Winter 2023/24

Universität Hamburg Janko Latschev

GEOMETRIC TOPOLOGY

Problem Set 11

1. Prove that under the embedding $\mathbb{C}^2 \to \operatorname{Mat}(2,\mathbb{C})$ given by the mapping

$$(z_1, z_2) \mapsto \begin{pmatrix} z_1 & -\bar{z}_2 \\ z_2 & \bar{z}_1 \end{pmatrix}$$

- **a)** S^3 is diffeomorphic to the Lie group $SU(2) \subseteq Mat(2, \mathbb{C})$,
- b) the action of $SU(2) \times SU(2)$ on $\mathbb{C}^2 \cong \mathbb{R}^4$ by left and right multiplication gives rise to a surjective group homomorphism

$$SU(2) \times SU(2) \to SO(4)$$

with kernel $\{(1, 1), (-1, -1)\}$, and

- c) the corresponding action of $SU(2) \times SU(2)$ on $S^3 \subset \mathbb{R}^4$ descends to a faithful action of $SO(3) \times SO(3) \cong SU(2)/ \pm \mathbb{1} \times SU(2)/ \pm \mathbb{1}$ on $\mathbb{R}P^3 = S^3/ \pm \mathbb{1}$.
- **2.** a) Can you find two different Heegaard diagrams of genus 2 for S^3 ?
 - **b)** Find a Heegaard diagram of genus 3 for T^3 .
 - c) Can you describe a procedure to produce a Heegaard diagram of genus g + 1 for a given 3-manifold M from a Heegaard of genus g for the same M?
- **3.** Let α and β denote loops representing the standard generators of $\pi_1(T^2 \setminus \{pt\})$, and let τ_{α} and τ_{β} be the corresponding Dehn twists on $T^2 \setminus \{pt\}$. Prove that
 - a) $\tau_{\beta}\tau_{\alpha}\tau_{\beta}(\alpha)$ is isotopic to β and
 - **b)** $\tau_{\beta}\tau_{\alpha}\tau_{\beta}(\beta)$ is isotopic to α^{-1} (meaning α traversed in the opposite direction).