A linear algebra lemma

In the lecture, I stated and used the following assertion, giving an incorrect proof. Here is a correction.

Lemma. Let (V, ω) be a symplectic vector space and $W \subset V$ any linear subspace, and set $N:=W \cap W^{\perp^{\omega}}$. Then there is an isomorphism of symplectic vector spaces

$$
\Phi:(V, \omega) \xrightarrow{\cong}(W / N, \omega) \oplus\left(W^{\perp} / N, \omega\right) \oplus\left(N \oplus N^{*}, \omega_{\text {can }}\right) .
$$

Proof. Let J be an ω-compatible complex structure on V. We define $V_{3}:=J N$.
Claim 1: We have $\left(W+W^{\perp_{\omega}}\right) \cap V_{3}=\{0\}$, and the map

$$
\begin{aligned}
N & \rightarrow V_{3}^{*} \\
n & \left.\mapsto(\iota(n) \omega)\right|_{V_{3}}
\end{aligned}
$$

is an isomorphism.
To prove the first assertion, observe that if $\bar{n}=J n \in V_{3}$ is some nonzero vector, then since J is ω-compatible we have $\omega(n, \bar{n})>0$. This proves that $\bar{n} \notin\left(W+W^{\perp^{\omega}}\right)$, because N is ω-orthogonal to $W+W^{\perp_{\omega}}$ by definition. The second statement follows similarly, since by compatibility the given map is injective. As both spaces have the same dimension, the map must be an isomorphism.

Now we define

$$
\begin{aligned}
& V_{1}:=\left\{w \in W \mid \omega(w, \bar{n})=0 \text { for all } \bar{n} \in V_{3}\right\} \\
& V_{2}:=\left\{w \in W^{\perp_{\omega}} \mid \omega(w, \bar{n})=0 \text { for all } \bar{n} \in V_{3}\right\}
\end{aligned}
$$

Claim 2. We have $W=V_{1} \oplus N$ and $W^{\perp_{\omega}}=V_{2} \oplus N$.
It clearly suffices to prove one of the statements, so we prove the first one. Observe that $V_{1} \cap N=\{0\}$, as follows directly from Claim 1 and the definition of V_{1}. Now given any $w \in W$, consider the element $\varphi \in(J N)^{*}$ defined as

$$
\varphi(\bar{n}):=\omega(w, \bar{n})
$$

By Claim 1, there exists some $n \in N$ such that $\varphi=\left.\iota(n) \omega\right|_{V_{3}}$, and so it follows that $w-n \in V_{1}$. This proves that $W=V_{1}+N$, and since we already proved that $V_{1} \cap N=\{0\}$, the sum is direct.

Now it follows from Claims 1 and 2 that

$$
V \cong V_{1} \oplus N \oplus V_{2} \oplus V_{3} .
$$

Indeed, by Claim 2 we have $V_{1} \oplus N \oplus V_{2} \cong W+W^{\perp_{\omega}}$, and since by Claim 1 the subspace V_{3} has trivial intersection with this space and moreover it has the right dimension, it is a complement.
Finally, using this decomposition of V, we can define the isomorphism Φ as

$$
\Phi\left(v_{1}+n+v_{2}+v_{3}\right):=\left(\left[v_{1}\right],\left[v_{2}\right],\left(n, \iota\left(v_{3}\right) \omega\right)\right) .
$$

One readily checks that
$\omega\left(v_{1}+n+v_{2}+v_{3}, w_{1}+m+w_{2}+w_{3}\right)=\omega\left(v_{1}, w_{1}\right)+\omega\left(v_{2}, w_{2}\right)+\omega\left(n, w_{3}\right)+\omega\left(v_{3}, m\right)$
since for example v_{1} is ω-orthogonal to $m+w_{2} \in W^{\perp_{\omega}}$, and it is also ω-orthogonal to w_{3} by the definition of V_{1}. As the right hand side agrees with the symplectic structure on the target vector space, we have proven the lemma.

