Sectorial operators generate analytic semigroups

Reiner Lauterbach

Faculty for Mathematics, Informatics und Sciences Universität Hamburg

Ergänzungen

30.04.2012

Operators of type (Φ, M)

Definition. Let $A: X \to X$ be a linear operator with $D(A) \subset X$. It is called an operator of type (Φ, M) for $\Phi \in (0, \frac{\pi}{2})$, M > 0 if

- **1** A is closed and D(A) is dense in X.
- 2 The resolvent set P(A) of A contains the set

$$S_{\Phi} = \left\{ z \in \mathbb{C} \mid z \neq 0, \ \frac{1}{2}\pi - \Phi < \operatorname{arg}(z) < \frac{3}{2}\pi + \Phi
ight\}$$

and for all $\lambda \in S_{\Phi}$ we have an estimate of the resolvent as

$$||R(\lambda,A)|| \le \frac{M}{|\lambda|}.$$
 (1)

The operator A is called sectorial, if there exists a $\tau \in \mathbb{R}$ with $A - \tau \mathbb{1}$ is of type (Φ, M) .

Statement of the Theorem

If A is sectorial, then -A generates an analytic semigroup $\{T(t)\}_{t\geq 0}$. Moreover we have:

• For t > 0 the operators AT(t), $\frac{d}{dt}T(t)$ are bounded linear with

$$\frac{d}{dt}T(t)x = -AT(t)x, \quad \forall x \in X, \ t > 0.$$

T has an analytic continuation to a sector

$$S = \left\{ z \in \mathbb{C} \mid |\arg z| < \varphi_1 \right\}$$

which contains the positive real half axis. For $t, s \in S$ we have $T(t+s) = T(t) \circ T(s)$.

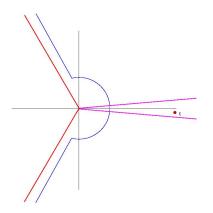
3 There exists an $a \in \mathbb{R}$, such that for all $t \in S$ we have an estimate of the following form

$$\|\mathit{T}(t)\| \leq \mathit{C} e^{-\mathit{a} t} \text{ and } \|\mathit{A} \mathit{T}(t)\| \leq \frac{\mathit{C}}{|t|} e^{-\mathit{a} t}.$$

Proof - Preliminiaries

Wlog: $\tau = 0$.

Curve Γ



The left (red) curve indicates the boundary of the set which by assumption contains the resolvent set of -A. The blue curve represents Γ . If we multiply t with $\lambda \in \Gamma$, then $\operatorname{Re}(\lambda t) < 0$ and $\lim_{|\lambda| \to \infty} \operatorname{Re}(\lambda t) = 0$.

Proof – Construction of T(t)

We define

$$T(t)x = \frac{1}{2\pi i} \int_{\Gamma} R(\lambda, -A) \exp(\lambda t) x \, d\lambda.$$

We write $\Gamma_n = \Gamma \cup B_n(0)$ and $\Gamma_{c,n} = \Gamma \setminus \Gamma_n$. Then

$$T(t)x = \frac{1}{2\pi i} \int\limits_{\Gamma_n} R(\lambda, -A) \exp(\lambda t) x \, d\lambda + \frac{1}{2\pi i} \int\limits_{\Gamma_{c,n}} R(\lambda, -A) \exp(\lambda t) x \, d\lambda.$$

We estimate

$$\left\| \frac{1}{2\pi i} \int\limits_{\Gamma_{c,n}} R(\lambda, -A) \exp(\lambda t) x \, d\lambda \right\| \leq \frac{1}{2\pi} \int\limits_{\Gamma_{c,n}} \frac{M}{|\lambda|} \exp(Re(\lambda t)) \, d\lambda \leq \frac{MC(n)}{2\pi n}$$

Proof – Convergence of T(t)

Therefore

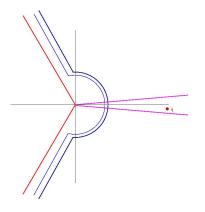
$$\lim_{n\to\infty}\frac{1}{2\pi i}\int\limits_{\Gamma_n}R(\lambda,-A)\exp(\lambda t)x\,d\lambda$$

exists and

$$T(t)x = \frac{1}{2\pi i} \int_{\Gamma} R(\lambda, -A) \exp(\lambda t) x \, d\lambda.$$

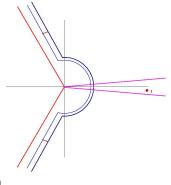
is defined.

Proof – Semigroup Property – Curve Γ_0



The dark blue curve indicates a new curve Γ_0 . To show that using Γ_0 we get the same integral, we choose $f \in X^*$ and $x \in X$. Define curves $\Gamma_{0,n}$ and $\Gamma_{0,c,n}$ similar to the above construction.

Proof – Semigroup Property – Independence of curve



$$\left| \int_{\Gamma} g(\lambda, t) \ d\lambda - \int_{\Gamma_0} g(\lambda, t) \ d\lambda \right| \leq \left| \int_{\gamma} g(\lambda, t) \ d\lambda \right| +$$

We integrate

$$g(\lambda, t) = f(R(\lambda, -A) \exp(\lambda t)x)$$

along Γ and Γ_0 and take the difference. Denote the brown arcs by A_1 and A_2 , such that $\Gamma_n + A_1 - \Gamma_{0,n} - A_2$ is a closed curve γ .

$$\left|\int\limits_{\gamma}g(\lambda,t)\;d\lambda
ight|+$$

$$+\int\limits_{|\Gamma_{c,n}|+|\Gamma_{0,c,n}|+|A_1|+|A_2|}g(\lambda,t)\;d\lambda$$

Proof – Semigroup Property – Cauchy and Estimates

By Cauchy's theorem we have

$$\int\limits_{\gamma}g(\lambda,t)\;d\lambda=0.$$

Then for $N = \Gamma_{c,n}$ or $N = \Gamma_{0,c,n}$ we have

$$\left|\int\limits_N g(\lambda,t)\;d\lambda\right|\leq \frac{M}{n}\|f\|_{X^*}\int\limits_N \exp(\operatorname{Re}\lambda t)\mathrm{d}\lambda\to 0\;\text{as}\;n\to\infty.$$

For A_i

$$\left| \int\limits_{A_i} g(\lambda,t) \ d\lambda \right| \leq \frac{M}{n} \|f\|_{X^*} \int\limits_{A_i} \exp(\operatorname{Re} \lambda t) \mathrm{d}\lambda \to 0 \text{ as } n \to \infty.$$

Proof – 1.) Growth condition

We use the estimate from above for $R(\frac{\lambda}{|t|}, -A)$, i.e.

$$||R(\frac{\lambda}{|t|}, -A)|| \le \frac{M|t|}{|\lambda|}$$

to obtain with $\Gamma'=|t|\Gamma$, a change of coordinates $\lambda'=\lambda|t|$ and $t=|t|\xi,\ |\xi|=1$ and Cauchy's Theorem (replacing Γ' by Γ):

$$\|T(t)\| \leq rac{M}{2\pi} \int\limits_{\Gamma} |\exp(\lambda'\xi)| rac{d\lambda'}{\lambda'} = rac{MC(\xi)}{2\pi}.$$

Proof – 2.) Growth condition

Since A is closed, we can write A into the integral over Γ (we had such an argument several times before). Therefore we have an expression for AT(t) given by

$$AT(t) = \frac{1}{2\pi i} \int_{\Gamma} \exp(\lambda' \xi) AR(\frac{\lambda'}{|t|}, -A) \frac{d\lambda'}{|t|}.$$

We get

$$AT(t) = rac{1}{2\pi i} \int\limits_{\Gamma} \exp(\lambda' \xi) (-1 + rac{\lambda'}{|t|}) R(rac{\lambda'}{|t|}) rac{d\lambda'}{|t|}.$$

The term with the 1 gives a constant, the second term yields an esitmate of the form

$$\frac{M}{2\pi} \int_{\Gamma} |\exp(\lambda' t)| \frac{\lambda'}{|t|} \frac{|t|}{\lambda'} \frac{d\lambda'}{|t|}.$$

This yields an estimate of the form $\leq \frac{C}{|t|}$.

Proof - Strong Continuity

• For $x \in D(A)$ we have

$$T(t)x - x = \frac{1}{2\pi i} \int_{\Gamma} \exp(\lambda t) [R(\lambda, -A) - \lambda^{-1}] x \, d\lambda$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} \lambda^{-1} e^{\lambda t} AR(\lambda, -A) x \, d\lambda.$$

This gives for t > 0

$$||T(t)x - x|| \le C||Ax||t$$

(use $\mu = \lambda t$.) (Observe $R(\lambda, -A)(\lambda \mathbb{1} + A) = \mathbb{1}$ and hence $AR(\lambda, -A)\lambda^{-1} + R(\lambda, -A) = \lambda^{-1}\mathbb{1}$ implying $R(\lambda, -A) - \lambda^{-1} = -AR(\lambda, -A)\lambda^{-1}$)

② $D(A) \subset X$ is dense T(t) bounded: $||T(t)x - x|| \le ||T(t)x - T(t)x_n|| + ||T(t)x_n - x_n|| + ||x_n - x||$.

Proof – Generator of the Semigroup – $-A \subset \bar{A}$

Let $x \in D(A)$ and t > 0, then

$$\frac{d}{dt}AT(t) + AT(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda + A)R(\lambda, -A)x \ d\lambda = 0.$$

Then for $x \in D(A)$, t > 0 we have

$$\frac{1}{t}\int_{0}^{t}\frac{d}{ds}T(s)xds=-\frac{1}{t}\int_{0}^{t}T(s)Ax\ ds.$$

The limit on the right hand side exists and yields -Ax. Therefore -A is containted in the generator \bar{A}

Proof – Generator of the Semigroup – $\bar{A} = -A$

Define for λ sufficiently large (given by the growth rate ω of T(t))

$$R(\lambda)x = \int_{0}^{\infty} e^{-\lambda t} T(t)x \ dt.$$

 $R = R(\lambda)$ is bounded linear operator.

Consider for $x \in X$

$$\frac{1}{h}(T(h)Rx - Rx) = \frac{1}{h} \left(\int_{0}^{\infty} e^{-\lambda t} T(t+h)x \, dt - \int_{0}^{\infty} e^{-\lambda t} T(t)x \, dt \right)$$

$$= \frac{e^{\lambda h}}{h} \int_{h}^{\infty} e^{-\lambda u} T(u)x \, du - \frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} T(t)x \, dt$$

$$= \frac{e^{\lambda h} - 1}{h} \int_{h}^{\infty} e^{-\lambda u} T(u)x \, du - \frac{1}{h} \int_{0}^{h} e^{\lambda t} T(t)x \, dt$$

$$\to \lambda Rx - x \text{ for } h \to 0.$$

This implies for $x \in X$ that $R(\lambda)x \in D(\bar{A})$ and $\bar{A}Rx - \lambda Rx = -x$ i.e. we have $(\lambda 1 - \bar{A})R(\lambda)x = x$ for all $x \in X$. Then, trivially, for $x \in D(\bar{A})$ we have $R(\lambda)x \in D(\bar{A})$ and

$$\bar{A}R(\lambda)x = \bar{A}\int_{0}^{\infty} e^{\lambda t}T(t)x \ dt = \int_{0}^{\infty} e^{\lambda t}T(t)\bar{A}x \ dt = R(\lambda)\bar{A}x.$$

Therefore we have $\bar{R}Ax - \lambda Rx = -x$ and hence

$$R(\lambda)(\lambda \mathbb{1} - \bar{A})x = x \text{ for } x \in D(\bar{A}).$$

Therefore $R(\lambda)=(\lambda\mathbb{1}-\bar{A})^{-1}$, Then $P(A)\cap P(\bar{A})\neq\emptyset$. For $\lambda\in D(A)\cap D(\bar{A})$ we have

$$(\lambda \mathbb{1} - \bar{A})D(A) = (\lambda \mathbb{1} - A)D(A) = X.$$

Since $\lambda \mathbb{1} - \bar{A}$ is injective and $D(A) \subset D\bar{A}$) we have

$$D(A) = D(\bar{A}).$$