DIFFERENTIAL TOPOLOGY

Problem Set 6

- **1.** Let $f: M \to N$ be a smooth map which is transverse to a submanifold $Z \subseteq N$ and its boundary $\partial Z \subset N$. Prove that $f^{-1}(Z) \subseteq M$ is a submanifold of dimension dim $M + \dim Z \dim N$ with boundary $f^{-1}(\partial Z)$.
- **2.** Let M be a smooth manifold, possibly with boundary.
 - a) If $n = \dim M > 1$, then M is orientable if and only if there exists an atlas for M all of whose transition maps are orientation preserving diffeomorphisms between open subsets of \mathbb{R}^n .
 - **b)** What happens if dim M = 1?
- **3.** Let M be a compact manifold with boundary $\partial M = B$, and let N be a connected manifold with dim $N = \dim B$. Prove that any smooth map $f : B \to N$ which extends to a smooth map $F : M \to N$ has mod 2 degree 0. Moreover, if M and N are oriented (and B inherits the boundary orientation from M), then the integer valued degree of f is also zero.
- 4. a) Let $f: M \to N$ and $g: N \to P$ be smooth maps between closed connected oriented manifolds of equal dimension. Prove that

$$\deg(f \circ g) = \deg(f) \cdot \deg(g).$$

- b) Prove that any smooth map between closed connected oriented manifolds which is a homotopy equivalence has degree ± 1 .
- 5. What is the degree of
 - a) the map $f_k: S^1 \to S^1$ given by $f(z) = z^k$ with $k \in \mathbb{Z}$? (Here we view $S^1 \subseteq \mathbb{C}$ as the unit circle in \mathbb{C} .)
 - **b)** the map $\mathbb{R}^2 \cup \{\infty\} \to \mathbb{R}^2 \cup \{\infty\}$ defined by a rational function $f(z) = \frac{p(z)}{q(z)}$, where p and q are polynomials of degrees n and m without common roots?