Geometric Topology

Problem Set 5

1. Suppose S_{1} and S_{2} are closed oriented submanifolds of the closed oriented manifold M with $\operatorname{dim} S_{1}+\operatorname{dim} S_{2}=\operatorname{dim} M$.
a) Prove that in this situation we have

$$
S_{1} \bullet S_{2}=(-1)^{\operatorname{dim} S_{2}}\left(S_{1} \times S_{2}\right) \bullet \Delta,
$$

where on the right hand side we consider the intersection number of the oriented submanifold $S_{1} \times S_{2}$ with the diagonal $\Delta \subseteq M \times M$ (with its induced orientation from the projection to either factor).
b) Prove that if $S_{1}=S_{2}=S$ (so that $\operatorname{dim} S=\frac{1}{2} \operatorname{dim} M$), the formula can be simplified to

$$
S \bullet S=(S \times S) \bullet \Delta
$$

2. Suppose that M and N are connected closed oriented manifolds of the same dimension, and let $f: M \rightarrow N$ be any smooth map.
a) Prove that

$$
\operatorname{deg}(f)=(M \times\{q\}) \bullet \operatorname{graph}(f)
$$

where $q \in N$ is any point, and

$$
\operatorname{graph}(f)=\{(x, f(x)) \mid x \in M\} \subseteq M \times N
$$

is the graph of f.
Now suppose $M=N$, so that $f: M \rightarrow M$ is a self-map. In this case the Lefschetz number $L(f) \in \mathbb{Z}$ of f is defined as

$$
L(f)=\operatorname{graph}(f) \bullet \Delta
$$

Prove that
b) $L(f) \in \mathbb{Z}$ makes sense even if M is not assumed to be orientable.
c) Homotopic maps have the same Lefschetz number.
d) $L\left(\mathrm{id}_{M}\right)=\chi(M)$.
e) Any map $f: M \rightarrow M$ with $L(f) \neq 0$ must have a fixed point.

What is the Lefschetz number of a constant map?
3. The intersection number readily generalizes to the case where $S_{2} \subset M$ is a closed cooriented submanifold and $f: S_{1} \rightarrow M$ is any smooth map of a closed oriented manifold S_{1} into M, where $\operatorname{dim} S_{1}+\operatorname{dim} S_{2}=\operatorname{dim} M$. We denote the resulting integer by $f \bullet S_{2}$.
a) Prove that if f and g are smoothly homotopic maps, then $f \bullet S_{2}=g \bullet S_{2}$.
b) Assume that $Z \subseteq N$ is a cooriented closed submanifold and S is a closed oriented manifold such that $\operatorname{dim} S+\operatorname{dim} Z=\operatorname{dim} N$. Prove that if $f: S \rightarrow M$ and $g: M \rightarrow N$ are smooth maps, then

$$
(g \circ f) \bullet Z=f \bullet\left(g^{-1} Z\right)
$$

where the first intersection number is taken in N and the second one in M.
c) Give an explicit example where the resulting integer is nonzero, and $\operatorname{dim} M>\operatorname{dim} N$.
4. The goal of this exercise is to show that every diffeomorphism $h: \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}$ preserves the orientation.
a) Use the fact that $\mathbb{C} P^{2} \cong S^{5} / S^{1}$, where we think of $S^{5} \subseteq \mathbb{R}^{6} \cong \mathbb{C}^{3}$ and $S^{1} \subseteq \mathbb{C}$ acts on it by multiplication in each of the coordinates and the long exact sequence in homotopy for this fibration to deduce that $\pi_{2}\left(\mathbb{C} P^{2}\right) \cong \mathbb{Z}$, with a generator given by the natural inclusion $\iota: S^{2} \cong \mathbb{C} P^{1} \subseteq \mathbb{C} P^{2} .{ }^{1}$
b) Argue that for any diffeomorphism $h: \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}$ we must have $[h \iota]= \pm[\iota] \in \pi_{2}\left(\mathbb{C} P^{2}\right)$, and deduce that

$$
\left(h\left(\mathbb{C} P^{1}\right)\right) \bullet\left(h\left(\mathbb{C} P^{1}\right)\right)=\mathbb{C} P^{1} \bullet \mathbb{C} P^{1}=1
$$

c) Prove that, in general, for embeddings $f: S^{2} \rightarrow \mathbb{C} P^{2}$ and $g: S^{2} \rightarrow \mathbb{C} P^{2}$ we have

$$
\left(h \circ f\left(S^{2}\right)\right) \bullet\left(h \circ g\left(S^{2}\right)\right)=(\operatorname{deg} h) \cdot\left(f\left(S^{2}\right)\right) \bullet\left(g\left(S^{2}\right)\right)
$$

d) Deduce that $\operatorname{deg} h=1$.

[^0]
[^0]: ${ }^{1}$ If you are unfamiliar with the long exact sequence of a fibration, you may skip this step and assume the result in the sequel.

