Geometric Topology

Problem Set 11

1. Prove that under the embedding $\mathbb{C}^{2} \rightarrow \operatorname{Mat}(2, \mathbb{C})$ given by the mapping

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right)
$$

a) S^{3} is diffeomorphic to the Lie group $S U(2) \subseteq \operatorname{Mat}(2, \mathbb{C})$,
b) the action of $S U(2) \times S U(2)$ on $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ by left and right multiplication gives rise to a surjective group homomorphism

$$
S U(2) \times S U(2) \rightarrow S O(4)
$$

with kernel $\{(\mathbb{1}, \mathbb{1}),(-\mathbb{1},-\mathbb{1})\}$, and
c) the corresponding action of $S U(2) \times S U(2)$ on $S^{3} \subset \mathbb{R}^{4}$ descends to a faithful action of $S O(3) \times S O(3) \cong S U(2) / \pm \mathbb{1} \times S U(2) / \pm \mathbb{1}$ on $\mathbb{R} P^{3}=S^{3} / \pm \mathbb{1}$.
2. a) Can you find two different Heegaard diagrams of genus 2 for S^{3} ?
b) Find a Heegaard diagram of genus 3 for T^{3}.
c) Can you describe a procedure to produce a Heegaard diagram of genus $g+1$ for a given 3-manifold M from a Heegaard of genus g for the same M ?
3. Let α and β denote loops representing the standard generators of $\pi_{1}\left(T^{2} \backslash\{p t\}\right)$, and let τ_{α} and τ_{β} be the corresponding Dehn twists on $T^{2} \backslash\{p t\}$. Prove that
a) $\tau_{\beta} \tau_{\alpha} \tau_{\beta}(\alpha)$ is isotopic to β and
b) $\tau_{\beta} \tau_{\alpha} \tau_{\beta}(\beta)$ is isotopic to α^{-1} (meaning α traversed in the opposite direction).

