Art ist parametrisierungsinvariant.
- 5) Es gilt:

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t)), \mathbf{T}(t) \rangle \| \dot{\mathbf{c}}(t) \| dt = \int_{c} \langle \mathbf{f}, \mathbf{T} \rangle ds$$

mit dem Tangenten-Einheitsvektor $\mathbf{T}(t) := \frac{\dot{\mathbf{c}}(t)}{\|\dot{\mathbf{c}}(t)\|}$.

6) Formale Schreibweise:

$$\int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{C} \sum_{i=1}^{n} f_i(\mathbf{x}) dx_i = \sum_{i=1}^{n} \int_{C} f_i(\mathbf{x}) dx_i$$

mit

$$\int_{C} f_i(\mathbf{x}) dx_i := \int_{a}^{b} f_i(\mathbf{c}(t)) \dot{c}_i(t) dt$$

Beispiel

Für $\mathbf{x} \in \mathbb{R}^3$ sei

$$\mathbf{f}(\mathbf{x}) := (-y, x, z^2)^T$$
 $\mathbf{c}(t) := (\cos t, \sin t, at)^T, \qquad 0 \le t \le 2\pi$

Ein spezielles Kurvenintegral II

Beispiel (Fortsetzung)

Dann berechnet man

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c} (-ydx + xdy + z^{2}dz)$$

$$= \int_{0}^{2\pi} (-\sin t)(-\sin t) + \cos t \cos t + a^{2}t^{2}a) dt$$

$$= \int_{0}^{2\pi} (1 + a^{3}t^{2}) dt$$

$$= 2\pi + \frac{a^{3}}{3}(2\pi)^{3}$$

Ist $\mathbf{u}(\mathbf{x})$ ein Geschwindigkeitsfeld eines strömenden Mediums, so nennt man das Kurvenintegral $\oint_{\mathcal{C}} \mathbf{u}(\mathbf{x}) d\mathbf{x}$ entlang einer geschlossenen Kurve auch die **Zirkulation** des Feldes $\mathbf{u}(\mathbf{x})$.

Zirkulation - ein Beispiel

Beispiel

Für das Feld $\mathbf{u}(x,y) = (y,0)^T \in \mathbb{R}^2$ erhält man längs der Kurve $\mathbf{c}(t) = (r\cos t, 1 + r\sin t)^T$, $0 \le t \le 2\pi$ die Zirkulation

$$\oint_{c} \mathbf{u}(\mathbf{x}) d\mathbf{x} = \int_{0}^{2\pi} (1 + r \sin t)(-r \sin t) dt$$

$$= \int_{0}^{2\pi} (-r \sin t - r^{2} \sin^{2} t) dt$$

$$= \left[r \cos t - \frac{r^{2}}{2} (t - \sin t \cos t) \right]_{0}^{2\pi} = -\pi r^{2}$$

Ein stetiges Vektorfeld $\mathbf{f}(\mathbf{x})$, $\mathbf{x} \in D \subset \mathbb{R}^n$, heißt **wirbelfrei**, falls dessen Kurvenintegral längs **aller** geschlossenen, stückweise \mathcal{C}^1 -Kurven $\mathbf{c}(t)$ in D verschwindet, d.h.

$$\forall \mathbf{c} : \oint_{\mathbf{c}} \mathbf{f}(\mathbf{x}) d\mathbf{x} = 0.$$

Bemerkung

Ein Vektorfeld ist genau dann wirbelfrei, wenn der Wert des Kurvenintegrals $\int_c \mathbf{f}(\mathbf{x}) d\mathbf{x}$ nur vom Anfangs– und Endpunkt des Weges, jedoch nicht vom konkreten Verlauf der Kurve \mathbf{c} abhängt. Man sagt: das Kurvenintegral ist **wegunabhängig**.

Wegunabhängigkeit

Frage:

Welche Kriterien für das Vektorfeld f(x) garantieren die Wegunabhängigkeit des Kurvenintegrals?

Eine Teilmenge $D \subset \mathbb{R}^n$ heißt **zusammenhängend**, falls je zwei Punkte in D durch eine stückweise C^1 -Kurve verbunden werden können:

$$\forall \mathbf{x}^0, \mathbf{y}^0 n \in D : \exists \mathbf{c} : [a, b] \to D : \mathbf{c}(a) = \mathbf{x}^0 \land \mathbf{c}(b) = \mathbf{y}^0$$

Eine offene und zusammenhängende Menge $D \subset \mathbb{R}^n$ nennt man auch ein **Gebiet** in \mathbb{R}^n .

Nicht zusammenhängende Mengen

Bemerkung

Eine **offene** Menge $D \subset \mathbb{R}^n$ ist genau dann **nicht** zusammenhängend, wenn es **disjunkte**, offene Mengen $U_1, U_2 \subset \mathbb{R}^n$ gibt mit

$$U_1 \cup D \neq \emptyset$$
, $U_2 \cup D \neq \emptyset$, $D \subset U_1 \cap U_2$

Nicht zusammenhängende offene Mengen sind also – im Gegensatz zu zusammenhängenden Mengen – in (zumindest) zwei disjunkte offene Bereiche trennbar.

Sei $\mathbf{f}:D\to\mathbb{R}^n$ ein Vektorfeld auf einem Gebiet $D\subset\mathbb{R}^n$. Das Vektorfeld nennt man ein **Gradientenfeld**, falls es eine skalare \mathcal{C}^1 -Funktion $\varphi:D\to\mathbb{R}$ gibt mit

$$\mathbf{f}(\mathbf{x}) = \nabla \varphi(\mathbf{x}).$$

Die Funktion $\varphi(\mathbf{x})$ heißt dann **Stammfunktion** oder **Potential** von $\mathbf{f}(\mathbf{x})$.

Potentielle Energie

Bemerkung

Ein Massenpunkt bewege sich in einem konservativen Kraftfeld K(x), d.h. K besitzt ein Potential $\varphi(x)$.

Dann ist $U(\mathbf{x}) = -\nabla \varphi(\mathbf{x})$ gerade die **potentielle Energie**:

$$\mathbf{K}(\mathbf{x}) = m\ddot{\mathbf{x}} = -\nabla \varphi(\mathbf{x})$$

Multipliziert man diese Beziehung mit x, so folgt:

$$m\langle \ddot{\mathbf{x}}, \dot{\mathbf{x}} \rangle + \langle \nabla U(\mathbf{x}), \dot{\mathbf{x}} \rangle = \frac{d}{dt} \left(\frac{1}{2} m \|\dot{\mathbf{x}}\|^2 + U(\mathbf{x}) \right) = 0.$$

Satz

Sei $D \subset \mathbb{R}^n$ ein Gebiet und $\mathbf{f}(\mathbf{x})$ ein stetiges Vektorfeld auf D.

1) Besitzt $\mathbf{f}(\mathbf{x})$ ein Potential $\varphi(\mathbf{x})$, so gilt für alle stückweisen \mathcal{C}^1 -Kurven $\mathbf{c}:[a,b]\to D$:

$$\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \varphi(\mathbf{c}(b)) - \varphi(\mathbf{c}(a))$$

Insbesondere ist das Kurvenintegral wegunabhängig und f(x) ist wirbelfrei.

Hauptsatz für Kurvenintegrale II

Satz (Fortsetzung)

2) Umgekehrt gilt: Ist $\mathbf{f}(\mathbf{x})$ wirbelfrei, so besitzt $\mathbf{f}(\mathbf{x})$ ein Potential $\varphi(\mathbf{x})$. Ist $\mathbf{x}^0 \in D$ ein fester Punkt, und bezeichnet $\mathbf{c}_{\mathbf{x}}$ (für $\mathbf{x} \in D$) eine beliebige, die Punkt \mathbf{x}^0 und \mathbf{x} verbindende stückweise \mathcal{C}^1 -Kurve in D, so ist $\varphi(\mathbf{x})$ gegeben durch:

$$\varphi(\mathbf{x}) = \int_{c_x} \mathbf{f}(\mathbf{x}) d\mathbf{x} + c, \qquad c = const.$$

Beispiel

Das zentrale Kraftfeld

$$\mathbf{K}(\mathbf{x}) := \frac{\mathbf{x}}{\|\mathbf{x}\|^3}$$

besitzt das Potential

$$U(\mathbf{x}) = -\frac{1}{\|\mathbf{x}\|} = -(x_1^2 + x_2^2 + x_3^2)^{-1/2}.$$

Denn es gilt:

$$\nabla U(\mathbf{x}) = (x_1^2 + x_2^2 + x_3^2)^{-3/2} (x, y, z)^T = \frac{\mathbf{x}}{\|\mathbf{x}\|^3}$$

Zentrales Kraftfeld II

Beispiel (Fortsetzung)

Für die längs einer stückweisen \mathcal{C}^1 –Kurve $\mathbf{c}:[a,b]\to\mathbb{R}^3\setminus\{\mathbf{0}\}$ geleistete Arbeit gilt dann:

$$A = \int_{c} \mathbf{K}(\mathbf{x}) d\mathbf{x} = \left(\frac{1}{\|\mathbf{c}(a)\|} - \frac{1}{\|\mathbf{c}(b)\|}\right)$$

Beispiel

Das Vektorfeld

$$\mathbf{f}(\mathbf{x}) := \begin{pmatrix} 2xy + z^3 \\ x^2 + 3z \\ 3xz^2 + 3y \end{pmatrix}$$

besitzt das Potential

$$\varphi(\mathbf{x}) = x^2y + xz^3 + 3yz.$$

Für eine beliebige, die Punkte P=(1,1,2) und Q=(3,5,-2) verbindende \mathcal{C}^1 -Kurve $\mathbf{c}(t)$ gilt also:

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \varphi(Q) - \varphi(P) = -9 - 15 = -24.$$

Elektrisches Feld und Spannung II

Beispiel (Fortsetzung)

Interpretiert man $\mathbf{f}(\mathbf{x})$ als elektrisches Feld, so gibt das Kurvenintegral 2. Art die Spannung zwischen den beiden Punkten P und Q an.