GEOMETRIC TOPOLOGY

Problem Set 2

- **1.** Let M be a connected manifold.
 - a) Prove that for any two points $p, q \in M$, there exists a smooth embedded path $\gamma : [0,1] \to M$ with $\gamma(0) = p$ and $\gamma(1) = q$. How many substantially different proofs can you find?
 - b) Prove that for any two points $p, q \in M$ there is a diffeomorphism $\varphi : M \to M$ with $\varphi(p) = q$. Moreover, the diffeomorphism φ can be chosen as the end point of a smooth path of diffeomorphisms starting at id_M . Such a path is called an isotopy.
- **2.** Let *M* be a closed manifold. Prove that there exist finitely many vector fields X_1, \ldots, X_N with the property that at each $p \in M$ the vectors $X_1(p), \ldots, X_N(p)$ span T_pM . In other words, the map of vector bundles

$$\Phi: M \times \mathbb{R}^N \to TM$$
$$(p, t_1, \dots, t_N) \mapsto \sum_{r=1}^N t_r X_r(p)$$

is surjective.

3. Let M be a compact manifold with boundary. Prove that every neighborhood $W \subseteq M$ of ∂M contains a neighborhood $U \subseteq W$ of ∂M which is diffeomorphic to $\partial M \times [0,1)$ by a diffeomorphism sending (p,0) to p. Such a U is called a *collar neighborhood of* ∂M . *Hint: This is true without assuming* M *is compact, but the proof is slightly more technical.*