Analysis I für Studierende der Ingenieurwissenschaften

Reiner Lauterbach
Fachbereich Mathematik
Universität Hamburg

Technische Universität Hamburg–Harburg
Wintersemester 2004/2005
Basierend auf der Vorlesung von
Jens Struckmeier (WS 2001/02)

Folien 5. Vorlesung

3.2 Konvergenzkriterien für reelle Folgen

Definition: Eine reelle Folge $(a_n)_{n\in\mathbb{N}}$ heißt

monoton wachsend : $\Leftrightarrow \forall n < m : a_n \leq a_m$

streng monoton wachsend $\Leftrightarrow \forall n < m : a_n < a_m$

nach oben beschränkt : $\Leftrightarrow \exists C \in \mathbb{R} : \forall n : a_n \leq C$

Analog: monoton fallend, streng monoton fallend, nach unten beschränkt

Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent mit Grenzwert

$$\lim_{n\to\infty} a_n = \sup\{a_n \mid n\in\mathbb{N}\}\$$

Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent mit Grenzwert

$$\lim_{n\to\infty} a_n = \sup\{a_n \mid n\in\mathbb{N}\}\$$

Beweis: Folge ist nach oben beschränkt $\Rightarrow \{a_n \mid n \in \mathbb{N}\}$ besitzt Supremum

$$s := \sup\{a_n \mid n \in \mathbb{N}\}\$$

Sei $\varepsilon > 0$ gegeben. Dann existiert ein $N = N(\varepsilon)$ mit

$$s - \varepsilon < a_N \le s$$

Die Folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend, also folgt

$$s - \varepsilon < a_N \le a_n \le s \quad \forall \ n \ge N$$

d.h.

$$|s - a_n| < \varepsilon \quad \forall \ n \ge N(\varepsilon)$$

Folgerung: Prinzip der Intervallschachtelung

Sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Folgen mit

- a) $(a_n)_{n\in\mathbb{N}}$ monoton wachsend
- b) $(b_n)_{n\in\mathbb{N}}$ monoton fallend
- c) $\forall n \in \mathbb{N}$: $a_n \leq b_n$

so sind beide Folgen konvergent.

Gilt überdies

$$\lim_{n\to\infty}(a_n-b_n)=0$$

so haben $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ denselben Grenzwert, i.e.

$$\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Zusätzlich gelten die Fehlerabschätzungen

$$|a_n - \xi| \le |b_n - a_n| \qquad |b_n - \xi| \le |b_n - a_n|$$

Beispiel: Arithmetisch—geometrisches Mittel

Definiere für 0 < a < b rekursiv zwei Folgen $(a_n)_{n \in \mathbb{N}_0}$ und $(b_n)_{n \in \mathbb{N}_0}$ mittels

$$a_0 := a$$
 $b_0 := b$ $a_{n+1} := \sqrt{a_n b_n}, b_{n+1} := \frac{a_n + b_n}{2}$

Die Folgen $(a_n)_{n\in\mathbb{N}_0}$ und $(b_n)_{n\in\mathbb{N}_0}$ bilden Intervallschachtelung, es gilt

$$(b_{n+1} - a_{n+1}) \le \frac{1}{2}(b_n - a_n)$$

Der gemeinsame Grenzwert von $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$

$$\operatorname{agm}(a,b) := \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

heißt

Arithmetisch-geometrisches Mittel

Bernoullische Ungleichung: (Beweis: vollständige Induktion)

$$\forall x \ge -1, \ n \in \mathbb{N} : (1+x)^n \ge 1 + nx$$

Gleichheit gilt nur bei n = 1 oder x = 0

Beispiel: Geometrische Folge $a_n := q^n$ mit $q \in \mathbb{R}$.

$$q > 1$$
: $\lim_{n \to \infty} q^n = +\infty$ $(q^n = (1 + (q - 1))^n \ge 1 + n(q - 1))$

$$q=1$$
: $\lim_{n\to\infty}q^n=1$

$$0 < q < 1$$
 : $\lim_{n \to \infty} q^n = 0$ $(q^n = \frac{1}{(1 + (1/q - 1))^n} \le \frac{1}{1 + n(1/q - 1)})$

$$-1 < q \le 0$$
 : $\lim_{n \to \infty} q^n = 0$ $(|q^n| = |q|^n)$

$$q=-1$$
 : (q^n) beschränkt, aber nicht konvergent $(q^n \in \{-1,1\})$

q < -1: (q^n) divergent, kein uneigentlicher Grenzwert

Satz: Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente reelle Folgen. Dann gelten

a)
$$\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n)$$

b)
$$\forall n : b_n \neq 0 \land \lim_{n \to \infty} b_n \neq 0 \Rightarrow \lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

c)
$$\forall n : a_n \ge 0 \land m \in \mathbb{N} \Rightarrow \lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{\lim_{n \to \infty} a_n}$$

Beweis: Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen mit

$$\lim_{n \to \infty} a_n = a \qquad \lim_{n \to \infty} b_n = b$$

Teil a): Es gilt (für hinreichend große n)

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab|$$

$$\leq |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a|$$

$$\leq C_a \cdot |b_n - b| + |b| \cdot |a_n - a|$$

$$< (C_a + |b|) \varepsilon$$

Teil b): Da $b_n \neq 0$ und $b \neq 0$ existiert eine Konstante $C_b > 0$ mit

$$C_b \leq |b_n| \quad \forall \ n \in \mathbb{N}$$

Damit gilt

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b_n b}\right| = \frac{1}{|b_n| \cdot |b|} \cdot |b_n - b| \le \frac{1}{C_b \cdot |b|} \cdot \varepsilon$$

für n hinreichend groß und die Aussage in b) folgt direkt aus Teil a) (denn $1/b_n \rightarrow 1/b$)

Teil c): Wir setzen folgenden Satz voraus (Beweis Ansorge/Oberle):

Satz: Zu a>0 und $m\in\mathbb{N}$ existiert genau eine Zahl w>0 mit $w^m=a$. Diese Zahl wird mit $w=\sqrt[m]{a}$ bezeichnet.

1. Fall: Sei $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge und $\varepsilon > 0$ vorgegeben

$$a_n < \varepsilon^m \quad \forall \ n \ge N(\varepsilon^m)$$

Daraus folgt

$$0 \leq \sqrt[m]{a_n} < \varepsilon$$

und daher $\sqrt[m]{a_n} \to 0$ für $n \to \infty$

2. Fall: Sei a > 0. Verwende die Identität

$$x^{m} - y^{m} = (x - y) \sum_{j=1}^{m} x^{m-j} y^{j-1}$$

Identität:

$$(x-y)\sum_{j=1}^{m} x^{m-j}y^{j-1} = (x-y)\cdot(x^{m-1}y^0 + x^{m-2}y^1 + \dots + x^0y^{m-1})$$
$$= x^my^0 + \dots + x^0y^{m-1} - x^{m-1}y^1 - \dots + x^0y^m$$
$$= x^m - y^m$$

Setze nun $x = \sqrt[m]{a_n}$ und $y = \sqrt[m]{a}$. Dann folgt

$$\left| \sqrt[m]{a_n} - \sqrt[m]{a} \right| = \frac{|a_n - a|}{\left| (\sqrt[m]{a_n})^{m-1} + \dots + (\sqrt[m]{a})^{m-1} \right|}$$

$$\leq \frac{|a_n - a|}{(\sqrt[m]{a})^{m-1}}$$

$$< C \cdot \varepsilon$$

 $f \ddot{\mathsf{u}} \mathsf{r} \ n \geq N(\varepsilon)$

Bemerkung: Die Aussagen a) und b) gelten auch für komplexe Folgen

Beispiel: Gegeben sei die Folge

$$a_n := \sqrt{n^2 + 5n + 1} - n$$

Eine Umformung ergibt:

$$a_n = \frac{(n^2 + 5n + 1) - n^2}{\sqrt{n^2 + 5n + 1} + n} = \frac{5 + \frac{1}{n}}{\sqrt{1 + \frac{5}{n} + \frac{1}{n^2} + 1}}$$

und damit

$$\lim_{n \to \infty} a_n = \frac{5+0}{\sqrt{1+0}+1} = \frac{5}{2}$$

Beispiel: Wir betrachten die Folge

$$a_n := \left(1 + \frac{p}{n}\right)^n$$

Kapitalverzinsung: Anfangskapital K_0 , Jahreszinssatz p

$$K_1 = K_0(1+p)$$
 jährlich
 $K_2 = K_0 \left(1+\frac{p}{2}\right)^2$ halbjährlich
 $K_4 = K_0 \left(1+\frac{p}{4}\right)^4$ vierteljährlich
 $K_{12} = K_0 \left(1+\frac{p}{12}\right)^{12}$ monatlich
 $K_{360} = K_0 \left(1+\frac{p}{360}\right)^{360}$ täglich

Untersuche die Konvergenz der Folge $(a_n)_{n\in\mathbb{N}}$:

$$\lim_{n\to\infty} a_n = ?$$

Für p > 0 zeigt man direkt:

• die Folge $(a_n)_{n\in\mathbb{N}}$ ist streng monoton wachsend

$$\frac{a_{n+1}}{a_n} > 1$$

• die Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt

$$\left(1+\frac{p}{n}\right)^n \le 4^l \quad \text{(für ein } l \ge p\text{)}$$

Damit konvergiert die Folge:

$$\lim_{n\to\infty} a_n = e^p$$

Formel gilt auch für negative p. Spezialfall

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2.718281828 \dots$$

(Eulersche Zahl)

Satz: (Cauchysches Konvergenzkriterium)

Der \mathbb{R} ist **vollständig**, d.h. jede reelle Cauchyfolge ist konvergent.

Zum Beweis verwendet man das Konzept von

Häufungspunkten

einer gegebenen Folge $(a_n)_{n\in\mathbb{N}}$.

Definition: Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Die Grenzwerte konvergenter Teilfolgen von $(a_n)_{n\in\mathbb{N}}$ nennt man die **Häufungspunkte der Folge** $(a_n)_{n\in\mathbb{N}}$.

Satz: (Satz von Bolzano, Weierstraß)

Jede reelle, beschränkte Folge besitzt eine konvergente Teilfolge.

Satz: (Cauchysches Konvergenzkriterium) Der \mathbb{R} ist **vollständig**, d.h. jede reelle Cauchyfolge ist konvergent.

Beweisidee:

Zeige zunächst, dass jede Cauchyfolge beschränkt ist:

$$|a_n| = |a_n - a_N + a_N| < \varepsilon + |a_N|$$

Nach Bolzano, Weierstraß besitzt $(a_n)_{n\in\mathbb{N}}$ einen Häufungspunkt ξ . Dann gilt

$$|a_m - \xi| = |a_m - a_{n_k} + a_{n_k} - \xi|$$

$$\leq \underbrace{|a_m - a_{n_k}|}_{\text{Cauchyfolge}} + \underbrace{|a_{n_k} - \xi|}_{\text{Häufungspunkt}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Notation:

lim inf a_n = kleinster Häufungspunkt lim sup a_n = größter Häufungspunkt