DIFFERENTIAL TOPOLOGY

Problem Set 3

- 1. Prove that polynomials are dense in $C^r(\mathbb{R}, \mathbb{R})$ with the weak topology for every $r \ge 0$ but not dense for any $r \ge 0$ in the strong topology.
- **2.** Let $r \ge 0$ and let $A \subsetneq M$ be a closed subset of a C^r manifold M. Prove:
 - **a)** There exists a C^r function $f: M \to [0, \infty)$ with $f^{-1}(0) = A$.
 - **b)** If $B \subseteq M \setminus A$ is another closed subset, then there exists a C^r function $g: M \to [0,1]$ such that $g^{-1}(0) = A$ and $g^{-1}(1) = B$.
- **3.** Let $U \subseteq \mathbb{R}^n$ be open and $\{\lambda_0, \lambda_1\}$ a partition of unity subordinate to the covering $U = U_0 \cup U_1$ by open sets. Prove that for every $r \ge 0$ and every fixed map $f \in C^r(U, \mathbb{R}^m)$ the mapping

$$G: C^{r}(U, \mathbb{R}^{m}) \to C^{r}(U, \mathbb{R}^{m})$$
$$g \mapsto \lambda_{0} \cdot g + \lambda_{1} \cdot f$$

is continuous in the strong C^r topology.