Winter 2012/13

Universität Hamburg Janko Latschev

A linear algebra lemma

In the lecture, I stated and used the following assertion, giving an incorrect proof. Here is a correction.

Lemma. Let (V, ω) be a symplectic vector space and $W \subset V$ any linear subspace, and set $N := W \cap W^{\perp_{\omega}}$. Then there is an isomorphism of symplectic vector spaces

$$\Phi: (V, \omega) \xrightarrow{\cong} (W/N, \omega) \oplus (W^{\perp}/N, \omega) \oplus (N \oplus N^*, \omega_{\operatorname{can}}).$$

Proof. Let J be an ω -compatible complex structure on V. We define $V_3 := JN$. Claim 1: We have $(W + W^{\perp_{\omega}}) \cap V_3 = \{0\}$, and the map

$$N \to V_3^*$$
$$n \mapsto (\iota(n)\omega)|_{V_3}$$

is an isomorphism.

To prove the first assertion, observe that if $\overline{n} = Jn \in V_3$ is some nonzero vector, then since J is ω -compatible we have $\omega(n, \overline{n}) > 0$. This proves that $\overline{n} \notin (W + W^{\perp_{\omega}})$, because N is ω -orthogonal to $W + W^{\perp_{\omega}}$ by definition. The second statement follows similarly, since by compatibility the given map is injective. As both spaces have the same dimension, the map must be an isomorphism.

Now we define

$$V_1 := \{ w \in W \mid \omega(w, \overline{n}) = 0 \text{ for all } \overline{n} \in V_3 \}$$
$$V_2 := \{ w \in W^{\perp_{\omega}} \mid \omega(w, \overline{n}) = 0 \text{ for all } \overline{n} \in V_3 \}$$

Claim 2. We have $W = V_1 \oplus N$ and $W^{\perp_{\omega}} = V_2 \oplus N$.

It clearly suffices to prove one of the statements, so we prove the first one. Observe that $V_1 \cap N = \{0\}$, as follows directly from Claim 1 and the definition of V_1 . Now given any $w \in W$, consider the element $\varphi \in (JN)^*$ defined as

$$\varphi(\overline{n}) := \omega(w, \overline{n}).$$

By Claim 1, there exists some $n \in N$ such that $\varphi = \iota(n)\omega|_{V_3}$, and so it follows that $w - n \in V_1$. This proves that $W = V_1 + N$, and since we already proved that $V_1 \cap N = \{0\}$, the sum is direct.

Now it follows from Claims 1 and 2 that

$$V \cong V_1 \oplus N \oplus V_2 \oplus V_3.$$

Indeed, by Claim 2 we have $V_1 \oplus N \oplus V_2 \cong W + W^{\perp_{\omega}}$, and since by Claim 1 the subspace V_3 has trivial intersection with this space and moreover it has the right dimension, it is a complement.

Finally, using this decomposition of V, we can define the isomorphism Φ as

$$\Phi(v_1 + n + v_2 + v_3) := ([v_1], [v_2], (n, \iota(v_3)\omega)).$$

One readily checks that

$$\omega(v_1 + n + v_2 + v_3, w_1 + m + w_2 + w_3) = \omega(v_1, w_1) + \omega(v_2, w_2) + \omega(n, w_3) + \omega(v_3, m)$$

since for example v_1 is ω -orthogonal to $m + w_2 \in W^{\perp \omega}$, and it is also ω -orthogonal to w_3 by the definition of V_1 . As the right hand side agrees with the symplectic structure on the target vector space, we have proven the lemma. \Box