Winter 2023/24

Universität Hamburg Janko Latschev

GEOMETRIC TOPOLOGY

Problem Set 1

1. Prove that the subset

$$Q := \{ \mathbf{z} = (z_1, \dots, z_n) \in \mathbb{C}^n \mid \sum_{j=1}^n z_j^2 = 1 \} \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$$

is diffeomorphic to the tangent bundle of S^{n-1} .

- 2. Prove or disprove:
 - a) There is an immersion of the punctured torus $S^1 \times S^1 \setminus \{pt\}$ into \mathbb{R}^2 .
 - b) Any finite product of spheres admits an embedding of codimension 1 into euclidean space.
- **3.** Prove that every closed connected 1-dimensional manifold is diffeomorphic to $S^1 \subseteq \mathbb{R}^2$.
- **4.** Let $U \subset \mathbb{R}^n$ be a connected open subset, and let $p: U \to U$ be a smooth map such that $p \circ p = p$. Prove that the subset $F \subset U$ of fixed points of p forms a smooth submanifold of \mathbb{R}^n .