Symplectic Geometry

Problem Set 6

1. For a function $a: \mathbb{R}^{4} \rightarrow \mathbb{R}$, we consider the almost complex structure J_{a} on the manifold $M=\mathbb{R}^{4}$ which in the global coordinates $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ has the form

$$
J_{a}(p)=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
a(p) & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & -a(p) & 0
\end{array}\right) \text {, i.e. } J_{a}\left(\frac{\partial}{\partial x_{1}}\right)=a(p) \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial y_{1}} \quad \text { etc. }
$$

a) Prove that if $|a(p)| \leq 1$ for all $p \in \mathbb{R}^{4}$, then J_{a} is tamed by the standard symplectic form $\omega_{\text {st }}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$!
Hint: Recall that the taming condition means that $\omega(v, J v)>0$ for all nonzero v, but ω need not be J-invariant, so that the bilinear form $\omega(., J$. need not be symmetric.
b) Under which conditions on the function a is the almost complex structure J_{a} on \mathbb{R}^{4} integrable?
Hint: Argue that in order to determine $N_{J_{a}}$ on any two vectors $v, w \in T_{p} \mathbb{R}^{4}$, it suffices to know $N_{J_{a}}\left(\frac{\partial}{\partial x_{1}}(p), \frac{\partial}{\partial x_{2}}(p)\right)$, and then compute this.
2. In the lecture, we introduced the Fubini-Study form ω_{FS} on $\mathbb{C} P^{n}$ as the unique 2-form satisfying

$$
\pi^{*} \omega_{\mathrm{FS}}=\iota^{*} \omega_{\mathrm{st}}
$$

where $\pi: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ and $\iota: S^{2 n+1} \rightarrow \mathbb{C}^{n+1}$ are the standard projection and the standard embedding.
a) Prove that the form

$$
\widetilde{\omega}:=\frac{1}{\|z\|^{2}} \cdot \omega_{\mathrm{st}}
$$

on $\mathbb{C}^{n+1} \backslash\{0\}$ is invariant under the \mathbb{C}^{*}-action by rescaling, and notice that $\iota^{*} \widetilde{\omega}=\iota^{*} \omega_{\mathrm{st}}$.
b) Recall that we defined ${ }^{1} H_{z}:=\operatorname{span}_{\mathbb{C}}(z)^{\perp} \subset T_{z} \mathbb{C}^{n+1}$. Now use a coordinate expression for the orthogonal projection $T_{z} \mathbb{C}^{n+1} \rightarrow H_{z}$ and part a) to prove that in homogeneous coordinates $\left[z_{0}: \ldots: z_{n}\right]$ on $\mathbb{C} P^{n}$ the Fubini-Study form is given by

$$
\omega_{\mathrm{FS}}=\frac{i}{2}\left(\sum_{j} \frac{d z_{j} \wedge d \bar{z}_{j}}{\|z\|^{2}}-\sum_{j, k} \frac{\bar{z}_{j} z_{k} d z_{j} \wedge d \bar{z}_{k}}{\|z\|^{4}}\right) .
$$

c) The open sets $U_{i}=\left\{\left[z_{0}: \ldots: z_{n}\right] \in \mathbb{C} P^{n} \mid z_{i} \neq 0\right\}$ cover $\mathbb{C} P^{n}$. Prove that the maps

$$
\begin{aligned}
\psi_{i}: U_{i} & \rightarrow \mathbb{C}^{n} \\
{\left[z_{0}: \ldots: z_{n}\right] } & \mapsto\left(\frac{z_{0}}{z_{i}}, \ldots, \frac{\widehat{z_{i}}}{z_{i}}, \ldots, \frac{z_{n}}{z_{i}}\right)
\end{aligned}
$$

give complex charts for $\mathbb{C} P^{n}$, i.e. the transition maps are holomorphic. What is $\mathbb{C} P^{n} \backslash U_{i}$ diffeomorphic to? What is $U_{i} \cap U_{j}$ diffeomorphic to?
d) Derive an expression for the Fubini-Study form in inhomogeneous coordinates $\zeta_{j}:=\frac{z_{j}}{z_{0}}$ on the open set $U_{0} \subset \mathbb{C} P^{n}$.
e) Compute an explicit expression for $\eta=\frac{i}{2} \partial \bar{\partial}\left(\log \left(1+\|\zeta\|^{2}\right)\right)$ on \mathbb{C}^{n} and compare with the result for $\left(\psi_{0}^{-1}\right)^{*} \omega_{\text {FS }}$ you obtained in $\left.\mathbf{d}\right)$.
f) Compute the integral

$$
\int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}
$$

[^0]
[^0]: ${ }^{1}$ In class we did this for $z \in S^{2 n+1}$, but the same definition works in general.

