Universität Hamburg Janko Latschev

GEOMETRIC TOPOLOGY

Problem Set 4

- 1. Prove that every vector bundle whose rank is bigger than the dimension of the base manifold admits a nowhere vanishing section.
- **2.** In this exercise, we denote by $\underline{\mathbb{R}}^k$ the trivial bundle of rank k over the given base.
 - a) Prove that S^n admits a non-vanishing vector field if and only if n is odd. Hint: Use such a vector field to construct a homotopy from the identity to the antipodal map.
 - **b)** Suppose M and N are manifolds of positive dimension such that $TM \oplus \underline{\mathbb{R}}^1$ and $TN \oplus \underline{\mathbb{R}}^1$ are trivial and assume that TM has a nonvanishing section. Prove that $T(M \times N)$ is a trivial bundle.
 - c) Deduce that a product of two or more spheres has trivial tangent bundle if and only if at least one of them has odd dimension.
 - d) Illustrate your proof by giving an explicit trivialization of $T(S^2 \times S^5)$. (If you find this too hard, try $T(S^1 \times S^2)$ first.)
- **3.** A Lie group is a smooth manifold G which is also a group, and such that the group multiplication $\mu: G \times G \to G$ and the inversion $\iota: G \to G$ are smooth maps. Prove that every Lie group has trivial tangent bundle.
- 4. Let $p: E \to B$ be a real vector bundle of rank r over B. Prove that E is an orientable vector bundle if and only if $\Lambda^r E \to B$ admits a section (so it is a trivial bundle).
- 5. Let E_i be vector bundles over the same base B. A sequence of vector bundle morphisms, all covering the identity map on B,

$$\dots \xrightarrow{F_{i-2}} E_{i-1} \xrightarrow{F_{i-1}} E_i \xrightarrow{F_i} E_{i+1} \xrightarrow{F_{i+1}} \dots$$

is called exact, if for each $b \in B$ and each index *i* we have

$$\operatorname{image}(F_{i-1})_b = \ker(F_i)_b.$$

a) Prove that in every exact sequence of vector bundles all maps have constant rank over each connected component of *B*.

A short exact sequence is an exact sequence of the form

$$0 \to E_1 \xrightarrow{F_1} E_2 \xrightarrow{F_2} E_3 \to 0.$$

- b) State explicitly which properties exactness of the sequence implies for each of the maps F_1 and F_2 .
- c) Prove that in a short exact sequence as above, E_2 is isomorphic to the direct sum $E_1 \oplus E_3$.