
Kapitel 2

Hyperbolische

Erhaltungsgleichungen

In diesem Kapitel werden wir hyperbolische Erhaltungsgleichungen
studieren. Ein Beispiel für die diesen Typ kennen wir bereits die Burgers
Gleichung. Sie hat uns gezeigt, dass man den Lösungsbegriff erweitern
sollte, da klassische Lösungen eventuell nur auf kleinen Teilmengen
existieren und wichtige Aspekte dabei ausgelassen werden.
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2.1 Hyperbolische Gleichungen

Many problems in physics can be derived from fundamental principles like
conservation laws. Well known such conservation laws are conservation of
mass, conservation of energy, etc.. Conservation laws plays an important rôle
in the study of fluid mechanics and in the development of shock waves and
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similar problems. We will state the underlying problem, point out how the
methods of characteristics can be used, as in the study of Burgers’ equation to
prove the nonexistence of continuous solutions. Then we introduce the notion
of weak solutions and the Rankine-Hugoniot condition, which connect shock
speed with the height of the jump across a discontinuity. Then we discuss the
notion of entropy solution for such equations. In this context we address the
question of physically meaningful solutions. This discussion ends with the
notion of viscosity solution and its relation to travelling waves and ODE’s.

2.1.1 Conservation Laws

We begin with the local form of conservation laws, where we have a (nonli-
near) map f : Rn → Rn and we consider the partial differential equation

ut + (f(u))x = 0 (2.1)

for an unknown function u : R+ × R → Rn. In higher dimensional spaces
(for the space variable x), the theory becomes much more complicated, we
restrict ourselves to the case x ∈ R.
We have already seen a well known example. Burgers equation is given by

ut + uux = 0

where f : R→ R takes the form

f(u) =
1

2
u2.

For a discussion of the relation between global and local forms of conservation
laws consult consult for example Evans [7].

Beispiel 2.1.1

We consider the following simple experiment, a one dimensional unbounded
domain is supposed to be filled with gas and separated into two compartments
by a membrane (wlog at x = 0). Suppose on one side of the membrane (x < 0)
we have constant average speed u = 0, constant density ρ = ρl and constant
pressure p = pl, on the right side x > 0 we have u = 0, ρ = ρr and p = pr.
After removing the membrane we will see a wave moving from the higher to
the lower density. In the back of this wave we have a so called rarefaction
wave, a wave of lower density.
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2.1.2 Weak Solutions, Shocks and the Rankine-Hugoniot

condition

Before we give a technical definition of weak solutions we briefly recall Gauß
or divergence theorem and point out how it relates to integration by parts
in higher dimensional spaces. Let Ω ⊂ Rn be a domain with a sufficiently
regular boundary and let u : Ω → Rn be a vectorfield, then we have

∫

Ω

div udλ =

∫

∂Ω

〈n, u〉dω

where n denotes the outward unit normal to ∂Ω, λ denotes the n-dimensional
Lebesgue measure and ω is the Lebesgue measure on ∂Ω. If u, v are C1-
functions on Ω and ei is the unit vector with jth-entry δij then we consider
the vectorfield uvei and obtain

∫

Ω

uxi
v + uvxi

dλ =

∫

∂Ω

uvnidω

where ni is the i-th component of n. If we consider Ω to be a rectangular
box whose bounding planes are parallel to the standard hyperplanes xj = 0
in Rn, ie when Ω has the form

Ω = [a1, b1] × · · · × [ai, bi] × · · · × [an, bn]

then we get the special formula:

.

∫

Ω

uxi
vdλ = −

∫

Ω

uvxi
dλ+

∫

Ω′

((uv)(x1, . . . , bi, . . . , xn) − (uv)(x1, . . . , ai, . . . , xn)) dλn−1,

(2.2)
where

(uv)(x1, . . . , ∗, . . . , xn) = u(x1, . . . , ∗, . . . , xn)v(x1, . . . , ∗, . . . , xn)

and dλn−1 is the n − 1-dimensional Lebesgue measure.
Now we can define the notion of a weak solutions for conservation laws.

In order to do so we consider functions ϕ ∈ C1(R+ ×R;Rn) with compact
support, ie

ϕ : [0,∞) ×R→ Rn
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with

supp ϕ ⊂ [0, T ) × K0

where 0 < T < ∞ and K ⊂ R is compact and K0 is the interior of K.
Let C1

0(R+ ×R;R) denote the space of all these functions and assume u ∈
C1(R+ ×R;Rn) is a solution of the conservation law

ut + (f(u))x = 0.

Then we have the following property where the integral is to be understood
component wise and we use the formula which we have just looked at:

0 =

∫R+×R (ut + ∇xf(u))ϕ d(x, t)

=

T
∫

0

∫

K

(ut + (f(u))x)ϕ dx dt

=

T
∫

0

∫

K

utϕ dxdt +

T
∫

0

∫

K

f(u)xϕ dx dt

=

∫

K

T
∫

0

utϕ dtdx +

T
∫

0

∫

K

f(u)xϕ dx dt

=

∫

K

uϕ
∣

∣

T

0
dx −

∫

K

T
∫

0

uϕt dt dx +

T
∫

0

∫

K

f(u)xϕ dx dt

= −
∫

K

u0(x)ϕ(0, x) dx −
T

∫

0

∫

K

uϕt − f(u)xϕ dx dt.

We obtain

0 = −
∫

K

u0(x)ϕ(0, x) dx −
T

∫

0

∫

K

uϕt + f(u)ϕx dx dt. (2.3)
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Definition 2.1.2

A bounded measurable function u : R+ ×R→ Rn is called a weak solution
of the conservation law (2.1) if Equation (2.3) is satisfied for all ϕ ∈ C1

0 (R+×R;Rn).

Lemma 2.1.3

A function u ∈ C1(R+ ×R;Rn) is a weak solution of Equation (2.1) if and
only if it is a solution.

Beweis. This is a simple observation: we can do the foregoing computation
backward and we obtain for a C1 weak solution

∫R+×R (ut + (f(u))x)ϕ = 0

for all functions ϕ ∈ C1
0(R+ ×R,R). This implies that

ut + (f(u))x = 0.

Bemerkung 2.1.4

We see that the notion of a weak solution is a true generalization of the
notion of a solution. As we shall see later it is obviously related to a similar
notion in the context of elliptic equations.

Let us briefly discuss the behavior of solutions of Burgers’ equation: given
an initial value

u0 : R→ R
we want to construct a solution. In order to do this we look at level sets of
of u, ie, we consider

L(c) =
{

(x, t)
∣

∣

∣
u(x, t) = c

}

.

Then ∇(x,t)u is orthogonal to the tangent vector of L(c) at (t0, x0). Due to
the differential equation the vector (1, u) is orthogonal to ∇(x,t)u and hence is
tangent to L(c) at (t0, x0). Since this direction (1, c) is independent of (t0, x0)
the set L(c) is a line, ie

L(c) =
{

(t0 + t, x0 + ut)
∣

∣

∣
t ≥ −t0

}

.
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This implies that the initial data gives rise to a unique solution which is
as smooth as the initial data as long as different level sets do not intersect.
Consider the continuous initial data

u0(x) =







1 , x ≤ 0
1 − x , x ∈ [0, 1]

0 , x ≥ 1.

Then u(x, t) = 1 on x ≤ t. It is equal to 0 on x ≥ 1. Obviously these two
sets intersect and hence we have a formation of discontinuities. The following
graphic shows the (x, t)-plane and the level sets of the solution of Burgers’
equation with the given initial data u0(x). In order to get beyond this point
we need a new, more general notion of solution.

Aufgabe 2.1.5

Show that the classical solution of Burgers’ equation corresponding to the
above initial value is defined on

[0, 1) ×R
and it has the form

u1(x, t) =







1 , x < t < 1
1−x
1−t

, t ≤ x ≤ 1, t < 1

0 , x > 1, t < 1
. (2.4)

Lemma 2.1.6

Burgers equation with the initial condition u0(x0) defined above possesses a
weak solution. It is given by

u(x, t) =

{

u1(x, t) , 0 ≤ t < 1
u2(x, t) , 1 ≤ t < ∞,

(2.5)

where u1 is the solution described before in Problem 2.1.5, and u2 is given
by

u2(x, t) =

{

0 , x < 1+t
2

, t > 1
1 , x > 1+t

2
, t > 1.
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In this example we have the development of a shock, with a certain shock
speed (1

2
in this case) and a height of the jump. Instead of proving this lemma

we give a more general result which describes a general relation between the
shock speed and the height of the jump. This condition relates to the so
called Rankine1- Hugoniot2 condition in gas dynamics.

Satz 2.1.7

Let u(x, t) be a weak solution of a conservation law

ut + (f(u))x = 0

and assume we have a curve C(t) = (t, x(t)) of discontinuities of u. We
assume that C is differentiable and it separates our domain into two open
sets, which we call the left set Ul and the right set Ur. We assume that at
each point on C we have a left and a right limit, ie

ul(x0, t0) = lim
(x,t)→(x0,t0),(x,t)∈Ul

u(x, t)

and

ur(x0, t0) = lim
(x,t)→(x0,t0),(x,t)∈Ur

u(x, t)

exist. We call s = x′(t) the speed of the discontinuity at (t, x(t)). Then we
have the fundamental relation

s(ur − ul) = f(ur) − f(ul).

This is called Rankine-Hugoniot condition

Beweis. Let (x0, t0) be a point on the curve C and D be a small rectangular
domain centered at (x0, t0) and let ϕ ∈ C1

0(D) be a C1 function with compact
support in D. Observe that the curve of discontinuity separates D into two
domains Dl and Dr (left and right) and the curve is written as

C(t) =

(

t

x(t)

)

.

1William John Macquorn Rankine (5.7.1820-24.12.1872) war schottischer Mathemati-
ker und Naturforscher, dessen Interessen zwischen Musik und Mathematik schwankten. Er
beschäftige sich neben der Str”mungsmechanik mit vielen Anwendungen der Mathemaik.

2Pierre-Henri Hugoniot (5.6.1851-1887)
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The unit tangent vector and unit normal vectors are

Ċ(t) =
1√

1 + ẋ2

(

1
ẋ

)

, n(t) =
1√

1 + ẋ2

(

−ẋ

1

)

.

With this our integral can be split into left and right domains, the integration
by parts will only produce boundary terms along the curve of discontinuities.
We obtain

0 =

∫

D

(ut + (f(u))x)ϕ d(x, t)

=

∫

Dl∪Dr

(ut + (f(u))x)ϕ d(x, t)

=

∫

Dl

(ut + (f(u))x)ϕ d(x, t) +

∫

Dr

(ut − (f(u))x)ϕ d(x, t).

We concentrate on one of these two terms, without loss of generality on the
first one, the second one is treated the same way, just not that at each point
the outward normal unit vector is just the opposite of the one for Dl. Then
we have

∫

Dl

(ut + (f(u))x)ϕ d(x, t) =

∫

Dl

utϕ d(x, t) +

∫

Dl

(f(u))xϕ d(x, t)

= −
∫

Dl

uϕt d(x, t) +

∫

∂Dl

uϕdω −
∫

Dl

(f(u))ϕx d(x, t) +

∫

∂Dl

f(u)ϕdω.

Using the parametrization of C, the facts that unit normals for Dl and Dr

are of opposite sign and that the limits for u on both sides of the boundary
exist we find

0 =

b
∫

a

((ul − ur)ẋ − (f(ul) − f(ur))) ϕ
1√

1 + ẋ2
ds.

Since this integral is zero for all C1 functions on D and hence for all C1-
functions of the type ϕ(x(t), t) on [a, b] we conclude that the integrand has
to be zero, ie

ẋ(ul − ur) = f(ul) − f(ur).
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The speed ẋ is precisely the shock speed and it is denoted by s. If we
write [·] for the jump across the discontinuity we get the well known way to
present this formula

s[u] = [f(u)].

2.2 Entropy solution

We observe that weak solutions are not unique. We show this by looking at
an example, again we use the Burgers equation

ut + uux = 0

with initial values

u0(x) =







−1 x < 0
0 x = 0
1 x > 0

.

For fixed α > 0 we look at the solution

uα(x, t) =















−1, for x < (−1 − α) t
2

−α, for 0 > x > (−1 − α) t
2

α, for 0 < x < (1 + α) t
2

1, for x > (1 + α) t
2

.

we can easily check that this function satisfies the Rankine-Hugoniot conditi-
on and hence it is a solution of Burgers equation. This shows that the initial
value problem has no unique solution in the class of weak solutions.
In a physical system there has to be a mechanism to select the physical
meaningful solutions out the many possible solutions. The so called entropy
condition gives such a mechanism.

Definition 2.2.1

A weak solution of a conservation law is called entropy solution if there is
a constant E > 0, such that for all a > 0, t > 0 and x ∈ R the so called
entropy condition is satisfied

u(x + a, t) − u(x, t)

a
≤ E

t
.
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We will see shortly, that under certain hypotheses conservation laws possess
a unique entropy solution. The entropy condition has an immediate con-
sequence; it allows only downward jumps for increasing x. So none of the
solutions uα which we have given above satisfies the entropy condition. We
find the entropy solution in the following form:

ue(x, t) =











−1 for x < −t
x

t
for −t < x < 1

1 for x > t

.

Aufgabe 2.2.2

1. Check that this is a solution of Burgers equations and it satisfies the
entropy condition.

2. Prove that the entropy condition implies the entropy inequality: at a
discontinuity we have the following inequality for the shock speed s:

f ′(ul) > s > f ′(ur).

We come back to the question of existence of (entropy) solutions of conser-
vation laws.

Satz 2.2.3

We consider the scalar conservation law

ut + f(u)x = 0

with f ∈ C2(R,R). Let u0 ∈ L∞(R) be given and assume f ′′ > 0 on
{

u ∈ R ∣

∣

∣
|u| ≤ ‖u0‖L∞(R)

}

. Then there exists a weak solution u(x, t) of ut +

(f(u))x = 0 and u(x, 0) = u0(x) with the following properties.

1. ‖u‖L∞(R+×R) ≤ ‖u0‖L∞(R).

2. There exists a constant E > 0, with E = E(M, µ, A), where M =

‖u‖L∞(R), µ = min
{

f ′′(u)
∣

∣

∣
|u| ≤ M

}

, A = max
{

f ′(u)
∣

∣

∣
|u| ≤ M

}

such that for a > 0, t > 0 and x ∈ R we have

u(x + a, t) − u(x, t)

a
<

E

t
.
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3. u depends in the following sense continuously on initial condition: if
v0 ∈ L∞(R) with ‖v0‖L∞(R) ≤ ‖u0‖L∞(R) and if v denotes the solution
corresponding to v0 according to the first statement in this theorem,
then for each pair x1 < x2 of real numbers and for every t > 0 we have:

x2
∫

x1

|u(x, t) − v(x, t)|dx ≤
x2+At
∫

x1−At

|u0(x) − v0(x)|dx. (2.6)

For a proof consult Smoller [18].

Satz 2.2.4

If f ∈ C2(R) and f ′′ > 0 and if u, v are two weak solutions of the initial
value problem which satisfy the entropy condition then we have u = v almost
everywhere.

Again we refer to [18] for a proof.

2.3 The Riemann Problem

Let us consider the equation

ut + Aux = 0

for u : R+ ×R→ Rn with a n × n-matrix A. We make an Ansatz

u(x, t) = ξ exp(i(λt + µx)).

If we put this into the equation we obtain the condition

µAξ = −λξ

or ξ is an eigenvector for the eigenvalue λ
µ

µ 6= 0. If we require, that the initial
value

u(x, 0) = ξ exp(iµx)

is bounded we obtain immediately that µ is real. Our next requirement is
more subtle. We want that small initial data does not lead to large solutions,
this means (by a simple computation) that λ

µ
is real.
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Definition 2.3.1

If all eigenvalues of A are real we call equation

ut = Aux

weakly hyperbolic. The equation is called hyperbolic if in addition all eigen-
values of A are distinct.

Now we want to derive an entropy inequality for such systems. For pedago-
gical reasons we start with a system

ut + aux = 0

onR+×R+. From our previous considerations it is clear that u is constant on
lines x−at = c. If a < 0 these lines intersect both the initial time t = 0 as the
boundary of the domain x = 0. Therefore describing initial values determines
the solution completely and it is not possible to prescribe boundary values
as well. On the other hand for a > 0 the initial values determine the solution
just on a part of the quarter plane and in order to have solution on the whole
quarter plane we have to prescribe boundary values. If we go the case of a
hyperbolic system, we get eigenvalues

λ1 < · · · < λk < 0 < λk+1 < · · · < λn.

Diagonalizing A means to find a matrix P with P−1AP = Λ = diag (λ1, . . . , λn)
leads to the equation

vt = Λvx

with v = P−1u. This is a set of uncoupled equations on the quarter plane.
Now we have k equations with λi < 0 and n − k with the corresponding
eigenvalue positive. So we have to specify n− k boundary conditions vi(0, t)
in order to get solutions on the whole quarter plane. Going back into the
equation for u we observe that we have to specify n− k boundary conditions
for u in order to get a unique solution.

Beispiel 2.3.2

Assume u, v are elements in R2 and

A =

(

0 1
1 0

)

,
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then

P =

(

1 1
1 −1

)

, P−1 =

(

1
2

1
2

1
2

−1
2

)

.

Then we have
Λ = diag (1,−11, . . . , 1,−1n) .

We have to specify v1 at x = 0 to get a unique solution for the v-system. In
the u-coordinates we obtain the condition

u1(0, t) = −u2(0, t).

This can be directly read off from the matrix P .

If we replace the boundary at x = 0 by a line x = st and if we have eigenvalues
of A of the form

λ1 < · · · < λk < s < λk+1 < · · · < λn

then we have, by the same reasoning, to specify n − k boundary conditions
along this line.
Now we want to come back to the shock conditions. It is obvious that for the
linear systems the eigenvalues of df are the same on both sides of the shock
and so we get the same conditions on both sides. The Rankine-Hugoniot
condition implies immediately that shock lies are eigenspaces of A and hence
we cannot satisfy the condition that the shock speed is between eigenvalues.
Therefore we look at the nonlinear problem, we have P = P (u), Λ = Λ(u).
We assume that df(u) has eigenvalues

λ1(u) < · · · < λk(u) < · · · < λn(u).

Moreover let ul, ur denote the left and the right value along the discontinuity.
Assume

λk(ur) < s < λk+1(ur).

Then following the previous argument we should specify n − k values o the
right side of the discontinuity which is given by P (ur). On the left side we
assume

λj(ul) < s < λj+1(ul).

the same argument as before indicates to specify j conditions on the left side.
The Rankine-Hugoniot condition gives n relations between the values on the
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left and on the right. We use of these equations to eliminate s, the shock
speed from the problem. Therefore we have n − k + j conditions to get a
unique solution.

n − k + j = n − 1

yielding
j = k − 1.

Therefore we allow for discontinuities at x = st for

λk(ur) < s < λk+1(ur)

and
λk−1(ul) < s < λk(ul).

If we have a discontinuity with satisfying these conditions we call a k-shock
and the inequalities which we just discussed are called entropy inequalities

or Lax shock conditions3

3Peter Lax (1.5.1926–) is a contemporary American mathematician working at the
Courant Institute in New York. He has significantly contributed to the theory of partial
differential equations. His major achievements concern hyperbolic conservation laws and
some aspects of elliptic equations. He received the Abel prize in 2005.


