Grundlagen der Mathematik

Übungsblatt 7

Präsenzaufgaben

(P11) Binomialkoeffizienten und Zählprobleme

- a) Wieviele verschiedene Möglichkeiten haben k Personen, aus einer Getränkekarte mit n Getränken je ein Getränk auszuwählen, so dass jede Person ein anderes Getränk erhält?
- b) Wieviele verschiedene Möglichkeiten gibt es, wenn stattdessen n Personen aus 2 Getränken auswählen sollen, so dass am Ende jedes Getränk mindestens einmal gewählt wurde?
- c) Wir definieren $F_n := \{1, 2, ..., n-1, n\}$ als die Menge der ersten n natürlichen Zahlen. Formulieren Sie beide Fragestellungen als Zählprobleme für Abbildungen (mit bestimmten Eigenschaften) zwischen je zwei geeigneten dieser Mengen.

(P12) Lücken zwischen benachbarten Primzahlen

Zeigen Sie, dass es beliebig große Lücken zwischen zwei aufeinanderfolgenden Primzahlen gibt, d.h. zu jeder natürlichen Zahl $a \in \mathbb{N}$ gibt es eine natürliche Zahl $b \in \mathbb{N}$, so dass keine der Zahlen

$$b+1, b+2, \ldots, b+a-1, b+a$$

eine Primzahl ist.

Hinweis: Was wissen Sie über die Teiler der Zahlen n! + k für $1 < k \le n$?

Übungsaufgaben mit Abgabetermin Mo, 5.12.16, zu Beginn der Vorlesung

(A16) Binomialkoeffizienten

(1+4 Punkte)

a) Verifizieren Sie die Gleichung

$$\binom{6}{3} = \binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2}.$$

b) Stellen Sie eine analoge allgemeine Formel für $\binom{n}{k}$ auf und beweisen Sie diese.

(A17) Einige Aussagen über Teilbarbeit

(1+1+1+1+1 Punkte)

Beweisen Sie folgende elementare Aussagen aus der Vorlesung über Teilbarkeit: Für alle natürlichen Zahlen a, b, c, d, x und y gilt

- a) Aus a|b folgt $a \leq b$.
- **b)** Aus a|b und b|c folgt a|c.
- c) Aus a|b und c|d folgt (ac)|(bd).
- **d)** Aus (ca)|(cb) folgt a|b.
- e) Aus a|b und a|c folgt a|(xb+yc).

(A18) Unendlich viele Primzahlen

(4 Punkte)

Beweisen Sie, dass für jedes n > 2 eine Primzahl p mit n existiert.Hinweis: Falls Ihnen eine Idee fehlt, dann analysieren Sie noch einmal, warum EuklidsBeweis für die Unendlichkeit der Menge der Primzahlen funktioniert.

(A19) Mersenne-Zahlen

(2+4 Punkte)

Die Zahlen $M_n := 2^n - 1$ nennt man Mersenne-Zahlen.

- a) Bestimmen Sie die ersten 8 Mersenne-Zahlen, und entscheiden Sie, welche von diesen Primzahlen sind.
- b) Beweisen Sie, dass M_n nur dann eine Primzahl sein kann, wenn n eine Primzahl ist.

Hinweis: Verwenden Sie Proposition 10 der Vorlesung und die Potenzgesetze.

Bemerkung: Bei der Jagd nach der "größten bekannten Primzahl" spielen die Mersenne-Zahlen eine besondere Rolle. Die aktuell größte bekannte Primzahl ist laut Wikipedia die Mersenne-Zahl $2^{74207281} - 1$ (mit 22338618 Ziffern), welche durch eine koordinierte parallele Suche einer Vielzahl von Computern gefunden wurde.

Unter den Fermat-Zahlen $2^n + 1$ sind aktuell nur 5 Primzahlen bekannt.