Geometric Topology

Problem Set 3

1. a) Let $f: M \rightarrow N$ and $g: N \rightarrow P$ be smooth maps between closed connected oriented manifolds of the same dimension. Prove that

$$
\operatorname{deg}(g \circ f)=\operatorname{deg}(f) \cdot \operatorname{deg}(g)
$$

b) Prove that a smooth homotopy equivalence between closed connected oriented manifolds must have degree ± 1.
2. a) Interpret $S^{2}=\mathbb{C} \cup\{\infty\}$ and consider a rational map $f: S^{2} \rightarrow S^{2}$ given by $f(z)=\frac{p(z)}{q(z)}$, where p and q are polynomials of degrees n and m without common roots. What is $\operatorname{deg}(f)$?
b) Now consider the maps $f_{k}: S^{2} \rightarrow S^{2}$ which are defined by sending $\exp _{N}(v)$ to $\exp _{N}(k v)$, where $N \in S^{2}$ is the north pole and $\exp _{N}: T_{N} S^{2} \rightarrow S^{2}$ is the exponential map. What is $\operatorname{deg}\left(f_{k}\right)$?
c) Does the answer change if one replaces S^{2} by S^{3} ?
3. Prove the following statements:
a) Every map $S^{n} \rightarrow S^{n}$ with degree different from $(-1)^{n+1}$ has a fixed point.
b) Every map $S^{n} \rightarrow S^{n}$ of odd degree maps some pair of antipodal points onto a pair of antipodal points.
4. Let $f: M \rightarrow N$ be a map between closed connected manifolds of the same dimension n.
a) Prove that every regular value $q \in N$ has a neighborhood $V \subseteq N$ which is evenly covered, i.e. the preimage

$$
f^{-1}(V)=U_{1} \sqcup U_{2} \cdots \sqcup U_{r}
$$

is a disjoint union of open sets $U_{j} \subseteq M$ such that $\left.f\right|_{U_{j}}: U_{j} \rightarrow V$ is a diffeomorphisms.
b) Now suppose M and N are oriented and $\eta \in \Omega^{n}(N)$ is a form with support in V. Prove that

$$
\int_{M} f^{*} \eta=\operatorname{deg}(f) \cdot \int_{N} \eta .
$$

Remark: One can prove that for closed connected manifolds P, integration induces an isomorphism $H_{\mathrm{dR}}^{\operatorname{dim} P}(P) \cong \mathbb{R}$. So this exercise relates our definition of degree to one you might have seen in algebraic topology.

